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Abstract—By decoupling network functions from the underly-
ing dedicated hardware, network function virtualization (NFV)
has become a promising paradigm to reduce network operating
expenses. NFV can provide elastic placement of Virtual Network
Functions (VNFs) in the underlying data centers. However, the
co-located VNFs on the same server may suffer from performance
interference due to computing-resource and memory-resource
sharing. This article focuses on how to ensure the performance
of each VNF while minimizing the total energy consumption
of the data center. By showing that the bin-packing problem
is polynomial-time reducible to our model, we prove that the
offline version of this problem is NP-complete. Then, for a
homogeneous environment where all servers are of the same
type, we design First-Fit Heuristic (FFH) algorithm and analyze
the approximation performance of it by proving the lower
bound value. For the heterogeneous environments, we propose
an efficient solution based on deep reinforcement learning (DRL)
named DDAP (Deep Deterministic Automatic Placement). Our
experiments show that DDAP can quickly respond to each request
and achieve better performance. In particular, DDAP can reduce
energy consumption by 7.6% and running time cost by 63.2%
on average compared to state-of-the-art methods.

Index Terms—Network Function Virtualization, Deep Rein-
forcement Learning, Performance Interference.

I. INTRODUCTION

Unlike traditional hardware-based middleboxes, network

function virtualization (NFV), which has been a recent trend,

can decouple the hardware and network functions and imple-

ment them in the form of software. NFV can deploy virtual

network functions (VNFs) on commodity servers, which can

reduce Capital Expenditure (CAPEX) and Operation Expense

(OPEX) [1]. Encouraged by those advantages, some compa-

nies have begun to use VNFs instead of traditional middle-

boxes. Recently, the concept of Network-as-a-Service enables

rapid network service commercialization [2]. Under this trend,

NFV providers, who own or rent resources to build VNF

instances to serve customers, have emerged as a very important

role in the NFV eco-system.

Energy consumption has been a critical concern for data

centers. With the increase of network traffic, the energy

consumption of the infrastructure also occupies a high cost for

the NFV providers who own the data center. Therefore, from

the perspective of cost control and environmental protection,

reducing energy consumption is very important. According

to previous work [3], the energy consumption of enterprise

servers accounts for 60% of the total energy consumption of

the data center. Naturally, we can consolidate VNFs in fewer

servers to maximize the utility of the servers and reduce the

overall energy consumption. For example, Sun et al. [4] built

a controller for flow migration to merge some underloaded

VNFs to save energy. Gu et al. [5] designed a system for

coordinating VNFs to maximize network utility to control

energy consumption.

However, some researchers have proved that for VNFs

running on the same server, hardware competition is very

common which may lead to varying degrees of performance

degradation [6]. Even in a multi-core CPU environment, co-

located VNFs still compete for resources because of memory

sharing and cache consistency. According to a measurement

study [7], the performance degradation, which is measured

relative to the performance achieved when each NF is run

individually, can be as high as 35%. Co-located VNFs may

compete with each other to obtain resources such as CPU and

memory. For example, VNFs with encryption or compression

operations placed on the same server may compete for CPU

resources for computationally intensive tasks.

To reduce performance interference, each server should host

a reasonable combination of VNFs. Clearly, it is impossible

to place each VNF on each server individually because the

energy consumption of the data center and the cost of the

server should also be considered. For NFV providers, there

is a tradeoff between energy consumption and performance

interference when placing VNFs.

Therefore, we study how to place VNFs efficiently by

jointly considering energy consumption and performance in-

terference. Compared with previous work that usually ignores

the performance interference between VNFs, we explicitly

consider the energy consumption of each server and the

performance interference of each network function in the VNF

placement model. In our model, the performance interference

of each function depends on the VNFs running on the same

server. Therefore, when combined with various VNFs, the per-

formance value of each VNF may be different. For example,

as shown in the Fig. 1, if a new VNF is placed on a server that

already has a VNF, the existing VNF may suffer from varying

degrees of performance interference, such as case (a) or (b).

However, if we choose to start a new server like case (c), the

new server will contribute to more energy consumption.

