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Abstract—The marked increase in advertisements over online
social networks (OSNs) necessitates the study of content prop-
agation. We analyse the viral markets with content providers
competing for the propagation of similar posts over OSNs.
Towards this, we required a new variant of the branching process
(BP), which we named as “Branching process with attack”; the
entities upon wake up attempt to attack and acquire the opposite
population; furthermore, each entity produces its offsprings as is
usually considered in BPs. In addition to providing expressions
for the growth rates of individual posts, dichotomy etc., we
explore the co-existence/co-virality of posts; can the competing
content spread and explode (number of unread/live copies of
both posts grow significantly with time) simultaneously over the
network? We prove that either one or both populations/posts
get extinct or the populations settle to a unique co-existence
equilibrium and derive the corresponding asymptotic ratios of the
two populations/posts. Our analysis applies to large population
networks focusing on mass behaviour, rather than micro details.
Our study provides insights into two crucial design aspects, the
number of seed users and the quality of the post. We performed
Monte-Carlo simulations on synthetic and ego-twitter dataset by
SNAP to support our findings.

Index Terms—Viral Competing Markets, Branching process,
Attack I. INTRODUCTION

Social media is universally prevalent today; the shared
content is shared (again), liked or dis-liked by the users
and thus may get viral over the network. This gives the
content providers (CPs) an opportunity to share the product
information with customers and cheaply amplify their growth;
a strategy well known as “Viral Marketing” (e.g., [6], [7],
[13]). Variety of content propagates simultaneously through
such platforms, and enjoy the resultant benefits; however, they
face strict competition due to competing contents.

In [6], a timeline structure holding the content is considered
to study the competing content dissemination over online
social networks (OSNs). Here the competition was due to
the placement of competing content at various levels of the
timeline, but the paper did not consider the aspect that a user
would choose one among the competing contents. When a
user, already shared with one content (say content A), is also
shared with another content (say content B), then both the
posts are available on its timeline. If the posts are in direct
competition, user may choose the latter post. Thus one can
say that ‘content A is attacked and acquired by content B’. We
study such systems and refer them as viral competing markets.
Each CP has to decide on two factors: (i) the initial number
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of users (called seed users) for whom it may have to pay to
share its content; (ii) the quality of its post. Some of the key
questions that we explore are:

1) At what growth rate does each content propagate?
2) With what probability does a given content get extinct?
3) Can the posts of competitors co-exist over the network?
4) How should a CP trade-off between investing on seed

users and designing an attractive post?
Some of these questions were investigated previously (e.g.,
[2], [5], [12], [14]), but the presence of competition poses new
challenges and provides a new outlook towards viral markets.

Our approach and contributions: There are several ap-
proaches for studying content propagation over the network.
A set of literature focuses on micro details, like degree
and particularity (basically, connections) of the users in the
network for their designs and uses tools like random graphs
(e.g., [5], [14]) or epidemiology based models (e.g. [2], [12])
for the study. However, these models can not capture some
important aspects related to content propagation like virality,
i.e., the explosion of (the number of shares of) content over
the network. Furthermore, a post can witness a huge surge in
the shares in a short duration, which can only be captured by
continuous-time BPs. We consider large population networks,
where all users are typically the same (in stochastic sense),
and focus on macro-details related to content propagation.
Branching processes are a great choice for such a study
(e.g., [6], [7], [13]). It provides analysis for growth pat-
terns, extinction probability and other measures, and captures
phenomenon which are specific to content propagation and
virality. Some existing research considers competing contents
over the network using techniques other than BPs [2], [5], [12];
however, those models are inadequate for studying co-virality
of the posts, i.e., concurrent explosion (the number of copies
of both the posts exploding simultaneously over the network)
of the posts. We aim to understand these phenomenon.

There is a vast literature that studies variants of BPs (e.g.,
[1], [4], [8]). The prey-predator type BP [4] is the only BP that
can capture some aspects of competition. Here, one population
(predator) attacks, while the other population (prey) progresses
like a standard BP. They do not consider ‘double-sided attack’,
‘acquisition’ and ‘size based attacks’; but, such aspects are
required to capture ‘any post attacking and acquiring any other
post’. Further they consider discrete-time models, while the
users visit the OSN asynchronously resulting in continuous-
time evolution. Thus, the existing BPs are insufficient to mimic
critical aspects of viral competing markets.

We introduce a new variant of Multi-type branching process,
named as Branching process with attack (BPA). In standardISBN 978-3-903176-39-3© 2021 IFIP



BP, upon wake up, each entity produces a random number of
its own offsprings before dying; in our model, it also attacks
and captures the opposite population. We study the continuous-
time population-size dependent and Markovian variant. The
unread copies of each post are modelled as one population.

We contribute towards both branching process and viral
marketing literature. In addition to studying growth rates,
dichotomy etc., we provide a distinct result in contrast to
“winner takes it all” (studied in [5], [12] and others). We prove
using stochastic approximation techniques that either one or
both posts get extinct, or the limit proportions converge to a
unique fixed ratio which is a function of mean offsprings and
attack capacity. The last possibility is a rare phenomenon and
occurs when mean number of offsprings and/or initial popu-
lation is high (as in large OSNs). But, on ego-twitter dataset
co-existence is observed even when started with moderate seed
users in significant number of sample runs.

By one of our results, any CP could capture the market if it
invests more on seed users than on designing an attractive
post, even if it has low market share/credibility. One such
recent example is the attack over WhatsApp by Signal. The
tweet ‘Use Signal’ by Elon Musk (with 42.6 million followers)
provided equivalent number of seed users. This led to massive
surges in downloads (nearly 1 million downloads a day) for
Signal, even in the presence of market giants like WhatsApp.

II. VIRAL COMPETING MARKETS

We consider content propagation over online social net-
works by two content providers (CPs) competing for similar
kind of product/service. The main goal of each CP is to
reach out to more audience through viral marketing; a certain
fraction of the users receiving the post may provide business
to the CP. Each CP initially posts its content to few selected
users and these are referred to as seed users. Whenever a
receiver visits the application (referred to as OSN, Online
social network) over which the post has been shared, it views
the post. We refer the time instance at which the user views the
post as its “wake-up” time. After viewing, the user shares it
with some or all of its contacts/friends. The number of shares
depend upon the extent to which the user appreciates the post.
Our main aim is to analyze the propagation of such competing
content over OSNs.
A. Competing content to Branching process:

As is usually done in viral marketing literature (e.g., [6],
[7], [13]), we are modeling this propagation using an ap-
propriate branching process (BP). We detail the dynamics of
the problem, along side, describing the BP based modeling
details. Towards the end, we would observe that the branching
process modeling the propagation of competing content is very
different from the models considered in the literature.
• We refer the two CPs respectively by x and y type CPs.

