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Abstract—Containers technology has become very popular
in recent years, since it allows users to focus on designing
their applications in a modular way and abstracting away the
environments in which they actually run. Cloud providers such as
AWS (Amazon Web Services) and GCP (Google Cloud Platform)
offer their users managed containers platforms that orchestrate,
schedule and execute multiple containers over a multi-tenant
cloud infrastructure. As these services gain popularity, it is
becoming more and more challenging to manage them in a way
that effectively utilized the existing resources. The latter has a
significant economical impact on cloud providers when it comes
to their compute infrastructure investment costs and the price
they can offer to their customers.

In this paper, we approach this challenge by developing multi-
dimensional container resource allocation algorithms designed to
be deployed in dynamic cloud environments with different types
of applications under varying loads scenarios. Our algorithms
allocate for each container an available engine to execute it,
in a way that maximizes the overall revenue. We design our
algorithms and provide a constant worst-case approximation
bound using the Local Ratio technique. Our evaluation, based
on real-world scenarios, indicates that the performance of our
algorithms is up to a factor of two better than the performance
of existing scheduling algorithms, when the available resources
are scarce.

Index Terms—cloud, containers, resource allocation, approxi-
mation algorithms

I. INTRODUCTION

In recent years, an increasing number of users are build-
ing their business applications using public cloud platforms.
Public cloud provider such as Amazon Web Services (AWS),
Google Cloud Platform (GCP) and Microsoft Azure offer an
abundance of basic and complex services to their customers.
The on-demand nature of the cloud’s resources consumption
model as well as its “pay-as-you-grow” pricing models have
helped users to architect their applications by using on-
demand virtual machines, leveraging design concepts such as
“cloud elasticity”. These concepts allow applications to use a
varying amount of resources in order to handle different load
scenarios and thus allows the application owner to provide an
adequate level of service with a well defined costs. This is
beneficial both for cloud users that can build efficient cost-
aware architectures and for the public cloud providers as it
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allows more cloud users to grow their business by effectively
consuming cloud resources.

At the same time, container technology has been adopted
off and on the cloud as a preferred technology to build
applications. One of the main reasons for that is that the
footprint of a container is much smaller than the footprint
of a full virtual machine. Moreover, the ability to spawn
containers in microseconds, without the need to use a whole
virtual machine and move them between development and
production environments creates an appealing architecture for
running modular and distributed applications on public cloud
platforms. Therefore, containers have become the standard unit
of software that packages up code and all its dependencies'.

Containers run on a system that orchestrate their deployment
and scaling as part of a containerized management applica-
tion?. A very popular such system is Kubernetes®. In Ku-
bernetes, a component named “Scheduler™ is responsible for
selecting the specific virtual machine on which the container
will run on and eventually allocates the required resources to
run it.

The problem of effectively allocating containers’ resources
is of high importance both for public cloud providers and their
users. The former try to maximize their profits by utilizing
their cloud resources and maintaining a good Quality Of
Service. At the same time, users would like to make sure
their applications are cost-optimized without worrying about
the complexity of the algorithms managing their resource
allocations.

In most real-world scenarios, cloud resources are clustered
into logical groups. In Kubernetes these groups are called
nodes’, which are virtual machines (VMs) that execute the
containers’ code. Each such node has a limited amount of
resources in terms of CPU, memory and networking. Thus,
the number of containers and their aggregated resources are
constrained by the node’s resources. For example, if the node
is installed on a 48 virtual CPUs VM, and it has already run
45 vCPUs allocated to 45 single vCPU containers, it cannot
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support a new request to execute a container that requires four
vCPUs (in the sequel we use the term CPU instead of vCPU).

In this paper we define the CONTAINER ALLOCATION
problem (abbreviated CONALLOC). The input for this problem
consists of the number of nodes, k and a sequence of individual
container requests including their CPU and memory require-
ments and the time-interval of the container. Every container
request is also associated with a profit that the provider gains
if this container is scheduled to run. The goal is to maximize
the overall profit by choosing a subset of the containers to be
executed. For each container in this subset we need to assign
a node (out of the k£ available nodes) such that the resource
constraints are kept. Thus our goal is to maximize the overall
profit while maintaining the resource constraints.

