
MultilayerTuple: A General, Scalable and
High-performance Packet Classification Algorithm

for Software Defined Network System
Chunyang Zhang ∗ ‡, Gaogang Xie†‡

∗Institute of Computing Technology, Chinese Academy of Sciences, China
†Computer Network Information Center, Chinese Academy of Sciences, China

‡University of Chinese Academy of Sciences
zhangchunyang@ict.ac.cn, xie@cnic.cn

Abstract—Packet classification is one of the core components
in Software Defined Network (SDN) systems, e.g., Open vSwitch.
However, the current packet classification algorithm Tuple Space
Search (TSS), which is implemented in SDN systems, has low
lookup speed and can be attacked. Although some algorithms
that support incremental updates are proposed to improve the
lookup speed, e.g., TupleMerge and PartitionSort, but are not
general and scalable to apply in SDN systems and replace TSS. In
this paper, we propose a general, scalable, and high-performance
packet classification algorithm MultilayerTuple. MultilayerTuple
reduces the number of tuples by splitting the prefix lengths
of rules into ranges in each layer, then creates the next layer
to replace the long rule chain recursively. The experimental
results demonstrate that compared to TSS, TupleMerge, and
PartitionSort, MultilayerTuple achieves 21.8x, 2.1x, 2.2x lookup
speed and 2.3x, 12.3x, 8.5x update speed. Furthermore, we
have implemented MultilayerTuple in the OpenFlow table and
MegaFlow cache of Open vSwitch, and it achieves 16.0x and 10.2x
lookup speed than TSS. Especially when TSE attack happens,
MultilayerTuple can effectively defend against it.

Index Terms—packet classification, Software Defined Network,
Open vSwitch

I. INTRODUCTION

Software Defined Network (SDN) [1] systems, e.g., Open
vSwitch [2], are the core components for network functions.
Compared to hardware devices, SDN systems are flexible
and scalable for complex applications, and convenient to
implement new technologies. However, packet classification is
the bottleneck of performance all the time. The current packet
classification algorithm TSS [3] in these systems not only
performs low lookup speed but also can be attacked. Therefore,
it is important to implement a general, scalable, and high-
performance packet classification algorithm to replace TSS in
these systems.

Although a lot of algorithms have been proposed to improve
the lookup speed for packet classification, none is general
and scalable to replace TSS in SDN systems. The decision-
tree-based methods such as SmartSplit [4], ByteCuts [5] and
NeuroCuts [6] focus on high lookup speed, but can not
support incremental updates. Recently, TupleMerge [7], [8]
and PartitionSort [9] attempt to speed up the lookup with

incremental updates. However, TupleMerge only reduces the
prefix lengths of the source and destination IP addresses by the
authors’ experience, and PartitionSort requires determining the
order of fields at first and then implementing the complex tree
structure. Therefore, both TupleMerge and PartitionSort are
not general and scalable to replace TSS. Furthermore, attackers
can generate specific rules and packets to attack TSS easily.
To improve the performance and defend against the attack,
we propose a general, scalable, and high-performance packet
classification algorithm MultilayerTuple, which can replace
TSS in systems.

The packet classification mainly involves rule matching,
where a rule is generally described with d fields f1, f2, ..., fd.
Each field fi in a rule corresponds to a range [li, ri]. In a
typical packet classification problem, the rule has five fields,
containing the source IP address, the destination IP address,
the source port, the destination port, and the protocol. To
perform classification, the d-field packet (p1, p2, ..., pd) from a
packet header is first parsed. A packet is considered to match
a rule if it matches all fields of the rule. If a packet can
match multiple rules, the one with the highest priority will
be selected.