If the user receives only one kind of post (say of x-CP), at
the time it views the post/it wakes-up, we refer it as x-post. In
this case, the user would obviously share (if at all) only x-post
to its friends. Once viewed, the user would not read the post
again, we then say that the number of unread x-users/posts

have reduced by one, and are increased by the number of
shares; this is exactly like a death in an appropriate BP, after
producing random number of offsprings (shares here).
• If the user receives both the posts at its wake-up, (due to

competing nature of the two posts) it may chose one among
the two to share; we refer such a post/user as x or y-post/user
respectively depending upon its choice. It is also possible that
it shares to none (zero offsprings). Initially the user must have
been shared (say) x-post, we then refer it as x-user. But when
another friend forwards the y-post before the user wakes-up,
then the user gets converted to y-user if it prefers y-post over
the x-post at it’s wake-up. It is this conversion, which we refer
as attack (by y-user), that makes the underlying branching
process very different from the ones studied in the literature.
As before the corresponding unread posts are reduced by one,
once the user views (and shares) them.
• If the user is shared with multiple copies of the same post,

then the user would consider only the latest share.
The posts propagate from one user to another in the

above described manner. As mentioned before, there is a
possibility of the rival post reaching the user before it views
the first received post. If the user prefers to share the ri-
val post, then one can say that ‘the rival post attacked
and acquired the first post’; we name such a process as
branching process with attack (BPA). We analyse these novel
BPs, along with viral competing markets.
B. Modelling details

Let cx0 , c
y
0 be the number of seed users of x, y posts chosen

by the respective CPs. We assume that any user wakes-up
after an exponentially distributed time with parameter λ (i.e,
we consider Markovian BPs); this makes the model mathemat-
ically tractable and is a reasonable approximation to model
scenario like ours (see [6], [13]). Let the number of friends
(F ) of a typical user be random which is independently and
identically distributed (IID) across the users in the network;
mf := E[F ]. Let Zt := (Cxt , C

y
t ) be the number of current

live/unread copies of respective posts at time t.
Upon wake up, a user shares the post (of say x-type) to its

friends with probability ηx depending upon the quality1 of the
post. The x-CP achieves desired ηx by appropriate allocation
of resources towards designing an attractive post. In all, we
assume that a user with x-post (y-post) shares to Bin(F, ηx)
(resp. Bin(F, ηy)) of its friends, where Bin(·, ·) is a Binomial
random variable. Among these friends to whom the post is to
be shared by x-user, there will be 3 fractions:
(i) a fraction of users who had not received any post yet, these
would correspond to new live copies of x-post, ξx;
(ii) another fraction that already received the y-post, these
would correspond to the attacked population, ξxy; and,
(iii) a third fraction who already received the x-post and will
not be interested in another copy of it.

We assume that for any post type (say x-post) and any time
t, γ(Cxt ) fraction of users will have x-post, among any given

1it reflects the enticing nature of the post and the urge that the users feel
to like/forward the post; could depend on its design, irresistible offers etc.



subset of the network; further, we assume γ(·) is an increasing
function, which converges to γ∗. This modeling is reasonable
for huge networks, as the fraction of users with a given post
is incomparable with the network size.

In all, when a x-user forwards, the number of shares to a
subset of its friends without any (x or y) post is given by,

ξx(Zt) := Bin(F, ηx(1− γ(Cxt )− γ(Cyt ))),

while the number of shares to that subset of its friends with y-
post, ξxy(Cyt ) := Bin(F, ηxγ(Cyt )). Among the latter fraction
(that received both the posts), only pxy sub-fraction prefers the
new (x) post; this preference of the user changes user’s type to
x-type and this is exactly equivalent to an attack over y-posts
by x-post; the number of (successfully) attacked y-posts are:

ζxy(Cyt ) := Bin(min{ξxy(Cyt ), Cyt }, pxy). (1)

Note that the successfully attacked y-posts are acquired by the
x-type. Let z = (cx, cy) be a realisation of the random vector
Z = (Cx, Cy). The expected values of the population size
dependent attacks and offsprings and their limits are defined
by (where z →∞ denotes cx →∞ and cy →∞):

mx(z) := E[ξx(z)] = mfηx(1− γ(cx)− γ(cy)), (2)
m∗x := lim

z→∞
mx(z) = mfηx(1− 2γ∗)

mxy(cy) := E[ζxy(cy)] = E[min{Bin(F, ηxγ(cy)), cy}]pxy, and,
m∗xy := lim

cy→∞
mxy(cy) = mfηxγ

∗pxy.

When a user with y-post shares, we have analogous dynamics.
The network structure is usually the same towards any post;
hence γ(·) is same for both. It is ηx, ηy (depends upon the
design of posts by CPs), pxy , pyx (depends upon the CPs and
network, details later) and cx0 , c

y
0 (seed users chosen by CPs)

that distinguishes the course of propagation of the two posts.
Observe that the offsprings and ‘attacks’, {ξx(Zt)} and

{ξxy(Cyt )}, are IID across those x-wake up epochs for which
Zt = z for a fixed z; similar is the case with {ξy(Zt)} and
{ξyx(Cxt )}. We further assume super critical conditions and
finite first moments:
A.1 For each i, j ∈ {x, y} with i 6= j and any z:

1 < mi(z),m
∗
i <∞, and mij(c

j),m∗ij <∞.

Under super-critical conditions, both the posts can get viral in
the absence of competition, i.e., when they progress indepen-
dently (see [1]). Further, we assume that 0 < P (ξi(z) = 0) < 1,
for each i ∈ {x, y} and any z, thus ensuring a possibility of
zero as well as higher number of shares.
C. Dynamics:

We analyse the system by studying the number of copies of
the posts at transition epochs, i.e., at time instances at which a
user wakes-up. We begin with some notations. Let us denote
the event that x-user wakes up as x ↑ and similarly define
y ↑. Let τn represent the nth transition epoch2. Let Cxn :=
Cx
τ+
n

= limt↓τn C
x
t be the number of x-posts immediately after

τn. Similarly define Cyn. Note that the time taken by the first
user to wake-up, (τn+1 − τn), after the nth transition epoch

2If both posts get extinct at nth epoch, we set τk := τn for all k ≥ n.

is exponentially distributed with parameter λSn, with the sum
Sn := Cxn+Cyn representing the total number of unread copies
on OSN corresponding to the two posts. One can summarize
the system (and BPA) using the following description of the
events at transition epochs. When a x-user wakes up (x ↑),
it shares to ξx number of its friends, attacks ζxy number of
y-type and dies3, i.e., (see (1)),

Cxn = Cxn−1 + ξ̃xn(Zn−1) + ζxy,n(Cyn−1),

Cyn = Cyn−1 − ζxy,n(Cyn−1), ξ̃xn(Zn−1) := ξxn(Zn−1)− 1.
(3)