In this paper, we propose a method that explicitly considers

energy consumption and performance interference when plac-

ing VNFs. We adopt the supply and demand model proposed

in the previous paper [7] to quantify the performance of
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Fig. 1. Server selection cases: An example of three cases to place VNF

each VNF in the same server. According to a research [8],

reinforcement learning is proven to achieve a near-optimal

solution in the combinatorial optimization problem. Hence,

unlike previous work that uses heuristic methods to optimize

this problem, we propose a framework based on deep re-

inforcement learning (DRL) to process complex large-scale

network state spaces in real-time.

We summarize our main contributions as follows:

• We aim to minimize the energy consumption of data

center servers and formulate the VNFs placement model

in real-time with lower performance interference. To

illustrate the complexity of this problem, we prove the

offline version of this problem is NP-complete by show-

ing the bin-packing problem is polynomial-time reducible

to it.

• For a homogeneous case where all servers are of the same

type, we prove that when the performance of each VNF is

greater than the upper limit L, First-Fit Heuristic (FFH)

can be used as a solution and has a lower bound. For a

more general case, we introduce the DDQN technique for

VNF placement and name it DDAP (Deep Deterministic

Automatic Placement), which is based on DRL.

• The experiment shows the DDAP surpasses the state-of-

art method by 7.6% lower energy consumption and 63.2%

lower running time cost on average.

The rest of the paper is organized as follows. In Section II,

we review some of the related work on VNF placement DRL

in NFV. Then we propose the problem definition and model

formulation and prove this problem is NP-complete in section

III. We also analyze the approximation performance of FFH by

proving the lower bound value in a homogeneous environment

in section IV. In section V, we introduce the detail of algorithm

designing for the heterogeneous case. The experimental results

of our approach and baseline are given in Section VI. Finally,

Section VII concludes this paper.

II. RELATED WORK

A. VNF Placement

There have been many studies on the VNF placement

problem from different objectives such as energy consump-

tion and performance interference. Those problems are often

investigated independently. For example, to reduce energy

consumption, Sun et al. [4] design a flow controller to realize

NFV elasticity control and merge underloaded VNFs for

saving energy. Jia et al. [9] study on the dynamic deployment

of VNF service chains across geo-distributed data centers for

operational cost minimization including energy consumption.

Kim et al. [10] propose an approach based genetic algorithm

to minimize energy consumption.

The above studies are all about the optimization model

of energy consumption and do not consider the perfor-

mance interference of co-located VNFs. Recently, some stud-

ies have focused on how to place VNFs to avoid se-

vere resource contention. For instance, Xu et al. [11] con-

sider interference betweens co-located VMs, and proposed

a lightweight interference-aware VM live migration strategy,

using a demand-supply model to formulate interference. Zeng

et al. [12] measured the throughput of VNFs as an indicator

of performance among different types of co-located VNFs and

prove that resource contends between co-located VNFs are

very common. Zhang et al. [7] proposed AIA for the VNF

placement problem which jointly considers interference be-

tween co-located VNFs, using a heuristic approach to solve the

problem. Manousis et al. [6] developed a framework named

SLOMO for multivariable performance prediction of VNFs.

However, most of these algorithms are based on the heuristic

method and none of them consider energy consumption and

performance interference jointly.

B. DRL in NFV

In dynamic and complex real networks, DRL can solve

these problems more intelligently than traditional heuristic

algorithms. Therefore, there have been many recent studies

applying DRL to make decisions in the NFV environment,

e.g. [13]–[16]. Xiao et al. [13] proposed NFVdeep which

is an online DRL to automatically deploy the VNF service

chain for minimizing the operation cost of NFV providers

and maximizing the total throughput of requests. Khezri et al.
[14] also combined the DRL with NFV placement problem

considering the reliability requirement of the services to make

a decision. Gu et al. [15] designed a DRL framework for VNF

orchestration for network utility maximization. Mao et al. [16]

proposed a framework named DDQP based on DRL to place

VNF service chains considering fault tolerance. Solozabal et
al. [17] proposed a DRL agent to learn placement decision

to minimize the overall power consumption. Nevertheless, co-

located VNFs also suffered performance interference in those

work, but they didn’t consider it.