To achieve high lookup speed, MultilayerTuple divides rules
into fewer tuples with prefix lengths in ranges. For 32-bits
IP address, MultilayerTuple splits the prefix lengths of rules
into three ranges 32-32, 16-31, and 0-15. In each tuple, the
prefix of a rule is reduced to the shortest prefix length in
range, and the reduced prefix is used as the key in the hash
table. Although the number of tuples is reduced, rules with
the same reduced prefix will be stored in a rule chain. To
replace the long rule chain, MultilayerTuple creates the next
layer structure and further splits the prefix lengths into two
ranges, e.g., splits 16-31 into 24-31 and 16-23. With fewer
tuple and rule accesses, MultilayerTuple has a higher lookup
speed than TSS, PartitionSort, and TupleMerge. Furthermore,
MultilayerTuple can also perform higher speed updates.

With generality for different field lengths and scalability
for multiple fields, MultilayerTuple can replace TSS in the
OpenFlow table and MegaFlow cache of Open vSwitch.
Furthermore, with few rules and packets, TSE attack [10]ISBN 978-3-903176-39-3 © 2021 IFIP



generates a large number of tuples to slow down the lookup
speed in the MegaFlow cache of OVS. However, by im-
plementing MultilayerTuple in Megaflow cache, the tuple
access number for a packet is restricted within 129. Therefore,
MultilayerTuple can defend against TSE attack effectively.

Our experimental results demonstrate that MultilayerTu-
ple achieves higher performance than previous methods that
support incremental updates. Compared to TSS, TupleMerge,
and PartitionSort, MultilayerTuple achieves 21.8x, 2.1x, 2.2x
lookup speed and 2.3x, 12.3x, 8.5x update speed. Furthermore,
we implement MultilayerTuple in the OpenFlow table and
MegaFlow cache of OVS, it not only performs 16.0x and 10.2x
lookup speed but also effectively defends against TSE attack.

II. RELATED WORK

Existing representative packet classification algorithms can
be divided into three categories. The first category is the
hardware-based methods where the lookup is performed
through additional hardware, but is expensive and inflexible.
The second category is the decision-tree-based methods that
only focus on high lookup speed, but are hard to perform
incremental updates. The algorithms in the third category
support incremental updates, including TSS, TupleMerge, and
PartitionSort, but have low lookup speeds and only TSS can
apply in SDN systems. Our proposed MultilayerTuple falls
into the third category. It not only achieves high lookup speed
but also has generality and scalability to apply in systems.

The hardware-based methods: Ternary content address-
able memory (TCAM) is a hardware device. It is mainly used
to quickly find ACLs, routers, and other entries. TCAM has
been used for packet classification [11]–[14] to improve the
lookup speed, but its memory size is too small to store a
large number of rules. In addition, TCAM can not support
incremental updates. Some FPGA methods [15], [16] and
GPU methods [17]–[19] have the same problems. Furthermore,
hardware methods increase the costs of hardware and energy.
Therefore, these algorithms are difficult to apply in the SDN
environment where rules need to be flexibly updated.

The decision-tree-based methods: Some decision-tree-
based methods such as HiCuts [20], HyperCuts [21], Hyper-
Split [22], Efficuts [23], SmartSplit [4], BitCuts [24], CutSplit
[25], ByteCuts [5], and NeuroCuts [6] use one or more deci-
sion trees to build data structure. Each node in the decision tree
represents a range of five fields and stores the rules that overlap
with the node ranges. The node splits the range into multiple
intervals to form children nodes and allocates rules to the
children nodes. The rule that overlaps with multiple nodes will
be copied multiple times, which could lead to the explosion
of memory consumption in decision-tree-based methods. The
state-of-art decision-tree-based method, ByteCuts, uses byte
extraction to split rules, which achieves the highest lookup
speed and small memory cost. However, the splitting scheme
of these methods depends on the rule set at the building time. If
the rules are constantly updated, the previous splitting scheme
could be inappropriate, which can further affect the lookup

speed and the memory cost. Therefore, these decision-tree-
based methods are not suitable for incremental updates.