From a practical point of view, considering an offline
version of the problem is reasonable since, in many scenarios,
the workload follows a daily (or weekly) pattern. Thus, cloud
operators can predict the essential properties of the series of
containers’ requests. In addition, our analysis provides insight
regarding the containers that can be scheduled and can be
used to decide what type of VMs, and thus, what kind of
underlying hardware infrastructure they need to purchase to
run the execution nodes. These decisions have a long-term
economic impact and data-centers operational implications.

We present a 12-approximation algorithm for CONALLOC,
which is designed and analyzed using the Local Ratio tech-
nique [2], [4]. Roughly speaking, our algorithm partitions
the requests sequence into three subsets: requests with low
CPU and low memory requirements, requests with high CPU
requirements, and high-memory requirements. We provide a
generic local ratio algorithm and name it Cradle, which we
run on the three subsets with different weight functions (see
Section IV for more details). The corresponding approximation
ratios are 8, 2, and 2. The maximum weight solution among
the three candidates is a 12-approximation. We also provide
a 9-approximation algorithm for the case where £ is constant.
In this case, the algorithm partitions the request sequence
into two subsets: requests with low requirements, and the
rest. We design a dynamic programming algorithm for the
latter. Combined with the 8-approximation algorithm for the
former, we get a 9-approximation algorithm. We note that
Local Ratio algorithms for packing problems are relatively
efficient. Moreover, tend to perform much better than their
worst-case performance guarantee.

In our experimental study detailed in section V, we use
a best-effort algorithm on top of our local ratio algorithm.
First, we run our 12-approximation algorithm, and then we
try using a best-effort approach to schedule the container
requests that the initial algorithm did not serve. Henceforth
we refer to this two-phase algorithm as Cradle™. We note
that the best effort phase does not significantly improve the
performance. During our experiments, the best-effort stage
increased the number of accepted requests by a few percent,
say by 2%-5%. However, considering the scale of a public
cloud platform, these percentage gains help cloud providers’
efforts to maximize their utility, quality-of-service and may

yield substantial economic gains.

We evaluate the performance of our algorithm, Cradle™, by
testing it using real-world data shared in Google’s Cluster’s
data® which include detailed traces of 29 consecutive days of
Linux container requests. These requests vary in sizes and
ratios between their CPU and memory. We normalize the
resource requests for each type of resource (CPU or memory)
to be a number between 0 and 1. Then, we calculate the Load
Factor that represents the load on the system under this set of
requests. To calculate the load, we sum up all the containers’
resource requests in the sequence and divide this sum by the
number of available resources. (Section V includes a more
precise definition for this calculation.).

Our experimental evaluation results show that Cradle™
can schedule up to 2-times more containers than currently
used heuristics. However, it happens in situations where the
Iesources are scarce.

We use the term performance factor to describe the per-
centage of successfully serviced container requests out of all
the containers in a sequence. In high load situations described
above, Cradle™ performance factor is just below 50%, while
other heuristics achieve only 25%. In more appealing settings,
when 60% — 70% of the requests are served, Cradle™ serves
10-20% more requests.

Public cloud providers may use this performance factor
when they plan their future data-centers capacity. This factor
is significant because it helps determine the marginal quality-
of-service and the utility gains they expect to deliver to their
customers under different load scenarios. We discuss this point
further in Section VI.

The main contributions of this paper are as follows. We
develop a novel scheduling algorithm for containers in a cloud
environment and provide proven guarantees on the expected
performance. More specifically, we prove that our algorithm is
a constant approximation algorithm for the theoretical problem
we describe. We also evaluate the expected performance of
the algorithm using real cloud traces. Our results indicate that
(a) the algorithm performs much better than the theoretical
bounds, and (b) it out preforms the common scheduling
policies (Bin Packing and Spread) by 10-50% depending on
the actual load on the system.

Paper organization: The rest of the paper is organized
as follows. We describe related work in Section II. Then
we define the problem and give a short overview of the
local ratio technique in Section III. Our theoretical results are
described in Section IV. This section contains the general 12-
approximation algorithm and the 9-approximation algorithm
for the special case where £ = O(1). Finally, we present our
experimental results in Section V and suggest further steps for
our research in Section VI.