TABLE I
KEY NOTATION

Symbol Description
F Set of VNFs

S Set of servers in the data center

Fj Set of VNFs which have been placed in a server
j ∈ S

Mj The memory capacity of server j ∈ S

Cj The CPU capacity of server j ∈ S

mi The memory requirement of VNF i ∈ F

ci The CPU requirement of VNF i ∈ F

Mo
j (t) The occupied memory resource of server j ∈ S at

time slot t

Co
j (t) The occupied CPU resource of server j ∈ S at time

slot t

P j
i (t) Performance value of VNF i in server j at time slot

t, i ∈ F , j ∈ S

L Lower bound of performance

ej The idle energy consumption of server j ∈ S

ecj energy consumption of each CPU in j ∈ S

ati 1 if VNF i ∈ F is in service at time slot t, 0
otherwise

xij 1 if VNF i ∈ F is assigned to server j ∈ S, 0
otherwise

ytj 1 if any VNF runs on server j ∈ S at time slot t, 0
otherwise

III. MODEL AND PROBLEM DEFINITION

In this section, we first introduce the model and problem

definition. Then we formulate the VNF placement problem.

Finally, we prove that the offline version of this problem is

NP-complete. The key notations are listed in Table I.

A. Model

In this paper, we mainly consider such a scenario that

requests for deploying a VNF instance arrive from time to

time, and we need to make a placement decision. We use

F and S to represent a set of VNFs and a set of servers

respectively, then |F | and |S| represent the number of VNFs

and servers respectively. A request of building VNF instance

can be denoted as (ci,mi), where ci and mi represent the

CPU and memory requirements for VNF i ∈ F respectively.

To adapt to the fluctuation of network traffic, we use time

slot t to denote a constant period and formulate this problem

in an online way. Every server has CPU resource and memory

resource, which is denoted as Cj and Mj for each server

j ∈ S. As the degree of performance interference may change

in different periods, the performance value of VNF i ∈ F on

server j ∈ S at time slot t is considered as P j
i (t), we use a

demand-supply model to quantify it according to [7]. Then the

equation is as below:

P j
i (t) = k0 + k1 ∗ ci

Co
j (t)

+ k2 ∗ mi

Mo
j (t)

(1)

Where k0, k1 and k2 are the coefficients, Co
j (t) and Mo

j (t)
represents the occupied CPU and memory resource of server

j ∈ S at time slot t respectively. We assume that the occupied

resource of a server is constant during a time slot. This

equation means that the more resource the VNF occupy, the

more competitive it is in a co-located environment.

Let xij represents a binary decision variable. xij is set to

one if VNF i ∈ F is assigned to server j ∈ S, zero otherwise.

Besides, we use ati to indicate whether VNF i ∈ F is in service

at time slot t. Then the occupied CPU and memory resource

of server j ∈ S at time slot t can be represented as below:

Co
j (t) =

|F |∑
i=1

xijcia
t
i

Mo
j (t) =

|F |∑
i=1

xijmia
t
i

(2)

Since each server will consume energy once it starts to

work, let ytj set to one if any VNF runs on server j ∈ S
at time slot t, zero otherwise. The main reason for server

energy consumption is CPU, and it is linearly related to CPU

utilization [18]. According to the energy consumption equation

in [19], we use ej , ecj to represent the idle energy consumption

and energy consumption of each CPU unit in a time slot for

server j ∈ S respectively. Those parameters can be known

in advance from the profile of each server. Then the energy

consumed by server j at time t is calculated by:

Ej(t) = (ej + ecjC
o
j (t))y

t
j (3)

So the overall energy consumption of the data center servers

is expressed by:

E =

|T |∑
t=1

|S|∑
j=1

Ej(t) (4)

B. Formulation of Problem

The problem of VNF placement for minimizing energy

consumption with a performance guarantee is defined as

follows:

Problem 1: Requests of VNF deployment arrive from time

to time, given a set of servers and threshold value L, both

CPU and memory capacity of servers, the parameters about

the energy consumption of servers, how to place each VNF

on servers to minimize the consumption and guarantee the

performance of VNFs not below the threshold value L?

Based on the problem defined, we can formulate the VNF

placement model as follow. Among them, constraints (6) and

(7) model the CPU and memory resource constraint of each

server, respectively. In particular, we use Fj to denote the set

of VNFs that have been placed in server j ∈ S. Equation (8)

guarantees every VNF has and only has one server to place.