TSS: Tuple Space Search (TSS) [3] divides rules into
multiple tuples according to the combination of prefix lengths.
The lookup speed of TSS is quite slow because the lookup
operation requires traversing a large number of tuples to look
for the rule with the highest priority. However, TSS has a
high update speed, the prefix lengths of rule can be applied
to quickly find the corresponding tuple. Furthermore, TSS has
generality for different field lengths and scalability for multiple
fields, thus TSS is implemented in SDN systems currently.

TupleMerge: TupleMerge [7], [8] improves upon TSS by
reducing the prefix lengths of rule, and the prefix lengths of
a tuple are decided by the first inserted rule. Each tuple can
store the rules with longer prefix lengths and restricts the rule-
chain length within 10. If a rule can not be inserted into any
current tuple, it will build a new tuple. TupleMerge reduces
the number of tuples for higher lookup speed. However, its
update operation requires traversing the tuples rather than
quickly finding a tuple, thus its update speed is slower than
TSS. Furthermore, TupleMerge only reduces the source and
destination IP addresses by the authors’ experience, which is
difficult to apply in multiple fields with different lengths.

PartitionSort: PartitionSort [9] classifies a packet based on
binary search tree. It splits the rules into multiple parts, each
containing sortable rules and the sorting orders of five fields in
these parts can be different. Each part exploits a binary search
tree to store sortable rules, and the complexity of lookup and
update operation in a tree is O (logN), where N is the number
of rules in this tree. With fewer trees, its lookup speed is
faster than TSS. However, its update speed is slower than TSS
with the need for traversing binary search trees. Furthermore,
PartitionSort requires determining the order of fields at first
and then implementing the complex tree structure. Therefore,
PartitionSort is hard to apply in SDN systems.

III. MULTILAYER TUPLE SEARCH

The classification algorithms that support updates usually
split rules into multiple parts, and each part that uses a hash
table is called a tuple. The lookup process requires traversing
tuples to look for the matching rule with the highest priority.
Tuple Space Search (TSS) creates tuples according to the
prefix lengths of rules, thus has a large number of tuples
and low lookup speed. Therefore, we first split prefix lengths
into three ranges to reduce the number of tuples. Second,
we create the next layer for the long rule chain with the
same reduced prefix. Third, to demonstrate its generality and
scalability, we extend MultilayerTuple to multiple fields with
different prefix lengths. At last, we explain the lookup process
of MultilayerTuple.

A. Prefix Length Ranges

Existing algorithms divide rules into different tuples accord-
ing to the prefix lengths. Each tuple in Tuple Space Search
(TSS) corresponds to the different prefix lengths. For the clas-
sic five fields classification problem (32-bits source/destination



TABLE I
THE RULE SET

Rule IP address Prefix length Priority
R1 11111111 8 8
R2 11110000 8 7
R3 0000111* 7 6
R4 000010* 6 5
R5 000001* 6 4
R6 00000* 5 3
R7 1111* 4 2
R8 1* 1 1

IP addresses, 16-bits source/destination ports, and 8-bits pro-
tocol with full or exact matching), TSS has up to 33∗33∗17∗
17 ∗ 2 ≈ 629K tuples. Because the lookup process requires
traversing a large number of tuples, the lookup speed of TSS
is quite slow.

Based on TSS, TupleMerge combines tuples with different
prefix lengths by omitting bits. However, the scheme of
TupleMerge is defective. First, the reduced prefix length of
IP address is according to the authors’ experience without
any proof. When the new distribution of rules appears, the
performance of TupleMerge may not be efficient. Second, if
TupleMerge forms a long rule chain with the same reduced
prefix, it will create a new tuple by the split scheme, which
increases the number of tuples. Third, the update process
requires traversing tuples to find the first tuple that can be
inserted. It not only reduces the update speed but also disorders
the rules in tuples. As a result, the lookup speed of TupleMerge
is limited with many tuples and disordered rules. Even though
the lookup speed of TupleMerge is faster than TSS, there are
problems with its scheme to reduce the prefix lengths of rules.