II. RELATED WORK

The research around container orchestration and effective
resources allocation yielded in recent years a plethora of

Shttps://github.com/google/cluster-data/blob/master/ClusterData2011_2.md



studies. Some studies consider special cases of management
and utility functions. For example, recently Zhou et al. [21]
developed both off-line and on-line containers’ scheduling
algorithm while assuming “partial value for partial execution”
of containers tasks. This may be a solid assumption for some
types of workloads such as in long-lasting training function of
machine learning models, some shorter micro-service oriented
applications may require a full completion of such jobs to have
any value. Mason et al. in [15] and Baig et al. in [19] suggested
methods to predict cloud resources consumption - host CPU
and data-center resources utilization using neural networks and
adaptive prediction models accordingly.

Zheng and Shroff [20] assume partial values and a concave
utility function that can deliver partial results, when it comes
to online multi-resource allocation and with job preemption.

Menouer and Darmon [17] developed a new scheduling
strategy by combining the Spread and the Bin Packing algo-
rithms. This combination yielded the TOPSIS algorithm, which
comprises between the Spread Strategy and the Bin Packing
Strategy and provides more flexibility in choosing nodes and
improving the global scheduling of several containers. This
study assumes un-weighted containers and does not provide
an analytical analysis of the expected performance.

Another experimental study by Li et al. [12] analyzed
Swarm - a Docker container-based cluster management tool.
They propose a Particle Swarm optimization-based container
scheduling of Docker platform to achieve better container clus-
ters load-balancing and resource utilization. This study does
not include analytical performance examination. In another
recent paper, Chung et al. [9] suggested a specialized scheduler
for batch job execution. They demonstrated substantial cost
reduction compared to best practices for batch job workloads.
However, this work did not address the use-cases where
modern applications implement a micro-services architecture,
handling both batch and short-lived container demands.

Several experimental studies address challenges in contain-
ers performance optimization. In the study of Liu et al. [13],
the authors focused on scheduling containers that belong to a
specific service. Their algorithm considers the time it takes to
transmit a container’s image over the network. They define
a dissipation function for each factor, such as networking
speed, image size, CPU demand, to choose the best node in a
container cluster. However, this research does not provide any
analytical study of the problem or experimental evaluation on
real-world container workloads.

Recent studies focused on workloads like deep-learning and
big-data, as in Mao et al. [14] who suggested improved config-
uration scheme for Dockers and Kubernetes, and Menouer [16]
who suggested a multi-criteria scheduling algorithm.

The one dimensional special case of CONALLOC, where
k = 1 and there are no memory requirements, is called the
BANDWIDTH ALLOCATION PROBLEM (BAP)’. The unique
case of BAP in which a container fully occupies the VM

7Other names: RESOURCE ALLOCATION PROBLEM or UNSPLITTABLE
FLOW ON PATHS.

is the MAXIMUM INDEPENDENT SET problem in interval
graphs which is solvable in polynomial time (see, e.g., [10]).
On the other hand, BAP (and thus CONALLOC) is NP-hard
since KNAPSACK it is a special case of BAP, where all
requests intervals intersect. Bar-Noy et al. [2] designed a local
ratio 3-approximation algorithm for BAP. Calinescu et al. [6]
developed a randomized approximation algorithm for BAP
with an expected performance ratio of 2 + ¢, for every € > 0.
They obtained this result by dividing the given instance into an
instance with large tasks and small tasks. They use dynamic
programming to compute an optimal solution for the large
instance and a randomized LP-based algorithm to obtain a
(1+ €)-approximate solution for the small instance. They also
present a 3-approximation algorithm for BAP that is different
from the one given in [2]. Chrobak et al. [8] showed that
BAP is strongly NP-hard even for the case of uniform weights.
Bonsma et al. [5] developed a (74 ¢)-approximation algorithm
for an extension of BAP in which the available resource may
change over time and showed that it is strongly NP-hard even
for instances with demands in {1,2,3}. Anagnostopoulos et
al. [1] presented a (2 + €)-approximation algorithm for this
extension of BAP. This approximation was recently improved
by Grandoni et al. [11] who improved the approximation ratio
to (5/3 + €). Finally, Bar-Noy et al. [2] considered a problem
related to CONALLOC. In this problem, there are k one-
dimensional identical VMs, and each container request fully
occupies a VM. On the other hand, each request has several
instances. They provide a 2-approximation algorithm for this
problem.

III. MODEL AND PRELIMINARIES

This section contains a formal definition of the container
allocation problem and a short introduction to the Local Ratio
Technique which we use in the next section.