Equation (9) can check if server j ∈ S run any VNF. Since this

model has a performance guarantee, constraint (10) requires

that the performance of each VNF is no less than L, which

represents a lower bound of performance value. Constraints

(11) to (13) restrict the ranges of decision variable to 0 and 1.



min E (5)

s.t.

|F |∑
i=1

xijmia
t
i ≤Mj , ∀j ∈ S, ∀t (6)

|F |∑
i=1

xijcia
t
i ≤ Cj , ∀j ∈ S, ∀t (7)

|S|∑
j=1

xij = 1, ∀i ∈ F (8)

ytj = sgn(

|F |∑
i=1

xija
t
i), ∀j ∈ S, ∀t (9)

P j
i (t) ≥ L, ∀i ∈ Fj , ∀t (10)

ati ∈ {0, 1} ∀i ∈ F, ∀t (11)

xij ∈ {0, 1} ∀j ∈ S, ∀i ∈ F (12)

ytj ∈ {0, 1} ∀j ∈ S, ∀t (13)

We study an online problem about how to place VNF in

real-time. To show the complexity of this problem, we prove

that the offline version of this problem is NF-complete.

C. NP-completeness

We define the offline version of this problem as follow:

Given a set of servers, VNFs and threshold value L, both CPU

capacity and memory of servers, parameters about the energy

consumption of each server, how to place each VNF on servers

to minimize the consumption and guarantee the performance

of VNFs not below the threshold value L?

Theorem 1: The offline version of this problem is NP-

complete.

Proof: First, we prove this problem is NP by certifying

a given instance of which is feasible in a polynomial time.

Therefore, we have to check whether it conforms to the con-

straints (6) to (10). For constraint (10), the computational time

complexity is O(|F |2|S|), which is greater than computing

other constraints. In consequence, we can verify any instance

of this problem is feasible in a polynomial-time of O(|F |2|S|).
So the offline version of this problem is NP.

Then, we prove the bin-packing problem can be reducible to

this problem. We simplify the settings of servers to homoge-

neousness by setting CPU, memory resource, and parameters

of energy consumption of each server to constant such as

ej = e, ∀j ∈ S and L = 0. The whole energy consumption of

servers can be expressed as:

|S|∑
j=1

(ej + ecjC
o
j )yj

=e

|S|∑
j=1

yj + ec
|S|∑
j=1

Co
j yj

=e

|S|∑
j=1

yj + ec
|F |∑
i=1

ci

(14)

The equation above shows that minimizing energy con-

sumption is equal to minimize the number of the working

server. Hence, This problem is as same as the bin-packing

problem. According to proof in [20], bin-packing problem is

np-complete. This means that the bin-packing problem is a

subset of our original problem. So we can prove the offline

version of the VNF placement problem is also NP-complete

due to the NP-completeness of the bin-packing problem.

IV. A SOLUTION IN HOMOGENEOUS CASE

As discussed in section III, when the given server is

homogeneous, which means all servers have the same CPU

and memory resource, this problem is also NP-complete.

Therefore, we can use FFH algorithm to solve it. In FFH

algorithm, it attempts to place VNF in the first server that

can accommodate these constraints, otherwise, it starts a new

server. The next theorem describes the performance lower

bound of FFH compared to the optimal solution under certain

circumstances.

Theorem 2: Given a set of servers with the same type, then

the variable of each server is the same. In this situation, for all

VNF instance, if min(k0+k1∗ ci
C +k2∗mi

M ) ≥ L, we use FFH

as a solution and FFH(E) to denote its energy consumption,

OPT (Y ) is the value of
∑|T |

t=1

∑|S|
j=1 y

t
j in optimal solution.

Then we have:

FFH(E) ≤ e�1.7OPT (Y )�+ ec
|T |∑
t=1

|F |∑
i=1

cia
t
i (15)

Proof: First, we prove that the online version of energy con-

sumption is similar to the bin-packing problem. The process of

proof is similar to equation (14) above, from which we have:

E = e

|T |∑
t=1

|S|∑
j=1

ytj + ec
|T |∑
t=1

|F |∑
i=1

cia
t
i (16)

According to [21], the absolute approximation ratio for FFH

to solve the bin-packing problem is �1.7OPT �. Then we

use mathematical induction to prove that bin-packing problem

with duration and slot also conforms with this ratio. We use

FFHT (Y ) to denote the value of
∑|T |

t=1

∑|S|
j=1 y

t
j when FFH

is the solution.