Assuming the length of IP address is 8 bits, Table. I shows
the rules that contain prefix IP addresses and priorities. The
rule set contains 6 different prefix lengths {8, 7, 6, 5, 4, 1},
thus TSS creates 6 tuples to store these rules. To reduce the
number of tuples for higher lookup speed, MultilayerTuple
splits prefix lengths into three ranges. As shown in Fig. 1, for
8-bits IP, the prefix lengths are split into three ranges 8-8, 4-7,
and 0-3. Therefore, the rules with prefix length 8-8, 4-7, and
0-3 will be stored in Tuple1, Tuple2, and Tuple3 respectively,
and the number of tuples in MultilayerTuple is up to three.
In each tuple, the prefixes of rules are reduced to the shortest
prefix length, and the reduced prefixes are used as the key
in the hash table. The rules with the same reduced prefix are
stored in a Group. For example, because the IP address of R3
is 0000111* and the shortest prefix length of Tuple2 is 4, the
reduced prefix of R3 is 0000*. And the reduced prefixes of
R4, R5, and R6 are also 0000*, thus R3, R4, R5, and R6 are
stored as a rule chain in Group3.

The lookup process for a packet in Fig. 1 contains three
steps. First, the packet traverses three tuples. Second, we use
the packet to find the matching group in the hash table of each
tuple. Third, we traverse the rule chain to find the matching
rule in the group.

Furthermore, the tuples, groups, and rules are sorted by their

Fig. 1. The first layer structure of MultilayerTuple.

Fig. 2. The multilayer structure of MultilayerTuple.

priorities. The priority of a rule is shown in Table. I, and the
priority of a tuple or a group depends on the inside rule with
the highest priority. If the priority of the current matching rule
is higher than or equal to the current group or rule, we can
skip the rest and continue the lookup process in the next tuple.
And if it is higher than or equal to the current tuple, we can
stop the lookup process and return the current matching rule.

B. The Next Layer

The reduced prefixes lead to fewer tuples on the one hand
but form long rule chains on the other hand. For example, in
Fig. 1, R3, R4, R5, and R6 have the same reduced prefix and
are stored as a rule chain in Group3. If a packet lookups in
Group3, it requires traversing the long rule chain to find the
matching rule. However, the long rule chain will slow down
the lookup speed.

To further improve the lookup speed, we create the next
layer to replace the long rule chain. As shown in Fig. 2,
Group3 contains a next layer structure. In the first layer,
Group3 stores the rules with prefix lengths in range 4-7. In
the next layer, we split the prefix lengths into two ranges 6-
7 and 4-5. Therefore, Tuple4 and Tuple5 contain the rules
with prefix lengths 6-7 and 4-5 respectively. With a two-layers
structure, all rules in Table. I can be stored in different groups.
If the rules chain is still too long in the second layer, we will
continue to create the third layer structure. The tuple in the
third layer only contains one prefix length by splitting the
prefix lengths 6-7 or 4-5 into two ranges.

Because of the next layer, the lookup process for the third
step is changed. If a group contains a rule chain, we traverse
the rule chain to find the matching rule. Otherwise, it contains



TABLE II
THE NUMBER OF TUPLE ACCESS

Rule TSS MultilayerTuple
R1 1 1
R2 1 1
R3 2 3
R4 3 3
R5 3 3
R6 4 4
R7 5 2
R8 6 3

maximal 6 4
average 3.125 2.5

a next layer structure, we continue to lookup in the next layer
recursively. Furthermore, the priority of the current matching
rule can also be used to skip tuples, groups, and rules in the
next layer.