A. The Problem

In the CONTAINER ALLOCATION PROBLEM (CONALLOC)
we are given k identical virtual machines available over time,
where each machine has a limited processing power and a pre-
defined amount of memory. As explained in the introduction,
these are the available Kubernetes nodes. One can assume that
both amounts are normalized to 1, by scaling the containers’
resource requirements. It follows that the resource require-
ments of each container request represents the portion of the
VM’s resources needed. The input consists of the number &
and a sequence of n containers requests C' = {1,2,...,n},
where each container request j, for 1 < 57 < n, is associated
with the following parameters:

o a weight w(j) € Ry,

« a time interval I; = (s;, f;], where s; < f;, and

« two resource requirements a;,b; € [0, 1].

We assume that a; represents the amount of CPU and that b;
represents the amount of memory requested by j. Observe that
the problem becomes trivial if n < k, henceforth we assume
that £ < n.



A feasible solution, or an allocation, is a collection S =
{S1,...,8;} of k pairwise disjoint subsets of the requests
such that the following conditions are met:

Z a; <1 (1)

jESitel;

Z b; <1 )

JESitel;

for every time ¢ and for every subset S;. Subset S; stands
for the requests that are allocated to VM i. Conditions (1)
and (2) ensure that the VM is not overload. The weight of
a solution § is defined as w(S) = 3, 5, w;. The goal is
to find an allocation that maximizes the weight of allocated
requests, namely to find S that maximizes w(S).

Let T be a set that contains all start times and finish times
of requests in C, ie., T'= U7_,{s;, f;}. Observe that, given
an allocation S = {S1,...,Sk}, the set {j € S; : t € I;}
remains the same for all ¢ € (¢1, t2], where ¢; and to are two
consecutive times in 7. Hence, it is enough to require that
Conditions (1) and (2) hold for all t € T'.

The above observation leads to an integer linear program-
ming (ILP) formulation of CONALLOC. Let x;; be a variable
that is set to 1 if request j is placed in the ¢’th machine. That is
x;; = 1 if and only if j € S;. The following ILP formulation
captures CONALLOC:

n k
max E w; E Tij
j=1 i=1

k
S.t. Z Tij S 1 VJ
i=1
Z xijajgl VtéT,i
jitel;
Z x”bjgl Vt€T,i
jitel;
Lij € {Oa 1} VZ,j
Given two solutions S and S’ we abuse notation by defining:
e SUS =(51U8],...,5, US).
e S\S' =(S1\51,...,5:\Sy).

Let ¢/ € C be a container request. A solution S is called
{-maximal, if either ¢ is in the solution, or it £ cannot be added
to the solution. More formally, S is /-maximal if one of the
following conditions is satisfied:

e / €5, for some i, or
« For every machine i, there exists a time ¢ € I, such that

ZjeSi:tEI_,» aj +ag > 1.
B. Narrow and Wide Container Requests

In this section we describe a partition of the set of container
requests into several subsets. We say that a request j is
narrow if a;,b; < % Otherwise, the request is called non-
narrow. Let N be the set of narrow requests, i.e., N =
{jia; <Fandb; <1}

A non-narrow request if called a-wide, if a; > % Similarly,
a non-narrow request is called b-wide, if b; > % Define

1
We=<dj:a; > =
{j aj>2}

. 1

Observe that it may be the case that W N W? # ().

and

C. The Local Ratio Technique

The local ratio technique [2], [4] is based on the Local Ratio
Lemma, which applies to maximization (or minimization)
problems of the following type. The input is a non-negative
weight vector w € R™ and a set of feasibility constraints
F. The problem is to find a solution vector x € R"™ that
maximizes (or minimizes) the inner product w-x subject to the
constraints F. The proof of the lemma for the maximization
case is given for completeness.

Lemma IIL.1 (Local Ratio [2]). Let F be a set of constraints
and let w, w1, and wo be weight functions such that w =
wy + wa. Then, if x is r-approximate both with respect to
wy and with respect to wo, for some r, then x is also an
r-approximate solution with respect to w.

Proof. Let x* denote an optimal solution with respect to w,
and let #* denote an optimal solution with respect to w,; where
i € {1,2}. Then,

w-x

w1+ woe-x

(wy - at) e (wg - 2?)

AVANIY)

-
r-(wy - x* 4wy - x¥)
r

: (U) : {E*) )
and we are done. [J

Surveys on the local ratio technique can be found in [3] and
in [18].