When slot t = 1, we have FFH1(Y ) ≤ �1.7OPT1(Y )�
since it is basically the offline situation. When slot t = k > 1,

we assume that FFHk(Y ) ≤ �1.7OPTk(Y )�. And when slot

t = k + 1, we have:

�1.7OPTk+1(Y )�

=�1.7OPTk(Y ) + 1.7

∑|F |
i=1 cia

k+1
i

C
�

≥�1.7OPTk(Y )�+ �1.7
∑|F |

i=1 cia
k+1
i

C
�

≥FFHk(Y ) + �1.7
∑|F |

i=1 cia
k+1
i

C
�

≥FFHk+1(Y )

(17)



Hence we conclude that the bin-packing problem with

duration and slot is also conformed with this value. Then put

this conclusion above into equation (15), we have:

FFH(E) = eFFH(Y ) + ec
|T |∑
t=1

|F |∑
i=1

cia
t
i

≤ e�1.7OPT (Y )�+ ec
|T |∑
t=1

|F |∑
i=1

cia
t
i

(18)

V. GENERAL ALGORITHM IN HETEROGENEOUS CASE

In complex network environments with different configu-

rations of servers, traditional heuristic algorithms often can

not work well. To make sure the algorithm more reliable,

we decide to use DRL to solve this problem. In this section,

we first present the Markov decision process (MDP) model,

which is a mathematical model of sequential decision making

and used to simulate the random strategy and rewards in an

environment where the system state has Markov properties.

Then we elaborate on the detail of this algorithm.

A. State, Action and Reward Design

With formulations above, we can present the MDP model

as < S,A,P,R, γ >, where S present the discrete states,

A is the discrete actions, P : S ×A× S is the transition

probability distribution, R : S ×A is the reward function,

finally, γ is a discount factor for future reward which ranges

from 0 to 1.

State Definition. Each si ∈ S is defined as a vector

(Si, Fi). Si = (S1
i , S

2
i , ..., S

|S|
i ) represents the current state

of all servers. For example, ∀j ∈ S, we have:

Sj
i = (Si,j

cpu, S
i,j
mem, Si,j

Eidle, S
i,j
Ecpu, S

i,j
cpuutil,

Si,j
memutil, S

i,j
work, S

i,j
TTL, S

i,j
min)

(19)

which indicates the properties of each server, where the first

six items present CPU resource, memory resource, idle energy

consumption, CPU consumption, occupied CPU resource, oc-

cupied memory resource of server j respectively at state si.
Si,j
work presents if server j is working and Si,j

TTL is the working

duration of it. Since the performance of every original VNF

instance on a server will decrease when a new VNF instance

place on the same server. To check whether the performance of

old VNFs are below L and ensure the length of states is fixed,

we choose the characteristics of VNF which has the smallest

performance value when the new VNF run on server j, and

name it Si,j
min. Besides, Fi = (F i

cpu, F
i
mem, F i

TTL, L) reveals

the characteristics of current VNF creating request, where F i
cpu

is the CPU demand, F i
mem is the memory demand, F i

TTL is

the time-to-live of this VNF and L is the lower bound of

performance respectively.

Action Definition. First, we label each server node as an

integral index j = 1, 2, ..., |S|. Then we define our action space

as A = {1, 2, 3, ..., |S|}, and action a ∈ A.

Reward Function. To minimize overall energy consump-

tion, we define the reward function based on the selected

server. When a server is chosen, the agent should consider

whether: (1) the chosen server can satisfy capacity and perfor-

mance constraints when placing the new VNF, (2) the chosen

server is working before, and (3) the rest duration of the chosen

server is longer than the required TTL of the new VNF.