The numbers of tuple access for packets that matching R1-
R8 are shown in Table. II, and the rules can be divided into
three types. First, by reducing the number of tuples to three
in the first layer, the tuple access number of matching R7 is
reduced from 5 to 2, and that of matching R8 is reduced from
6 to 3. It not only reduces the average access number but also
reduces the maximal access number. Second, no matter we
use TSS or MultilayerTuple, the rules with accurate prefixes
like R1 and R2 are stored in the first tuple, thus the tuple
access numbers for matching R1 and R2 are both 1. Third,
the tuple access numbers of R4, R5, and R6 are not changed,
and that of R3 even higher than TSS because of the cost that
we use multiple layers. The packets that matching these rules
require traversing Tuple1 and Tuple2 in the first layer to find
Group3, then find the matching rule in Tuple4 or Tuple5 in
the second layer. However, the cost is worth it when TSS has
a large number of tuples. As a result, MultilayerTuple has
less average and maximal access numbers of tuples than TSS
simultaneously.

For IP address with 32 bits and multiple fields, the number
of tuples for TSS will explode. Even for TupleMerge, there
are still too many tuples. In contrast, MultilayerTuple traverses
less number of tuples to find the matching rule in each layer.
Even if the packet is required to lookup in a few layers, the
average and maximal access numbers of tuples are less than
TSS and TupleMerge. Furthermore, in the following layers, the
search space is much smaller and smaller recursively, which is
beneficial for MultilayerTuple to find the matching rule more
quickly.

C. Generality and Scalability

MultilayerTuple is designed for Software Defined Network
(SDN) systems like Open vSwitch (OVS). Although many
packet classification algorithms with higher lookup speeds
were proposed, OVS still implements the slowest algorithm
TSS. The most benefits of TSS are its generality for different
field lengths and scalability for multiple fields. OpenFlow
supports a lot of fields and the lengths of these fields are
different. For example, the length of IPv6 is 128 bits and the

length of protocol is only 8 bits. Furthermore, a rule may
contain a few fields and the rest fields are ignored. TupleMerge
only improves lookup speed for source and destination IP
addresses by the authors’ experience. PartitionSort requires
determining the order of fields at first and then implementing
the complex tree structure. In contrast, TSS only considers
the prefix lengths of existing fields in rules, thus works
for multiple fields with different lengths. Even though the
previous methods have higher lookup speeds than TSS, they
are unlikely to apply in OVS. Maintaining the generality for
different field lengths and the scalability for multiple fields,
MutilayerTuple achieves higher lookup speed and can apply
in OVS to replace TSS.

Generality: MultilayerTuple can handle the fields with
different lengths. For a field contains w bits, we split the
rules with different prefix lengths into three ranges [w,w],
[w/2, w − 1], [0, w/2− 1] in the first layer. The first kind of
rules with prefix lengths w is matching for accurate packets,
and these rules usually occupy a large part of the rule set.
Therefore, we keep the tuple with prefix length w without
changes. The second kind of rules has prefix lengths in range
[w/2, w−1]. With the first w/2 bits, we can quickly reduce the
search space within one tuple, then through the rule chain or
the next layer to find the matching rule. The third kind of rules
has shorter prefix lengths in range [0, w/2− 1], which means
this field is unimportant for these rules to classify packets,
thus we ignore this field in the first layer and consider it in
the next layer if necessary. The rules with the same reduced
prefix will be stored in a rule chain. If the rule chain is too
long, we create the next layer to replace it. For a rule chain
that contains rules with prefix length in range [l, r], we split it
into two ranges [l, (r− l)/2] and [(r− l)/2+ 1, r] in the next
layer. The range can be split recursively until it just contains
one prefix length. When the length of a rule chain is longer
than k, we create the next layer. And if it is reduced to k/2, we
restore this next layer to a rule chain. The suitable choice for
k varies for different rule sets, we recommend k = 20 for the
five fields classification problem with source and destination
IP addresses, source and destination ports, and the protocol.