IV. APPROXIMATION ALGORITHMS

In this section we present a 12-approximation algorithm
for CONALLOC. Our algorithm is designed and analyzed
using the local ratio technique. It computes three solutions:
(i) a 2-approximation for a-wide requests, and (ii)) a 2-
approximation for b-wise requests. (iii) a 8-approximation for
narrow requests. The classification of the containers’ requests
into three groups separates the narrow requests from the rest
(a-wide or b-wide requests), thus allowing us to achieve a
better approximation constant overall.

We also discuss the possibility of using dynamic program-
ming in order to handle non-narrow requests in the case where
k = O(1). Together with the 8-approximation algorithm this
leads to a 9-approximation algorithm in this case.



Figure 1. An example showing the time intervals of container requests. The
thick red line represents I, the solid orange lines represent the time intervals
of requests whose time interval intersects I5, and dashed intervals represent
the rest of the time intervals. w; assigns non-zero weights to j and to the
requests whose time intervals are represented by solid orange lines.

A. Algorithm for a-Wide and b-Wide Container Requests

In this section we design an approximation algorithm for
a-wide container requests, i.e., for the set W®. Later on we
show that a similar algorithm works for b-wide requests.

Let j,¢ € W be two requests such that I; NI, # (.
In this case ¢; and ¢, cannot be mapped to the same ma-
chine since a; + a, > 1. More formally, given a solution
S = {51,..., Sk}, it cannot be that j,¢ € S;, for some .
It follows that .S; must be a pairwise non-intersecting subset
of requests, for every ¢. Hence, the number of requests which
contains time ¢ is at most k, for any given time ¢.

Let j be a container request with the earliest finish time.
ie., f; < fj, for every j € W*. Define the following weight
function

1 j=j
wi(f) =w(G)- St F#LLNL#0D 3)
0 otherwise.

See example in Fig. 1.
The next lemma shows that a j-maximal solution is 2-
approximate with respect to the weight function w;.

Lemma IV.1. Let §* be an optimal solution with respect to
We and wy. Also, let S be an j-maximal solution. Then,

Proof. If j appears in S*, then it may also contain at most
k — 1 additional requests that contain f;. Hence,

wi(8%) < wi(7) + (k— 1)) = (2 — Lyw(j) .

Otherwise, if j is not a part of §*, we have that w;(S*) <
k’u)lk(ﬂ) =wy(j). )
On the other hand, if j is contained in & we have that

w1(8S) > wi(j). Otherwise, S contains k requests whose time

interval contain f;. Hence, w:(S) > kwlT@ = w1(7).

It follows that wy(S) > w1 (j) > 5w (S*). O

We use the above weight function in our local ratio algo-
rithm (Algorithm 1). The algorithm is named Cradle which
stands for Containers Resource Allocation in Dynamic CLoud
Environments. The initial call is Cradle(W®, w).

We discuss the implementation details and the running time
of Cradle. If we order the requests by their finish times, then

Algorithm 1 — Cradle (C,w)

if C = () then return (0,...,0)

if there exists j such that w(j) < 0 then
return Cradle(C \ {j},w)

Let j be the container request whose finish time is earliest

in J, and let w; be the weight function from (3). Define

W2 =W — Wq.

5: S < Cradle(C, w2)

6: if there exists i such that S; U {j} is pair-wise non-
intersecting then

7: S; +— S; U {3}

8: return S

BN

it takes O(1) time to find j in each recursive call. Hence,
each recursive call can be implemented with a running time
of O(n). Since there are at most 2n recursive calls, the total
running time is O(n?). A faster O(nlogn) implementation
can be obtained using a sweep-line approach as was done
in [3].

It remains to bound the approximation ratio.

Theorem IV.2. Algorithm Cradle is a (2 — ¢ )-approximation
algorithm for an instance containing only a-wide requests.

Proof. We use induction on the number of recursive calls to
show that the approximation ratio of Algorithm Cradle is 2— %

In the base case C' = (}, and therefore the empty solution is
optimal.