We have similar transitions when y ↑, with ξ̃yn(Zn−1) :=

ξyn(Zn−1) − 1. Observe that the (successfully) attacked posts
are acquired by the attacking type.
Some more modeling aspects: In social networks typically
the posts are stored in timelines (e.g., as in [6]), the inverse
stacks on the user’s application interface. When a post is
shared to the user, this post sits on the top of the timeline and
all other posts shift down by one position. Thus, the competing
posts have the potential to attack each other; when a user has
both the posts it can prefer the newer post (one on higher
levels) to a bigger extent (and/or the interest may depend upon
the source of the post). If the user always prefers the newer
post, this can be modelled by considering pxy = pyx = 1. On
the other hand, if one of the CPs (say x) is more influential
than the other, we can model this by pxy > pyx; in this case,
the user may prefer the x-post even when it is placed at a
lower level. As already mentioned, one (say x-CP) designing
a more attractive post can be captured by ηx > ηy .

In short, each CP can control the propagation of its post by
appropriate choice of cx0/c

y
0 (seed users) and ηx/ηy (attrac-

tiveness of the post), for given influence factors pxy and pyx;
we investigate the significance of these parameters.
Independent Propagation: If one models simultaneous prop-
agation of the competing content without considering attack,
we will have the two posts propagating independent of each
other (pxy = pyx = 0). We get, mx = mfηx and my = mfηy;
basically the existence of any post (represented by γ(·)) does
not alter the prospects of any other post. This can be modelled
using two independent single type BPs, which we refer briefly
as BPNAs (no attack). We compare the conclusions drawn
by such independent processes with those obtained using
our BPA model below, to illustrate the drawbacks of the
formal models to study viral competing markets. We provide
numerical comparison using synthetic and ego-twitter dataset
(in section IV).

III. ANALYSIS

A. Disparity in the number of seed users

Consider a scenario with huge disparity in seed users of the
two CPs. We immediately have (proof in Appendix):

Theorem 1: [Seed users] Assume mxy(1) > 0 and A.1. For
any ε > 0 and cy0 , there exists a c̄x <∞ such that

P (Cyn
n→∞→ 0|Z0 = (cx0 , c

y
0)) > 1− ε for all cx0 ≥ c̄x.

3the number of unread copies of x-post decreases by 1.



The result is true even when x and y are interchanged. �
Thus the CP with higher seed users eventually captures the
market with high probability. This is true irrespective of the
influence factors (pxy , pyx) and the relative attractiveness of
the posts (ηx, ηy). In fact, all it requires is that the CP with
higher seed users (say x-CP) can attack, i.e., pxy > 0. In other
words, even the post of the market giant (pyx � pxy > 0)
can get extinct with high probability, if the smaller CP uses
exorbitantly large number of seed users (cx0 � cy0).

On the contrary, if one models viral competing markets
using BPNAs, by independence, the number of seed users of
any CP has no influence on the propagation of the post of the
other CP; this leads to misleading conclusions (section IV).

From Theorem 1, we can also conclude that if a CP (say x-
type) with some influence (pxy > 0, i.e., at least few users with
both the posts on their timeline prefer this post) invests more
in sharing its post to large number of seed users, instead of
investing on designing a better post (i.e., ηx), then irrespective
of the the quality of the other post (y-type), x-CP is always in
a better position. In fact, if the y-CP shares its post to lesser
number of seed users, then there is a high possibility that x-
post reaches more users and x-CP can capture the market.
Thus, it is more crucial to procure higher seed users, which
is not aptly indicated by BPNA based models.

B. Limit proportions

Transient analysis (study of growth patterns, limit propor-
tions etc.) is an important aspect for Markov chains that are
predominantly transient, like BPs under super-critical regime.
It is a common practice to scale the process appropriately
that enables convergence to a finite limit, to understand the
otherwise transient, exploding process. We consider a very
different type of scaling (Θn defined below) and adopt a new
approach using stochastic approximation (SA) techniques (e.g.
[10]) to derive (time) limit of the proportion βt := Cxt /St of
the two posts. These limits shed light on the fractional occu-
pancy of the competing posts over the network after passage
of sufficiently long time and co-virality of the competing posts.

Let §n represent the sample mean formed by the sequence
of offsprings/shares plus the initial number of posts (see (3)):

§n =
1

n

(
n∑
k=1

ξ̃k + cx0 + cy0

)
, ξ̃k := ξ̃xkHk + ξ̃ykH

c
k, (4)

where Hk = 1−Hc
k is the indicator that x ↑ at kth-epoch; for

simpler notations, we omit the dependence on Zn, Cxn, C
y
n at

places. Observe that the total population (νe extinction epoch),

Sn = n§n1{n<νe}, νe := inf{n : Sn = 0}. (5)

Further, also observe (same is the case for Cyn):

Cxn ≤ Sn ≤ n|§n| for all n. (6)

If the process was population independent, for example if
γ(·) ≡ γ and ηx = ηy , by law of large numbers, §n →
mfηx − 1 a.s., while ψn := Sn/n → mfηx − 1 only in
survival sample paths. For general case, one can construct up-
per bounding processes which exhibit similar property. These

observations form the main basis for analysing the limits of
proportions ψn and θn := Cxn/n. Observe βn = θn/ψn and let
Θn := [ψn, θn, tn], Θ0 := [s0, c

x
0 , 0], with tn :=

∑n
k=1 1/k.

The evolution of Θn can be captured by a 3-dimensional
stochastic approximation based scheme as below (see (3)):

ψn = ψn−1 + εn

(
ξ̃n − ψn−1

)
Kn, (7)

θn = θn−1 + εn

[
Hn

(
ξ̃xn + ζxy,nIn

)
−Hc

nζyx,nIn − θn−1

]
Jn,

tn = tn−1 + εn, with εn := 1/n, In := 1{θn−1<ψn−1},

Jn := 1{θn−1>0}, and Kn = 1{ψn−1>0}.

Observe that Cxn = η(tn)θn, Cyn = (ψn − θn)η(tn), where
η(t) := max {n : tn ≤ t} . The ODE that can approximate (7)
is given by (see [10], and Appendix for more details):

Θ̇ = ḡ(Θ) with ḡt(Θ) = 1, (8)

ḡψ(Θ) =

[
θ

ψ
mx(z) +

(
1− θ

ψ

)
my(z)− 1− ψ

]
1{ψ>0},

ḡθ(Θ) =

[
θ

ψ

(
mx(z)− 1 +mxy(cy)1{θ<ψ}

)
−
(

1− θ

ψ

)
myx(cx)1{θ<ψ} − θ

]
1{θ>0},where,

z(t) := (cx(t), cy(t)), cx(t) := θ(t)η(t), cy(t) := (ψ − θ)(t)η(t).