Scalability: MultilayerTuple can handle the rules with mul-
tiple fields. If rules contain multiple fields, TSS creates tuples
according to the combinations of prefix lengths. Similarly,
MultilayerTuple creates tuples according to the combinations
of reduced prefix lengths. Therefore, MultilayerTuple has the
same scalability as TSS for handling multiple fields. Assuming
the rule set contains d fields and the length of each field is w,
TSS has up to wd tuples with different combinations of prefix
lengths. Because the lookup process requires traversing tuples
to find the matching rule, TSS has the slowest lookup com-
plexity O(wd). For MultilayerTuple, each field has up to three
prefix lengths in the first layer and two in the next layers. Thus
the numbers of tuples are at most 3d in the first layer and 2d in
the next layers. For the fields with w bits, MultilayerTuple has
at most log(w) layers. Furthermore, because the reduced prefix
has the false positive, a packet may lookup in p next layers.
However, our experimental results show that the expectation



of p is quite small. Therefore, the lookup complexity for
MultilayerTuple is reduced to O(3d+(p+log(w))∗2d), which
is much smaller than TSS.

D. The Lookup Process

The pseudocode for the lookup process in MultilayerTuple
is shown in Algorithm 1. Lines 1-27 traverse tuples in this
layer to find the matching rule with the highest priority. Lines
3-5 prevent from searching tuples with lower priority than the
current matching rule. Line 6 calculates the reduced prefix
of packet by the mask of tuple. Line 7 finds the matching
group in the hash table of tuple. If there is no matching group
or the priority of matching group is lower than the current
matching rule, we continue the lookup process in the next tuple
in lines 8-10. If the group contains a rule chain, the packet
traverses the rule chain to find the matching rule in lines 11-
23. Otherwise, if the group contains the next layer, the packet
requires searching in the next layer recursively in lines 24-26.
Finally, we return the matching rule with the highest priority
in line 28.

Algorithm 1: MultilayerTuple Lookup
Input: the layer stucture layer, the current matching

rule r, the packet packet;
Output: the matching rule r;

1 for i = 0; i < layer.tuples num; i++ do
2 tuple = layer.tuples[i];
3 if r.pri ≥ tuple.pri then
4 break;
5 end
6 reduced prefix = packet&tuple.mask;
7 group = tuple.hashtable.F ind(reduced prefix);
8 if group == NULL or r.pri ≥ group.pri then
9 continue;

10 end
11 if group.rule chain! = NULL then
12 rule = group.rule chain;
13 while True do
14 if Match(rule, packet) == True then
15 r = rule;
16 break;
17 end
18 rule = rule.next;
19 if rule == NULL or r.pri ≥ rule.pri

then
20 break;
21 end
22 end
23 end
24 else if group.next layer! = NULL then
25 r = Lookup(group.next layer, r, packet);
26 end
27 end
28 return r;

Fig. 3. The lookup stucture of Open vSwitch (OVS).

IV. IMPLEMENTATION IN OPEN VSWITCH

MultilayerTuple is designed for Software Defined Network
(SDN) systems like Open vSwitch (OVS). To prove its gener-
ality, scalability, and high performance, we have implemented
MultilayerTuple in the OpenFlow table and MegaFlow cache
of OVS. Besides the improvement of performance, experi-
mental results show that MultilayerTuple can defend against
TSE attack effectively, which is more important for systems.
We will first illustrate the lookup structure of OVS and how
TSE attack happens. Then, we implement MultilayerTuple in
MegaFlow cache to defend against TSE attack.