For the inductive step, we assume that the recursive call
returns a (2 — %)-approximate solution. There are two options.
If the recursive call was made in Line 3, then the solution
returned is (2 — 1 )-approximate with respect to C'\ {j} and
w. Since w(j) <0, it is also 2 — %—approximate with respect
to C' and w. Otherwise, if the recursive call was made in
Line 5, then the solution returned is (2 — %)-approximate with
respect to C' and ws. In addition, since S is j-maximal, by
Lemma IV.1 it is (2 — 4 )-approximate with respect to C' and
weo. Hence, by the local ratio lemma it is (2 — %)-approximate
with respect to C and w as well. [

Now we turn to handle b-wide requests. Let 7,/ € W be
two requests such that I; N I, # (. In this case ¢; and ¢,
cannot be mapped to the same machine since b; + by > 1.
Hence, given a solution S = {S1,..., S}, it cannot be that
j, £ € S;, for some 7. If follows that similar arguments work
for b-wide requests, and thus we have the following result.

Theorem IV.3. Algorithm Cradle is a (2 — 1 )-approximation
algorithm for an instance containing only b-wide requests.

B. Algorithm for Narrow Container Requests

In this section we use a version of Algorithm Cradle in
order to obtain an 8-approximation algorithm for instances
containing only narrow requests. (Recall that a;,b; < %, for
every narrow request j.)



As before, let j be a container with the earliest finish time,
ie., f; < fj, for every j € N. Define the following weight
function

1 ji=1J
. - a; b . -
wi(f) =w(f) ety JFLLNG#D @)
0 otherwise.

The next lemma shows that a j-maximal solution is 8-
approximate with respect to the weight function w;.

Lemma IV.4. Let S* be an optimal solution with respect to N
and wj. Also, let S be an j-maximal solution. Then, w1 (S) >
wq(S™)

s -
Proof. First, assume that j € S}, for some :. In this case, S;
may contain additional requests whose total CPU requirements
is 1 — a; and whose total memory requirements is 1 — b;.
Moreover, the other £k — 1 machine may also be fully used.

Hence, in this case

* - = 1
w1 (S*) < wi(f) +wi(f) - Gy — Z (a;j +bj)
J T jeuis; i#]
1
. (Qk — a; — bj)

< = N -

=2wq(j) .

Otherwise, if 3 is not a part of §*, we have that

* = 1
w1 (S )Swl(J)'m' Z (aj +b;)
J I jeus;
- 2k
swil) g1
< 2w (j)

As for S, if j is contained in S we have that w1 (S) > w1 (5).
Otherwise, the load S places either on the CPU or on the
memory of each of the k& machines prevents j to be placed.
Hence,

w1 (S) = w1(j) - F—a b Z Z(aj +b5)
J J i jES;
> () g Somaxd Y ag, )

JjES; JjES;

- 1
Zwl(j)-ﬁ-Zmin{l—aE,l—bg}

1
> wi(j) - % >.05
> wy(7)
- 4

It follows that w1 (S) > w1 (j) > %. O

We use Cradle with the weight function given in (4) instead
of the one given in (3). The initial call is Cradle(N,w). The
running time of Cradle remains O(n?).

Theorem IV.5. Algorithm Cradle is a 8-approximation algo-
rithm for an instance containing only narrow requests.

Proof. The proof is similar to the proof of Theorem IV.2,
where Lemma IV.4 is used instead of Lemma IV.1. [

C. Approximation Algorithm for General Instances

In this section we give a 12-approximation algorithm for
general instances using the algorithms for a-wide, b-wide, and
narrow requests.

Theorem IV.6. There exists a 12-approximation algorithm for
CONALLOC.

Proof. Let S* be an optimal solution. Let

SE=(SrnWe, ..., S nWe)
S;=(SinwWb,....Sinw?)
Sy =(SfNN,...,SiNN).

Observe that at least one of the following option must hold:
@) w(S;) > tw(SY), (i) w(Sy) > w(S*), or (i) w(S) >
%w(S*). Let S,, Sy, and Sy be the solutions computed by
Cradle for We, Wb and N. By Theorems IV.3 and IV.5 it
follows that one of these solutions must be 12-approximate.

O

D. Improving the Approximation Ratio

In this section we present a dynamic programming al-
gorithm for computing an optimal solution for an instance
containing only non-narrow container requests. Combining it
with the 8-approximation algorithm for narrow requests, leads
to a 9-approximation algorithm for the general case. Our
dynamic programming algorithm is based on the algorithms
for the BANDWIDTH ALLOCATION PROBLEM by Chen et
al. [7] and by Calinescu et al. [6].