We will prove that the ODE indeed approximates (7) and
derive further results using [10, Theorem 2.2, pp. 131] in
Theorem 2 (given below); the ODE approximation is derived
for the general case as in the hypothesis, however the analysis
of the ODE (Lemma 1 in Appendix) is valid only for the special
population-size independent case (ηx = ηy and γ(·) ≡ γ,
where γ < ∞). For general case, the Theorem is only a
conjecture and we are working towards completing the proof.

Basically we provide the required justifications, identify
the attractors and the domain of attraction of the ODE and
finally derive the following result (proof in Appendix) under
the additional assumptions:
A.2 We assume finite second moments, i.e., for each z and

i, j ∈ {x, y}, i 6= j: E(ξ2
i (z)) <∞, E(ξ2

ij(c
j)) <∞.

A.3 For some finite c̄y, c̄x, κij , for i, j ∈ {x, y}, i 6= j,

κij min{cj , c̄j} ≤ mij(c
j) ≤ c̄jκij = m∗ij ,

i.e., mxy(·),myx(·) are bounded by piece-wise linear
functions.

Theorem 2: [Limit Proportions] Assume A.1-A.3. The
sequence (ψn, θn) converges a.s. to one of the following limits:

(i) (0, 0), i.e., both population types get extinct,
(ii) (m∗y − 1, 0), i.e., only y-population survives,

(iii) (m∗x − 1,m∗x − 1), i.e., only x-population survives, or
(iv) (ψo, θo), with θo = ψoβo and ψo = βom∗x+(1−βo)m∗y−1,

i.e., both populations co-exist, where

βo =


m∗
yx

m∗
xy+m∗

yx
when m∗x = m∗y, and else,

1
2

+
m∗
xy+m∗

yx−
√

(m∗
x−m∗

y+m∗
xy−m∗

yx)2+4m∗
xym

∗
yx

2(m∗
x−m∗

y)
. �

(9)

Remarks: • One can easily prove that the probability of the
events (i)-(iii) in the above are non-zero. The probability of



co-virality, that of the event (iv) is a more interesting question
which is considered in the next subsection for finite time.
• After simple algebra using (9), one can show that βo >

1/2 if and only if mx+
(
m∗xy −m∗yx

)
< my+

(
m∗yx −m∗xy

)
,

i.e., if and only if the combined reproduction capacity (m∗x)
and net attack capacity (m∗xy−m∗yx) of x-type is smaller than
that of y-post. Thus surprisingly a ‘weaker post’ occupies a
higher proportion at limit. But, when viewed from a different
perspective, for the two posts to co-exist, there should be some
sort of balance and that is possible only if the proportion of
the post with higher potential is smaller than that with the
lower potential.

C. Finite-time Co-existence

Having investigated the possible values of limit proportions,
we proceed to explore if at all the two posts can co-exist
over the network with non-zero probability. Towards this, we
restrict our attention to finite time analysis, and asymptotic
analysis is for future. We have (proof in Appendix):

Theorem 3: [Finite-time Co-existence] Define the two
types of (β) neighbourhoods of βo of (9) respectively by,
Nε := {z : β ∈ [βo − ε, βo + ε]} and Nε,∆ := Nε ∩ {s = ∆} .

Define exit time for any set A, ΓA := inft{Zt ∈ Ac}
(infimum of empty set is ∞). Then, for any ε̃ > ε > 0 and
any T <∞: inf

z∈Nε,∆
Pz(ΓNε̃ ≤ T )→ 0 as ∆→∞. �

If the two competing posts start/reach in a ratio close to βo

and in sufficiently large numbers, then their proportions remain
close to βo in any finite time, with high probability. Thus, we
can have/continue co-existence or simultaneous propagation
of the posts on the network for any finite time. We verify the
same through simulations (see Table IV in section IV).
Co-virality of competing posts: In the sample paths where
ψn → 0, both posts get extinct. Consider the survival sample
paths (i.e., ψn = Sn/n 9 0) in Theorem 2, then Sn → ∞.
This leads either to: (a) high disparity in the number of
two posts (as suggested by Theorem 2.ii-iii); or (b) the limit
proportion converging to βo (by Theorem 2.iv). In the first
case, by Theorem 1, the post with lower number of unread
copies gets extinct (and not just fraction Cxn/n → 0) and
hence co-virality is not possible. In the latter scenario, both
the posts grow exponentially large (see Theorem 4 in next
subsection) over the network while remaining in a proportion
close to βo. This is the co-virality event. However, at present,
we do not have an estimate of the probability of such an
event over infinite time. Nevertheless, Theorem 3 confirms
continuation of co-virality event over finite-time horizons with
high probability, if and when it reaches a neighborhood of βo.

D. Growth Patterns and Extinction probability

In this subsection we analyze the growth patterns of the
evolution of the competing posts. We utilize the well-known
results of the BPs to derive the same. Without loss of generality
consider ηx ≥ ηy . Define the following upper and lower rates:

α := λ(m∗y − 1) and α := λ(mx(0, 0)− 1). (10)

We have the following results (proof in Appendix):
Theorem 4: [Growth and extinction] Assume A.1-A.2 and

ηx ≥ ηy . Then:
(i) the growth rate of {Sn} process is upper bounded by α
and lower bounded by α as below:
P (lim sup

n
Sne

−ατn <∞) = 1, P (lim inf
n
Sne

−ατn > 0) > 0.

(ii) the result is also true for x as well as y-post propagation
processes, i.e., for example,
P (lim sup

n
Cxne

−ατn <∞) = 1 and P (lim inf
n
Cxne

−ατn > 0) > 0

(iii) the extinction probability q :=
√
Pz0=(1,1)(Sn → 0) is

bounded between, q ≥ q ≥ q, with

q :=
√
P(1,1)(Sn → 0), q :=

√
P(1,1)(Sn → 0),

where q, q respectively satisfy f(s) = s and f(s) = s, with f
and f being PGFs of random variables ξ̃∗y := limz→∞ ξ̃y(z)

a.s. and ξ̃x(0, 0) respectively. �
The significance of such theorems is well understood in BP

literature, and we explain the same in our context:
(a) Let W x := lim supn C

x
ne
−ατn and W x := lim infn C

x
ne
−ατn .