For the purpose of making the agent convergence quickly,

we remove the actions that do not meet the condition (1) before

letting the agent chosen. For the rest conditions, we define

the reward function as the negative value of extra consuming

energy by choosing this server. Thus, we have:

r(s, a) = −(ecjciF i
TTL + ejti) (20)

Where F i
TTL is the time-to-live of VNF i. As for ti, we use

srestTTL,j to denote rest time-to-live of server j and have:

ti =

⎧⎨
⎩

F i
TTL, when fail to meet condition (2)

F i
TTL − SrestTTL,j when fail to meet condition (3)

0, otherwise

State Transition. We define the MDP state transition as

(st, at, rt, st+1), where st presents the current state and at
presents the taken action for handling the placement decision

for new VNF. Then reward rt is as feed back, and st+1 is new

state.

B. Architecture Design

Based on the MDP model above, we can dynamically

describe the variations of server instances and VNF instances.

Then we need to use DRL to build an efficient VNF placement

algorithm. For achieving a high reward, this algorithm should

automatically decide suited actions for each state. Therefore,

we propose an algorithm named DDAP, which is based on

the DRL approach and placing VNFs in an online way with

a performance guarantee.

There are three major types of DRL approach, which

are value-based, policy-based, and model-based approaches

respectively. In our situation, we need to find appropriate

servers to place each VNF and the action space is discrete.

Therefore, we adopt a value-based DRL approach. There are

also many methods in the value-based DRL approach, such as

Q-learning [22], which builds a look-up table to store action-

values Q(s, a) and select the action to get the maximum

reward according to this table. But Q-learning needs to store

all state-action values to look up which will take up a lot

of time and memory. Therefore, Mnih et al. [23] design

Deep Q-Networks (DQN) to tackle these problems. DQN uses

Convolutional Neural Networks (CNN) to evaluate Q-function,

and experience replay to improve the learning ability of CNN.

But DQN also suffers from substantial overestimations in a

large-scale environment. Hence, we use Double DQN (DDQN)

[24] approach. Comparing with former algorithms, DDQN

decouples the selection and calculation of the target Q value,

which can reduce the overestimations of Q value and lead to

much better performance.

The architecture of DDAP is illustrated in Fig. 2. Environ-

ment transmits the current states to the agent, who uses CNN

to evaluate Q value of each action in the current state. Then
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Fig. 2. The DDAP design structure

the agent decides an action according to Q value to maximize

the expected return. Next, the environment will feedback a

reward according to the result of executing the action. Since

we adopt DDQN to train approach to learn the policy, there is

a replay buffer to store experienced data and extract a portion

of the data from it for updating parameter of CNN. The reason

to use replay buffer is to broke the dependencies between

experienced data so as to make Q function more reliable.

Moreover, there should be two CNNs in the DDAP agent,

sample network randomly chooses data from the replay buffer

to train and use lose function to update parameters. And at

every C step, the parameters of the target network are updated

through the sample network.

The CNN design of Q function is shown in Fig. 3. The input

layer is the state vector which includes the server instances and

new VNF, and the output layer is the state-action value at the

current state. As for the hidden layer, we use leaky ReLU [25]

as the activation function.

C. Training procedure

In order to effectively handle VNF placement online, we

introduce the time slot as defined before. The whole placement

procedure is listed in Algorithm 1. First, We choose a time

slot that has at least one request to place VNF (lines 1 to 4).

Then, we select the first request to place VNF i at the current

time slot according to arriving time (line 5). For each step, we

initiate state st (line 8). To make the agent converge faster, we

re-define action space A before selecting an action. We check

each action and remove those do not conform the equation

(6), (7), (10) (lines 9 to 13). Next, we select an action at and

Input Layer

Hidden Layer

Output Layer

Leaky
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Server Instances si New VNF fi

Input Layer
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Fig. 3. The neural network design.

execute it to get a reward rt. The state st is transferred to st+1

consequently (line 16). When there is no request left in the

current time slot, we remove those expired servers and move

to the next time slot (lines 17 to 20). Finally, we choose a new

VNF and kick off another new step (lines 21 to 23).

Incorporating the above design, we summarize our training

procedure based on DDQN in Algorithm 2. We first initialize

the Q function network with random weights Q(s, a; θ) (line

1), and the target Q function network Q̂(s, a; θ̂) is cloned



Algorithm 1 Placement approach

1: Begin: Initiate time slot τ ← 1
2: while None of the request to place VNF at time slot τ do
3: τ ← τ + 1
4: end while
5: Initiate i← 1
6: select a request to place VNF i ∈ F from time slot τ

based on arriving time.