A. TSE Attack in OVS

As shown in Fig. 3, OVS has three steps to classify packets.
A packet will lookup in the MicroFlow cache, MegaFlow
cache, and OpenFlow table in order until it matches a rule.
(1) OpenFlow table stores the original rules that users upload.
Because OVS only process the rules with prefixes, the rule
with ranges will be split into multiple rules with prefixes. (2)
Considering that TSS has too many tuples and low lookup
speed in OpenFlow table, OVS designs the MegaFlow cache.
MegaFlow cache also implements TSS to perform packet
classification. The difference between MegaFlow cache and
OpenFlow table is that rules are non-intersect in MegaFlow
cache. It means a packet can match at most one rule in
MegaFlow cache, then stop the lookup process and return
this rule immediately. If a packet can not match a rule in
MegaFlow cache, it will lookup in OpenFlow table, then
the matching rule will be transformed into a non-intersect
rule to insert into MegaFlow cache. If a rule can not be
matched in TTL seconds, it will be deleted. With fewer non-
intersect rules, MegaFlow cache improves the lookup speed.
(3) Because a flow contains multiple packets with the same
header, OVS designs MicroFlow cache with a hash table to
find the matching rule for these packets. If a packet can not
match a rule in MicroFlow cache, it will lookup in MegaFlow
cache, then insert the accurate rule into MicroFlow cache.

TSE attacks OVS by generating a large number of tuples
in MegaFlow cache. Assuming the length of IP address is
6 bits. The attacker first uploads two rules R1 and R2 in
Table. III, then transmits the packets with specific IP addresses
to generate rules with different prefix lengths in Table. IV.
For example, the IP address of p9 is 00000000, and p9
matches R1. But OVS can not insert R1 into MegaFlow



TABLE III
RULES IN OPENFLOW TABLE

Rule Prefix Action
R1 * deny
R2 11111111 allow

TABLE IV
ATTACK PACKETS AND RULES IN MEGAFLOW CACHE

Packet IP of packet Rule IP of rule Action
p1 11111111 r1 11111111 allow
p2 11111110 r2 11111110 deny
p3 11111100 r3 1111110* deny
p4 11111000 r4 111110* deny
p5 11110000 r5 11110* deny
p6 11100000 r6 1110* deny
p7 11000000 r7 110* deny
p8 10000000 r8 10* deny
p9 00000000 r9 0* deny

cache because R1 and R2 are intersected. Therefore, OVS
generates a non-intersect rule r9 with prefix 0*, which has
the shortest prefix length. By transmitting p1-p9, the attacker
generates 9 rules with 8 different prefix lengths in MegaFlow
cache. In OVS, MegaFlow cache can contain rules with 32-bits
source/destination IP addresses and 16-bits source/destination
ports. The number of tuples with different combinations of
prefix lengths can up to 32∗32∗16∗16 ≈ 262K. With too many
tuples, the lookup speed of OVS is greatly reduced. It also
affects the performance of other users within the same Open
vSwitch. Furthermore, TSE can attack OVS with few rules
and packets, which is difficult to detect and defend against. If
we remove MegaFlow cache from OVS, the performance will
be also affected because the lookup speed of OpenFlow is
too slow. Therefore, OVS has no effective methods to defend
against TSE attack until now.

B. MultilayerTuple Defends Against TSE Attack

As shown in Fig. 4, we build the data structure of Multilay-
erTuple to store rules r1-r9. The tuples are sorted by their
prefix lengths from long to short, which is different from
MultilayerTuple in OpenFlow table. If a packet lookups in
MutilayerTuple, the matching rule can only be stored in the
first matching group in each layer. Therefore, with each layer
accessed at most once, MultilayerTuple only accesses few
tuples to defend against TSE attack.