Then for large enough N , with an appropriate ε > 0, we have:
(W x − ε)e

ατn < Cxn < (W x + ε)eατn for all n ≥ N. (11)

Observe that τn → ∞ a.s. on survival sample paths4. Thus
from (11), we have exponential growth of number of unread
copies of any post, with a rate that is upper and lower bounded
respectively by α and α.
(b) the probability of extinction of both the posts, i.e., the
probability that Sn (number of total posts) becomes zero for
some n <∞ is given by part (iii) of the Theorem.
Population-size independent case: Consider a special case
with ηx = ηy, γ(·) ≡ γ and any values of pxy, pyx (need not
be equal). Here, the upper and lower bounding processes in
the proof of the theorem (in Appendix) coincide, as from (10)
α = α = α = λ(mfηx(1− 2γ)− 1).

Also, clearly from (3), {Sn}n corresponds to a standard
BP (the dynamics of individual propagation is complicated,
however the sum population evolves exactly like a single
type BP) and hence exhibits dichotomy (see [1]): either it
has asymptotic (exponential) growth when it survives (W s =
W s > 0) or it gets extinct (W s = W s = 0).

From Theorem 4.iii, the extinction probabilities are also
equal, q = q = q. This is the probability that both the
posts are wiped out from the network in a finite time. Further
consider symmetric case: cx0 = cy0 and pxy = pyx. Then
by symmetry, the x-post survives with probability more than
half that of Sn, i.e., (1 − q2cx0 )/2 (more is possible due to
co-existence); in standard BPs the descendants of each seed
user evolve independently (see [1]). However, observe that
the probability of survival of x-post without attack (in BPNA
model) equals (1− qcx0 ), which would be substantially larger,
as (1− qcx0 ) > (1− q2cx0 )/2.

From Theorem 4.ii, the growth rate of individual posts with
attack equals α, which equals that in BPNA only when γ = 0.

4τn is lower bounded by maximum among n exponential random variables



IV. NUMERICAL EXPERIMENTS

In this section, we perform extensive Monte-Carlo (MC)
simulations on both synthetic data and ego-network dataset
of Twitter provided by SNAP [11] to draw further insights
into viral competing markets and to validate our theoretical
results. Towards this, we simulate our process till a pre-defined
system time T and define the respective extinction probability
of total number of live posts, individual posts, and the prob-
ability of co-existence as: qTs := P (St = 0 for some t ≤ T ),
qTx := P (Cxt = 0 for some t ≤ T ), pTco := P (Cxt > 0, Cyt >

0 for all t ≤ T ). Similarly define qTy .

A. Observations using synthetic data

We consider population-size independent case, i.e., consider
that γ(·) is a constant, while population-size dependent case
is considered with ego-twitter dataset. We performed MC
simulations till T = 106 for 3200 instances with parameters:
λ = 0.0002; F d∼ Poisson(4); ξx, ξy

d∼ Bin(F, 0.2667);
ξxy, ξyx

d∼ Bin(F, 0.053); pxy, pyx = 0.3 in Table I, i.e.,
with mx = my = 1.067 and m∗xy = m∗yx = 0.064. We observe
that the y-post gets extinct with increasing probabilities as
cx0 increases (as in Theorem 1). For the case without attack
(BPNA) as T → ∞, qTs , q

T
x , q

T
y → qc

x
0+cy0 , qc

x
0 , qc

y
0 and

pTco → (1 − qc
x
0 )(1 − qc

y
0 ), where q is defined in Theorem

4; the estimates of the last four columns well match.
TABLE I: Both posts have equal potential: cy0 = 2

With attack and acquisition Without attack and acquisition
cx0 qTs qTx qTy pTco qTs qTx qTy pTco
2 0.589 0.792 0.797 0 0.592 0.768 0.775 0.049
4 0.451 0.609 0.842 0 0.453 0.590 0.757 0.106
10 0.204 0.287 0.917 0 0.203 0.261 0.773 0.169
16 0.094 0.123 0.970 0 0.092 0.119 0.785 0.188
30 0.016 0.020 0.996 0 0.013 0.018 0.766 0.228

From columns 2 and 6, the extinction probabilities of the
total posts is the same with/without attack (see subsection
III-D with ηx = ηy), however that of the individual posts
are very different in the two models; this shows that ignoring
the existence of competing content can be misleading. Observe
from pTco of column 5 that co-existence is not possible with
competition, which is mis-judged by BPNA models, column 9.

In Table II, x-post is more attractive (ξx
d∼ Bin(F, 0.3325))

and attacks more (ξxy
d∼ Bin(F, 0.0667)), other parameters as

in Table I. Clearly x-post has more potential to grow larger,
attack y-post and we capture the same in Table II where qTs and
qTx have reduced significantly in comparison to Table I; while
y-post gets extinct with higher probabilities. This difference
is unnoticed by BPNA models (see qTy without attack of row
1 in the two tables).

TABLE II: x-post has higher potential: cy0 = 2
With attack and acquisition Without attack and acquisition

cx0 qTs qTx qTy pTco qTs qTx qTy pTco
2 0.218 0.396 0.822 0 0.235 0.305 0.742 0.188
6 0.022 0.041 0.981 0 0.021 0.028 0.729 0.265

10 0.002 0.005 0.998 0 0.001 0.002 0.700 0.298

In Figure 1 we fix cx0 = 2, while rest of the parameters are
as in Table II. Even with, mx +m∗xy > my +m∗yx, i.e., even

when the combined reproduction and attack power of x-type
is bigger than that of y-type, the x-post can get extinct with
large probabilities if seed users of y-post are large enough (for
example cy0 ≥ 10 in the figure), thus re-affirming Theorem 1.

TABLE III: Co-existence of populations
10−5cx0 cx0/c

y
0 mx my 10−5N cxN βo cxN/sN

1.01 1.005 2.9998 3.0 25974 2614884763 0.501 0.503
10 1 2 2 13141 659107240 0.5 0.501
10 0.618 3.0 2.98 10070 765240476 0.382 0.382
10 0.618 2.92 2.90 10534 766418907 0.382 0.381
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Fig. 1: High disparity in seed users

TABLE IV: Approaching
co-existence!
mx,my ,m∗c cx0 , c

y
0 βo %in

(300, 300, 10) (2500, 3001) 0.5 11.2
(300, 300, 10) (3000, 3001) 0.5 10.4
(300, 300, 10) (3000, 3601) 0.5 10.1
(300, 300, 30) (3000, 3601) 0.5 5.1
(300, 290, 20) (3000, 4611) 0.44 5.3

Next, we reinforce co-existence results of Theorems 2 and 3
with m∗xy = m∗yx = 0.02 in Table III to also support our
conjecture (Theorem 2 with mx > my). We see that the limit
fractions estimated through MC simulations well match the
theoretical ones (9). Note here that (cx0 , c

y
0) are very large.

Recall that in Theorem 3, we showed that if posts start close
to βo with large number of seed users, then for any finite time,
the fraction remains close to βo. In Table IV, we corroborate
this result by taking β0 near βo and tabulating the fraction of
sample paths (average is over 1000 sample paths) in which
the ratio converges even closer (within 5%) to βo, after 104

transitions. Here, m∗xy = m∗yx = m∗c . It is clear from Table IV
that in considerable number of sample paths, the fraction of
posts converge within 0.05−band around βo, even when the
process started outside the band.