7: for state t← 1, T do
8: Initiate state st.
9: for action a← A do

10: if a doesn’t conform equation (6), (7), (10) then
11: Removing action a from A
12: end if
13: end for
14: Taking action at from A to place VNF

15: Calculate the reward rt based on equation (20)

16: st ← st+1

17: if There is no request left in time slot τ then
18: Rescanning all servers and removing expired

servers.

19: τ ← τ + 1
20: end if
21: i← i+ 1
22: select request of VNF i
23: end for

from the former (line 2). To break the data dependencies, we

construct the replay buffer as R in line 3.

For each episode, we start the agent training with the

initial environment and state s1 (line 5). Then, in each step,

we select an action based on ε-greedy method which can

balance the exploitation of policy and the exploration of the

environment. ε-greedy method means to select at randomly

with a probability of ε, otherwise use equation (21) to choose

the action which is the maximum Q value in the current state

(line 7). Next, the action is executed to get a reward rt based

the reward equation (20) (line 8). Accordingly, the state will

transfer to st+1 and the transition sample is stored in the replay

buffer R in lines 9 and 10.

at = max
a

Q(st, a; θ) (21)

After gathering enough experienced samples in buffer R,

we sample a mini-batch of B transitions from it to train the

Q function network (line 11). For the j-th transition sample

< sj , aj , rj , sj+1 >, we calculate the target value yj from the

target Q function network (line 12 to 20). This is the most

critical step which is different from DQN: First, we choose an

action that corresponds to the maximum Q value in the current

Q network (line 17). Then, we use this action to calculate the

target value in the target Q network (line 18). The target value

is defined as:

Y = r + γQ(s′, argmax
a

Q(s′, a; θ); θ−) (22)

Algorithm 2 DDQN Based Training Procedure

1: Begin: Initialize Q-function Q with random weights θ
2: Initialize target Q-function Q̂ with weights θ̂ = θ
3: Initialize replay buffer R to capacity N
4: for episode← 1,M do
5: Initialize the NFV environment and get the vector of

state s1.

6: for t← 1, T do
7: Select an action at randomly with the probability

ε, otherwise select action based equation (21).

8: Execute action at and observe reward rt based

equation (20).

9: Transfer the state to st+1.

10: < st, at, rt, st+1 >→ buffer R.

11: Sample random mini-batch of B transitions

12: for j = 1 to B do
13: < sj , aj , rj , sj+1 > from B transitions.

14: if episode terminates at step j + 1 then
15: Set yj = rj
16: else
17: Set a′ = argmaxa′ Q(sj+1, a, θ)
18: Set yj = rj + γQ̂(sj+1, a

′; θ̂)
19: end if
20: end for
21: Update Q-function by minimizing the loss:

L = 1
B

∑B
j=1(yj −Q(φj , aj ; θ))

2.

22: Every C steps reset Q̂ = Q.

23: end for
24: end for

TABLE II
CONFIGURATION OF DATA CENTERS

Scale #Servers #VNFs Duration #Slots
Small 50 (100,150) (1,5) 500

Middle 200 (400,500) (1,10) 4000
Large 500 (1200,1500) (1,30) 6000

Then, the parameter of the Q network can be updated by

minimizing the loss (line 21). Finally, the parameter of the

target Q network will be reset after C steps (line 22).

VI. EVALUATION AND ANALYSIS

In our numerical analysis, we compare our approach with

other methods. Since the homogeneous environment is not

universal and the result of it has been proved by theory,

the experiment is based on the heterogeneous environment.

In section VI-A, we introduce the specific parameters of the

experiment including data, baselines, and simulation platform.

Next, we show the experimental result and analyze the specific

reasons in section VI-B.

A. Simulation Setup

Server instances: In our experiment, three scales that

correspond to different numbers of servers and VNF instances.

Details are shown in table II. Each server has CPU and



Fig. 4. The percentage improvement of DDAP
compared to other algorithms.

Fig. 5. Running time cost between different algo-
rithms.

Fig. 6. Learning history under small scale.

Fig. 7. Accumulative energy consumption under
small scale where number of VNFs is 150.

Fig. 8. Accumulative energy consumption under
middle scale where number of VNFs is 500.