Consider a set of container requests W containing only non-
narrow requests. That is, W = W* U we,

Theorem IV.7. Let k = O(1). There is a polynomial time
algorithm that, given an instance containing only non-narrow
requests, computes an optimal solution.

The proof of the next theorem is similar to the proof of
Theorem IV.6.

Theorem IV.8. There exists a 9-approximation algorithm for
CONALLOC for the case where k = O(1).

The proofs of both theorems were omitted for lack of space.

V. EXPERIMENTAL EVALUATION

To evaluate the new algorithm’s performance, we use
Google’s cluster data, which contains requests of Linux
container jobs during one month®. These container requests
include the CPU and the memory requirements, together with
the start and end times of the execution. Note that the requests
have different ratios between CPU and memory. For example,

8https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md



one request for a Linux container can be 4vCPUs and 4GB
of memory, and another can be 2vCPU and 4GB of memory.
These may result either in a 1:1 or a 1:2 CPU to memory
ratios, accordingly.

We used the real-world data and normalized the demands
for CPU and memory. To test the performance in different load
situations, we sampled (uniformly at random) the data space
to produce multiple scenarios. For example, we used the same
data to test the performance of the various algorithms when we
have a total of 1000 virtual machines or a total of 100 virtual
machines. The available resources in the latter case are much
lower; thus, they demonstrate a higher load on the system.

We use the term load factor to describe the ratio between the
overall sum of required resources for all the container requests
in the tested set and the amount of available resources (i.e.,
the number of VMs, k, times the time horizon). Since we deal
with a multidimensional problem, we use the average of the
requirements as the demand of a single container request. We
note that the requirements are typically in the same magnitude
in our data set. For example: a CPU load factor of a data set
can be 900 and the memory load factor of the same data set can
be 700. For example, if the normalized request of a container is
0.1 CPU, and 0.3 memory, and it is executed over 10 seconds,
then the total normalized demand is (0.3+0.1)/2-10 = 2 sec.
The load factor is then the sum of the demand of all containers
requests divided by k times the overall time of the test. More
formally, define

Y
s 2jec 25 (i = 5)

k - THorizon

p : 5)

where THorizon = max{T} — min{T} is the overall time
duration of the execution. The algorithm’s quality on a given
input sequence is measured by its profit, where the goal
is to maximize it. When containers are not associated with
a specific profit (as is the case for our data set), we use
the overall number of scheduled items as the profit. Thus
we measure the performance as the percentage of scheduled
containers algorithm A achieves compared to the total number
of containers in the input sequence.,

# containers scheduled by ALG
# containers in C '

P(A) =100 -

In order to compare Cradle™ to existing best practices
results, we use the Spread and Bin-Packing algorithms, which
are currently known best practices when it comes to Ku-
bernetes containers scheduling®. The Bin Packing algorithm
schedules container requests by scheduling as many as pos-
sible requests to the first virtual machine and moves on to
the next virtual machine as soon as the current machine’s
resources, either CPU or memory, can not satisfy the following
request. Spread algorithm schedules container requests by
scheduling a container’s request on a virtual machine and
serving the subsequent request on the next indexed virtual
machine. While Bin packing makes the best effort to pack as

9https://kubernetes.io/blog/2017/03/advanced-scheduling-in-kubernetes/

many container requests on a single virtual machine, spread
tries to load balance the requests on different virtual machines.

Both algorithms have operational and economic justifica-
tion: Bin packing can minimize the required amount of virtual
machines when scheduling containers, which can help save
costs for the users or the cloud provider, for example, in testing
and development environments. However, Spread can reduce
the density of containers on each virtual machine and allow
the higher performance of a container in a micro-services
architecture deployments.

In order to get different series of requests with different load
factors for the simulation based evaluation, we sampled the
real-world-data uniformly at random to get multiple series of
requests. For each such set, we used Equation 5 and computed
for each relevant load the appropriate number of server.
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Figure 2. Cradlet Performance Comparisons to Others

Fig. 2 depicts the ratio between the performance of Cradle™
and the currently deployed heuristics. One can observe that
Cradle™ outperforms these heuristics, especially in high load
situations (e.g., p = 12). In such high load situations, the
scheduling system receives many requests from containers
such that the overall resource request is much higher than
the available resources. Since the distribution of the requests
over time varies, the actual performance of an algorithm is
not determined solely by the load. Further, one can observe
that the algorithm’s preference remains high even when the
number of VMs (or Kubernetes nodes) increases and becomes
very large, which indicates that Cradle™ scales up well.