B. Validation through ego-twitter dataset by SNAP

We study the post propagation over twitter dataset provided
by SNAP [11]. We could extract 37, 255 users and 1, 048, 576
directed connections using this data. We are yet to utilize
the information of circles provided by SNAP. The data had
insufficient cross connections and ηx, ηy are naturally small
parameters, which resulted in very few instances of the post
being forwarded to a user that already had a post. Hence we
introduced a parameter ϕ; while forwarding shares to ηx or ηy
fraction of users we consider ϕ sub-fraction specifically among
those friends that already have the post. We also introduced
on average two extra friends per user to increase the cross
connections. We then ran the usual MC based simulations,
picked seed users and friends randomly from the dataset,
generated exponential clocks and the relevant user wake-
ups/visits, forwarding of the post randomly as explained in
section II-B. We also considered independent propagation of
the two posts by setting ϕ = 0, pxy = pyx = 0, which
we refer as BPNA simulations; this simulation neglects the
fact that the users predominantly pick one among the two
competing posts, when they receive both. Our aim is to show



the drastic differences in the two types of the propagations,
alongside demonstrating the validity of our theoretical results.
The estimates are after averaging for 1000 sample paths.

We consider a first example in Table V with equal number
of seed users. We set ηx, ηy = 0.05, λ = 5, (T, ϕ) = (2.1, 0.6),
pxy, pyx = 1. We observe that the probability of co-existence
(last column), as well as existence (column 3,4) are quite
small even in spite of starting with seed users as large as
8. This shows the significance of attack inherently present in
the simultaneous propagation of competing posts. Had it been
independent propagation, these probabilities would have been
much higher (theoretically equal (1− qcx0 ), see section III-D).
We also run independent BPNA simulations for cx0 = cy0 = 8
and observed that 1− qTx = 1− qTy = 0.9 and pTco = 0.48.

TABLE V: With equal seeds
cx0 cy0 1− qTx 1− qTy pTco
4 4 0.613 0.631 0.127
5 5 0.672 0.658 0.186
8 8 0.748 0.754 0.282

TABLE VI: BPA versus BPNA
BPA BPNA

cx0 cy0 qTx qTy qTx qTy
3 20 0.751 0.020 0.138 0
4 20 0.682 0.018 0.044 0
5 30 0.66 0.004 0.028 0

In the second example of Table VI, we consider disparity in
the number of seed users. Here, we set ηx = ηy = 0.2, λ = 5,
T = 0.6. We also tabulate results with BPNA simulations in
the last 2 columns. We see a huge disparity in the two sets
of extinction probabilities; for example, when competition is
considered, even with 5 seed users x-post gets extinct with
more than 0.6 probability while with independent runs the
extinction is only 0.028.

V. CONCLUSIONS

Online social platforms are usually flooded with variety
of content; some of which are competing with each other.
The content is stored in an ordered manner as in timelines of
Facebook, Twitter etc. Thus, a user has a wide variety of posts
to read, which provides them multiple (commercial) choices,
however, the competing contents are always at a risk of loosing
their chances. When a (advertising/commercial) post in a
user’s timeline gets shifted down by a newer competing post,
the new post snatches away the opportunities of (attacks and
acquires) the old post depending upon the popularity and/or
the freshness of the two contents.

We propose a new variant of continuous-time
population-size dependent branching process, namely
Branching process with Attack, that mimics this ‘attack’
and ‘acquire’ phenomenon of the competing content. This
new variant poses new questions along with the old set
of questions (related to growth rates, number of shares
and extinction probabilities etc.), that of co-existence/co-
explosion of the competing populations. In the context of viral
competing markets, this new question translates to co-virality
possibilities, i.e., simultaneous spread and explosion of the
competing content over the network.

Our work has two-fold contributions towards the literature:
branching processes, as well as, the viral competing markets.
We adopted a novel approach of using stochastic approx-
imation techniques with branching processes to derive the
time-asymptotic limit proportions for individual populations.

In particular, in regard to viral competing markets, we showed
that either one or both the posts get extinct. If the posts co-
exist, they converge to a fixed (unique) ratio. Interestingly, this
ratio is smaller for the post which is more attractive and has
higher net attack capacity.

Any CP can capture the market if it manages to procure
large number of seed users in comparison to its opponent,
even when the other CP is a market giant. In other words, seed
users play a critical role. In contrast, when the two CPs start
with comparable number of seed users, there is a possibility
of co-virality. We also discuss the growth rates and extinction
probabilities of individual posts.

We validated our results through Monte-Carlo simulations.
Using real traces, we showed that simple BPs (when attack and
acquisition is ignored) are insufficient to model viral compet-
ing markets and give erroneous conclusions; for example, on
twitter-dataset, models that neglect attack-acquisition aspect
underestimate the extinction probabilities up to 93.55%.

The structure of timelines have different types of influences
on post-propagation (as is recently observed in [6], some posts
may be lost before the user’s visit to its timeline). It would
be interesting to study this aspect along with competing posts.
Further, using the performance results of this paper, one can
consider relevant game-theoretic and optimization problems.

VI. APPENDIX

Proof of Theorem 15: We are considering conditional prob-
ability, given that Cx0 = cx0 and Cy0 = cy0 are the respective
initial sizes. Let τ be the time epoch before one among the
cy0 number of particles wakes up; observe that multiple x-
type particles might have woken up during this time. Then,
τ ≥ τe, where τe is exponentially distributed random variable
with parameter λcy0 and equals the minimum wake-up time
among cy0 number of y-particles. Note that some of them could
have been attacked/acquired in the meanwhile, and hence τe
is only a lower bound. Let N# be the number of transitions
(i.e., wake-ups) of x-type before a y-type particle wakes up;
then clearly N# ≥ Bin(cx0 , 1−e−λτ ) a.s.; the lower bound is
obtained by considering only those among cx0 particles that
woke-up. Let C̃y denote the size of the y-type population
at the next y-transition. Let P0(·) represent the conditional
probability P (·|Cx0 = cx0 , C

y
0 = cy0) and similarly let E0[·]

represent the conditional expectation E[·|Cx0 = cx0 , C
y
0 = cy0].

Now with ζ := ζxy(1) (recall ζxy(1) ≤ ζxy(cy) a.s. for any
cy ≥ 1) we have the following:

P0(Cy → 0) ≥ P0(C̃y = 0) = P0

(
cy0 <

N#∑
i=1

ζxy,i
)

≥ P0

(
cy0 <

cx0∑
i=1

ζi1
τ
{x↑}

)
= E0

[
P0

(
cy0 <

cx0∑
i=1

ζi1
τ
{x↑}

∣∣∣τ)],
where 1τ{x↑} is indicator of the event that the x-particle under
consideration has woken-up before τ.