Fig. 9. Accumulative energy consumption under
large scale where number of VNFs is 1500.

memory resources, idle energy consumption, and CPU con-

sumption. According to [7], we set the CPU resource of each

server ranges from 20 unit to 200 unit, the memory resource of

each server ranges from 16 unit to 64 unit. As for the energy

consumption of servers, we refer to [26] and randomly select

the idle energy consumption of the server from [10, 30], the

CPU energy consumption of each server from [50, 150]. The

lower bound L is 0.9.

Requests of creating new VNFs: We construct requests

for creating new VNF according to [27]. Each VNF has CPU

and memory demand, the CPU demand is randomly selected

from [2, 10], the memory demand is randomly selected from

[1, 4].

Baseline and schemes compared: Firstly, we compare with

FFH [28] algorithm and Ant Colony System (ACS) [19]. As

we prove in section IV, FFH is a very competitive solution

in a homogeneous case. As for the ACS algorithm, it is

based on Ant-Colony System which is embedded with new

heuristics. The ACS algorithm is presented for an energy-

efficient solution to the optimization problem according to

[19].

Simulation platform: We use a Python-based simulation

framework, PyTorch library to construct the neural network of

our architecture. All experiments are based on a workstation

with 128GB RAM and an Intel (R) Core (TM) i7-8700 CPU

with 6 cores 12 threads.

B. Performance Evaluation

To validate our approach, we compare the results with the

FFH and ACS algorithms. Our approach fully considers the

performance interference of each server, which may cause

higher energy consumption. Therefore, we also use DRL to

solve energy consumption without the performance guarantee

and name it DDAP-.

Energy consumption: We divide model settings into three

types according to the scale of the data center, and the

detailed settings of the environments are listed in Table II.

We run each set of experiments several times under different

scales and the percentage improvement of DDAP compared to

other algorithms is reflected in Fig.4. DDAP- only consumes

1.9%, 2.0%, 0.9% less energy averagely than DDAP under

three scales. Considering the loss caused by performance

interference such as throughput drop and SLA violation, the

excess energy consumption can be ignored. Compared with the

FFH algorithm, the improvement of DDAP is 25%, 22%, 15%

averagely under three scales. DDAP also improved the energy

consumption by 9.9%, 10.3%, 2.5% averagely compared with

the ACS algorithm. Thus, we can conclude that DDAP has

improved the energy consumption by 20.67% on average

compared to the FFH and 7.6% to the ACS. The accumulative

energy consumption under each scale is listed in Fig.7, 8, 9.

Online running cost: As the scale increases, the gap

of energy consumption between DDAP and ACS gradually

decreases. But we compare the running costs of the DDAP



and ACS in three scales in Fig.5, the DDAP spends much

less time than ACS does. Although the DDAP has to train the

neural network before deployment, it only needs to use the

modeled NN to calculate and get actions after that. Hence the

computation complexity of DDAP is O(n), and so is FFH,

where n denotes the number of servers. The computation

complexity of ACS is O(nmk), where m and k represent

the number of iterations and ants respectively. Therefore,

DDAP saves about 63.2% of running time overhead on average

compared to the ACS algorithm. The running cost of DDAP

is slightly higher than the FFH since DDAP needs to make

wise decisions globally which spends more calculations than

FFH does.

Training efficiency: To show our training efficiency, we

demonstrate the training process on small scale in Fig 6.

DDAP goes through a period of rapid ascent from the be-

ginning, and then climbs slowly and converges eventually at

around the 330th episode. It also can be seen that when DDAP

is trained to the 248th episode, its energy consumption is

lower than the FFH algorithm. When DDAP is trained to the

299th episode, its energy consumption is lower than the ACS

algorithm.

VII. CONCLUSIONS

In this paper, we aim to minimize the energy consumption of

the data center while considering the performance interference

of co-located VNFs in NFV. First, we prove the complexity

of this problem. Then, for a homogeneous environment, we

prove that FFH has a performance lower bound. Furthermore,

for heterogeneous environments, we design a DRL-based

online framework to automatically place VNFs. Through our

experiments, we have proved that our method performs well in

diverse scenarios. In short, our method outperforms the state-

of-art methods by lower energy consumption and running time

cost on average.
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