We note that both Bin packing and Spread are online in
nature while Cradle™ is offline. Yet, during high load Cradle™
successfully handles more than 100% container requests along
the time of tests. The reason for Cradle to serve more requests
as the load increases is as follows: Cradle uses the weight
function described in Subsection IV-B. This function causes
Cradle to prioritize narrower containers having higher utility.
This means that the scheduling scheme of Cradle is more
dense compared both to Bin packing and Spread when it comes
to populating more narrower containers. Containers with wide



dimensions and high utility are thus prioritized by Cradle and
the overall utility increases.
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Figure 3. Cradle’s Performance vs. Bin-Packing’s and Spread’s

To better understand the effect of the load, we depict in Fig.
3 the ratio between Cradle™ performance and the performance
of the other heuristics as a function of the load. Cradle™ serves
more container requests compared to the other two heuristics
as the load increases. When p = 1, the overall amount of
requested resources is roughly equal to the available resources,
and thus it is possible to satisfy almost all requests. As the
load increases, the ratio between Cradle™ performance and the
other heuristics performance increases until it gets to 2 when
the load is 12.

In Fig. 4 we depict the actual performance of all three
algorithms. One can see that starting with a load of 1, Cradle™
outperforms the other heuristics. When the load increases, even
by a small amount, say to 2, there is already a performance gap
between the algorithms where Cradle™ serves about 10% more
containers than others. Finally, cloud operators can reduce
their infrastructure by a similar factor if they use Cradle.

A natural question to ask is what is a reasonable working
load for container scheduling systems. When resources are
scarce, demand is high; a cloud provider may still offer
different service levels, for example, premium service Vs. Best
effort one. Thus it makes sense to operate cloud environments
at high loads. However, in most common cases, cloud opera-
tors would target a moderately high load that will allow them
to serve almost all requests.

For this reason, we further analyzed Cradle™’s performance
in situations where it schedules 50% to 80% of the arriving
containers. The results of this analysis are presented in Fig. 5.
While all algorithms perform similarly at around 100% load,
the degradation in performance of Cradlet is much more
moderate than Bin-Packing and Spread. The latter is because,
in this situation, the algorithm has a choice regarding the exact
containers to schedule, and Cradle™ can then use the logic to
effectively select more requests compared to other algorithms
as later on demonstrated in Fig. 6.
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Figure 4. Cradle’s Performance vs. Others

Our simulations examined a spectrum of load factors and
their matching performance results. However, in the figures
below, we emphasize specific anchor numbers we believe are
meaningful for comparing the different algorithms.
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Figure 5. Cradle’s Performance Under Load Factors: 1.0-3.75

As explained in the previous sections, Cradle gives priority
to requests that require fewer resources. Hence, even when
scheduling the same number of containers, Cradle uses fewer
resources than the currently deployed alternative. Hence Cra-
dle™ typically uses fewer resources as shown below for Load
Factors higher than one compared to Bin-Packing and Spread.
As can be seen, Cradle™ can be twice more effective when
scheduling container requests when p = 12. In such situations
Cradle™ uses half of the available resources and still manages
to double the performance as noted above since it first serves
narrow container requests.

Our extensive simulation results indicate that Cradle™ does
a better job of utilizing the available resources. The gap
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Figure 6. Cradle™’s Utility-To-Resources Effectiveness

concerning the commonly deployed heuristics increases when
resources are scarce, and the exact choice of the containers has
a more significant impact. As we pointed out, cloud providers
can utilize this advantage and reduce their infrastructure costs
without lowering their SLA.

VI. DISCUSSION

In this paper, we introduced Cradlet, a new container
scheduling algorithm designed to handle dynamic workloads
when resources are scarce. We provide a theoretical analysis
that proves a constant approximation ratio. Moreover, our
experimental results demonstrate that Cradle™ outperforms
currently used heuristics, especially when the load on the
system is high.

One possible way to further improve Cradle™ is to use its
weight function property. An appropriate use of this weight
function, that allows prioritizing user requests, can signifi-
cantly improve performance.

A vital aspect left for future work is using the insights we
gained through the analysis and generating an online solution
that maintains Cradle’s advanced properties.
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