Consider a fixed τ such that (possible as cy0 is fixed)

P0(τ ≥ τ) > P0(τe ≥ τ) = e−λc
y
0τ >

√
(1− ε). (12)

5This proof is loosely inspired by the proofs provided in [4].



Let Φ be the complementary CDF of standard normal
random variable and define the following for the above choice
of τ :

Z̄cx0 :=

∑cx0
i=1 ζi1

τ
{x↑} − cx0mxy(1)(1− e−λτ )

V ar(ζi)
.

Let z̄cx0 :=
cy0−c

x
0mxy(1)(1−e−λτ )
V ar(ζi)

. Observe that {ζi1τ{x↑}}i are
IID random variables and hence by Central Limit Theorem
and Portmanteau Theorem for ε := 1−

√
1− ε, there exists a

c̄x0 <∞ such that6 for all cx0 ≥ c̄x0 :
P
(
Z̄cx0 > z̄cx0

)
≥ P0

(
Z̄cx0 > z̄c̄x0

)
≥ Φ

(
zc̄x0
)
− ε/2.

If required, choose c̄x0 further large such that
P
(
Z̄cx0 > z̄cx0

)
≥ 1− ε for all cx0 ≥ c̄x0 , (13)

and this is possible because Φ(a)→ 1 when a→ −∞ (hence
Φ
(
z̄c̄x0
)
→ 1 as c̄x0 → ∞). Using the bounds (12), (13) and

conditioning on τ , we have for all cx0 ≥ c̄x0 :
P0(Cy → 0) ≥ P0(Cy → 0; τ ≥ τ)

≥ P0

(
E
[
Z̄cx0 > z̄cx0

∣∣τ] ; τ ≥ τ
)
≥ P0

(
Z̄cx0 > z̄cx0

)
P0(τ ≥ τ)

= P
(
Z̄cx0 > z̄cx0

)
P0(τ ≥ τ) ≥ (1− ε). �

Proof of Theorem 2: Define Ln := [Lψn , L
θ
n, L

t
n]T , where,

Lψn =

(
ξ̃n − ψn−1

)
Kn, L

t
n = 1 and

Lθn =

[
Hn

(
ξ̃xn + ζxy,nIn

)
−Hc

nζyx,nIn − θn−1

]
Jn.

(14)

Define Fn := σ{Cxk , C
y
k , τk : 1 ≤ k ≤ n} for all n. Observe

that E[Ln|Fn−1] = ḡ(Θn) (right hand side of ODE (8)).
Now, we will prove the result using [10, Theorem 2.2, pp.

131], as ḡ(·) is only measurable. To this end, observe from (4)

that ξ̃k(z) ≤ ξ̃k(0, 0) a.s. Say ξ̃y(0, 0)
d
≤ ξ̃x(0, 0). Define

a new process §̃n, which evolves like §n, but with ξ̃k(z) in
(4) replaced by IID terms ξ̃xk (0, 0). By appropriate coupling
arguments, one can dominate §n by §̃n almost surely and then:

Cxn ≤ Sn ≤ n|§n| ≤ n|̃§n| for all n. (15)

By law of large numbers, §̃n → mx(0, 0)− 1 a.s.
For using said result in [10], we first need to prove (a.s.)

equicontinuity of sequence Θn(t) := Θn +
∑m(tn+t)−1
i=n εiLi,

with m(t) of [10] equal to η(t). This proof goes through
exactly as in the proof of [10, Theorem 2.1, pp. 127] because
of the following reasons: the random vector Ln is comprised
of θn, ψn and IID random variables and by (15), it suffices
to show that supnE |̃§n|2 < ∞, which is trivially true under
A.2; further, we exactly have E[Ln|Fn−1] = ḡ(Θn) (here βn
in [10, Assumption A.2.2] is 0), as well the projection term
is zero. Further, {Θn(0)}n is bounded a.s. by strong law of
large numbers as applied to {§̃n}n.

In Lemma 1, we identify the attractors7 of (8), with θo, βo

as in (9) for the special case with ηx = ηy = η and γ(·) ≡ γ;

6Because the Gaussian measure is measure of a continuous random variable,
the set under consideration is Gaussian-continuity set (see [3]).

7A set A is said to be Asymptotically stable in the sense of Liapunov, if
there exist a neighbourhood (called domain of attraction, D(A)) starting in
which the ODE trajectory converges to A as time progresses (e.g., [10]).

the proof of Lemma 1 is only a conjecture for general case.
Proof is now completed sample-path wise.

First consider the sample-paths in which ψn → 0. Then
clearly, (ψn, θn)→ (0, 0). Observe in complementary sample
paths, ψn → m− 1 a.s. , where m := mfη(1− 2γ).

Consider the sample-paths in which {θn} sequence does not
exit neighbourhood Nε(θo) := {θ : |θ − θo| < ε} infinitely
often (i.o.), for every ε > 0; that is8, θn → θo and so
(ψn, θn)→ (m− 1, θo).

Now consider the remaining sample paths, then there exists9

at least one ε > 0 such that {ψn, θn, tn} sequence visits the
compact Sε of Lemma 1 i.o. By [10, Theorem 2.2, pp. 131]
as applied to these sample paths, the sequence converges to
the attractor A of Lemma 1. �

Lemma 1: [Attractors] For ODE (8), the set A := {(m −
1, 0), (m− 1,m− 1)} × {∞} is locally asymptotically stable
in the sense of Liapunov. For any ε > 0, the set10

Sε =

{
(ψ, θ) : ψ ∈ Nε(m− 1),

θ

ψ
∈ [0, 1]−Nε(βo)

}
× [T0,∞],

is compact and is in the domain of attraction of A, when T0

is such that η(T0)βo(m−1−ε) ≥ max {c̄yκxy/κyx, c̄xκyx/κxy} .

Further, the equilibrium point (m− 1, θo,∞) is not stable. �
Proof : For t component, we consider the extended positive

real line including ∞, with an appropriate metric; proofs in
[10] would go through even for this. With this, the required
compactness is true. The ψ-component of the ODE (8) has the
following solution:

ψ(t) =

{
e−t(ψ(0)−m+ 1) +m− 1, when ψ(0) > 0,

ψ(0), ψ(0) ≤ 0.

Thus (m−1) is asymptotically stable with (0,∞) as domain
of attraction. For θ component, one needs to substitute solution
ψ(t) in its ODE (ḡθ of (8)) to analyze. By considering ψ∗ =
m−1, the equilibrium points11 for the ODE corresponding to
θ component are 0, m− 1 or θo.

To test the stability of the above equilibrium points we
consider the ODE representing the ratio β = θ/ψ (derived
using (8) and with Iθ/ψ := 1{0<θ<ψ}):

β̇ =
Iθ/ψ
ψ

(
βmxy(cy(t))− (1− β)myx(cx(t))

)
.

Consider any ψ ∈ Nε(m − 1), t ≥ T0 and β > βo, then by
A.3 we have:

β̇ ≥
Iθ/ψ
ψ

{
θ

ψ
κxy min{c̄y, (ψ − θ)η(t)} −

(
1− θ

ψ

)
κyxc̄

x

}
=
Iθ/ψ
ψ

min

{
(c̄yκxy + c̄xκyx)

θ

ψ
− c̄xκyx,

θ

ψ
(ψ − θ)η(t)κxy −

(
1− θ

ψ

)
c̄xκyx

}
> 0.

8From Lemma 1, (m− 1, θo,∞) is only an equilibrium point and not an
attractor; nonetheless the actual dynamics can still converge to it.

9If {θn} sequence exits neighbourhood Nε̄(θo) i.o., and say {ψn} entered
Nε̄(m− 1), then choose ε < (1−βo)ε̄

m−1+ε̄
.

10Define Nε(θo) := {θ : |θ − θo| ≤ ε}.
11In this context, the point θ̄ is an equilibrium point if ḡθ(ψ∗, θ̄,∞) = 0.



In the above, the first term is positive by A.3 and definition
of βL and the second one is positive by choice of T0, as after
dividing the second term by (ψ − θ)/ψ we get:
θ

ψ
ψη(t)κxy − c̄xκyx > βo(m− 1− ε)η(T0)κxy − c̄xκyx > 0.

Thus the derivative of ratio (β) is positive, and hence the ratio
increases and βt → 1, when initialized with β0 > βo. Similarly,
when initialized with β0 < βo, the derivative β̇ < 0 throughout
and βt → 0.

Using the above arguments one can also conclude that from
any neighbourhood of (m−1, θo,∞), there exist points starting
from which the ODE converges either to (m − 1,m − 1,∞)
or (m− 1, 0,∞) and hence the last part. �

Proof of Theorem 3: We are given z ∈ Nε,∆, i.e., s = ∆ :=
kδ for some k, δ > 0. Now observe that (with βci = 1− βi):

βn =
β0δ +

∑n
i=1

Ui
k

δ +
∑n
i=1

Gi
k

, (Ui, Gi) :=

{
(−ζyx,i, ξ̃yi ), w.p. βci−1

(ξ̃xi + ζxy,i, ξ̃xi ) w.p. βi−1.

Observe that ΓNε̃ = min{Γ(k)
+ ,Γ

(k)
− }, where Γ

(k)
+ = min{n :

βn > βo + ε̃} and with s = kδ:

Γ
(k)
− := Γ(k) := min

{
n :

β0δ +
∑n
i=1

Ui
k

δ +
∑n
i=1

Gi
k

< βo − ε̃

}
.

Suffices to analyze one of Γ
(k)
+ ,Γ

(k)
− , then proof follows for

the other in the same way. We first analyse the case where
the number of offsprings and attacks are finite. In particular,
assume that for each i, j ∈ {x, y} and i 6= j, we have
ζij , |ξ̃i| are upper bounded by ζ̄ij , ξ̄

i < ∞ a.s. respectively.
We consider a special sample path ωl where y ↑ continuously,
produces ξ̄y offsprings and attacks ζ̄yx individuals of x-type.
Observe that such a sample path would take the least time to
exit N ∗ε̃ and clearly is given by:

Γ(k) := min

{
n :

β0δ − n ζ̄yxk
δ + n ξ̄

y

k

< βo − ε̃

}

= min

{
n : n >

δ(ε̃+ β0 − βo)k

ξ̄y(βo − ε̃) + ζ̄yx

}
=

⌈
δ(ε̃+ β0 − βo)k

ξ̄y(βo − ε̃) + ζ̄yx

⌉
.

Thus Γk is increasing in k and Γ(k) →∞ as k →∞. Now,
by construction of special sample path ωl, Γ(k) > Γ(k) a.s.,
and thus, Γ(k) → ∞ as k → ∞ a.s. and this completes the
proof for bounded attacks and offsprings.
For general case, define Ek := {Γ(k) ≤ T}, Ē as complement
of E := {∩Tn=1(ξ̃yn < ξ̄y)} ∩ {∩Tn=1(ζyx,n < ζ̄yx)}

We have, inf
z∈Nε,∆

Pz(Ek) = inf
z∈Nε,∆

(
Pz(Ek, E) + Pz(Ek, E

c)

)
.

The second term (on right side) is upper bounded by
T [Pz(ξ̃

y
n > ξ̄y)+Pz(ζyx,n > ζ̄y)]. For any κ > 0, this term is

upper bound by κ/2 for an appropriate choice of ξ̄y and ζ̄yx

(finite first moments). For this choice of ξ̄y and ζ̄yx, choose
k large enough such that first term is also less than κ/2. �

Proof of Theorem 4: From the details of sub-section II-B,
ξ̃∗y := limz→∞ ξ̃y(z) exists a.s. We now describe two single
type population-size independent BPs that evolve at their own
transition (wake-up) epochs as below (like in (3)):

Sn =
(
Sn−1 + ξ̃xn(0, 0)

)
1νe≤n and Sn =

(
Sn−1 + ξ̃∗y,n

)
1νe≤n,

where νe and νe are their respective extinction epochs as in
(4)-(5). Clearly the offsprings/shares that update the original
{St} process can be lower/upper bounded (almost surely) by
those in the above equation. Thus from (4), the evolution of
Sn is given and upper/lower bounded almost surely for all n
by (three processes are updated at their own transition epochs)

Sn = Sn−1 + ξ̃n−1(Zn), and Sn ≤ Sn ≤ Sn. (16)

Further more, clearly, the wake-up epochs will be faster in the
upper bounding systems (i.e., τn ≥ τn ≥ τn a.s.) and hence:

Sne
−ατn ≤ Sne−α τn and Sne−ατn ≥ Sne−α τn a.s.

From the standard theory of BPs, {Sne−α τn} as well as
{Sne−α τn} converge a.s., as well as the limits are non-zero
with positive probability [1]. This proves (i). For part (ii), for
example, observe that

Cxne
−α τn ≤ Sne−α τn ,

and the first claim of part (i) follows. Further, consider the
sample paths, where y ↑ repeatedly and die. Then, x-type
population survive independently, like a single type branching
process, at rate λ(mfηx(1−γ∗)−1) > α, and hence the other
claim of part (ii) is done. Part (iii) follows in a similar way.�
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