For example, if p4 with IP address 11111000 lookups and
r4 exits in Fig. 4, p4 may lookup in three types of tuples.
First, the prefix length of matching rule l is shorter than the
range of a tuple [L,R], e.g., the prefix length of r4 is 6, which
is shorter than the range of Tuple1 [8, 8]. For each field, we
constructs a trie with all prefixes of rules in OpenFlow table,
then generates the shortest prefix that non-intersect with other
rules. Therefore, the first l bits of p4 are different from all
rules, and p4 matches no groups in Tuple1. Second, the prefix
length of matching rule l is in the range of a tuple [L,R].
In this situation, the packet finds the tuple that may contain
the matching rule. Third, the prefix length of matching rule l

Fig. 4. The data structure of MultilayerTuple in TSE attack.

is longer than the range of a tuple [L,R]. In Fig. 4, p4 can
match Group5 in Tuple3. However, the tuples are sorted by
their prefix lengths, p4 will find r4 in Tuple2 at first, then skip
the lookup process in Tuple3. Therefore, if the matching rule
exists in MultilayerTuple, it is stored in the first matching
group in each layer. In other words, no matter whether the
matching rule exists, only the first matching group may
contain it in each layer. For the lookup process, we can only
check in the first matching group in each layer and skip the
rest, thus each layer can be accessed at most once.

For multiple fields, e.g., 32-bits source/destination IP ad-
dresses and 16-bits source/destination ports, tuples are sorted
by the sum of prefix lengths. The first layer contains up to
34 = 81 tuples and each next layer contains up to 24 = 16
tuples. Because MultilayerTuple constructs 4 layers at most,
the tuple access number in the lookup process is within
81 + (4 − 1) ∗ 16 = 129, which is much smaller than 262K
tuples in TSS and can effectively defend against TSE attack.

V. EXPERIMENTAL RESULTS

We compare MultilayerTuple with the methods that support
incremental updates. These methods contain Tuple Space
Search (TSS), TupleMerge, and PartitionSort. TSS is general
and scalable for multiple fields with different prefix lengths,
and it is implemented in Open vSwitch until now. Furthermore,
TSS has the current highest update speed. TupleMerge and
PartitionSort have higher lookup speeds, but lower update
speeds. TupleMerge only reduces source and destination IP
addresses by the authors’ experience without any proof. Par-
titionSort requires determining the order of fields at first and
then implementing the complex tree structure. Therefore, both
TupleMerge and PartitionSort are hard to replace TSS in OVS.

Experiments are carried on a computer with Intel(R) Core-
(TM) i7-8700 CPU@3.20GHz, 64KB L1, 256KB L2, 12MB
L3 cache respectively, and 8GB of DRAM. The operating
system is Ubuntu 16.04.

A. Rule Set and Packet Set

ClassBech is a packet classification benchmark to imitate
different rule sets and packet sets in real environments. It
contains twelve types of rules: five access control lists (ACL),
five firewalls (FW) and two IP chains (IPC). For packet



(a) The number of rules. (b) The average access number of tuples. (c) The average access number of rules.

Fig. 5. The factors of methods.

sets, ClassBench selects a rule randomly at each time, then
generates multiple packets to match it. Furthermore, Some
parameters can control the distribution of rules and the number
of packets to match a rule. We use the sample parameters in
ClassBench to generate twelve types of rules and packets. For
each type, we generate it with three different sizes 10K, 50K,
and 100K.

The source and destination of IP addresses and the protocol
are in form of prefix, but the source and destination ports are
ranges. Considering that OVS only processes the rules with
prefixes, the rule with ranges will be split into multiple rules
with prefixes.

B. Methods to Compare

The following methods are implemented.
Tuple Space Search: We implement TSS that forms tuples

according to the prefix lengths of five fields. For experiments
in OVS, we use the original TSS in OpenFlow table and
MegaFlow cache.

TupleMerge: TupleMerge is published on GitHub1. Tuple-
Merge only reduces the prefix lengths of source and destina-
tion IP addresses by the authors’ experience.

PartitionSort: We use the PartitionSort from GitHub2.
PartitionSort splits rules into multiple parts and implements
the binary search tree to store the sortable rules in each part.

MultiplayerTuple: We implement MultiplayerTuple as de-
scribed in Section III and publish it on Github3. MultilayerTu-
ple splits the prefix length of each field into three ranges in the
first layer. If the rule chain is longer than 20, MultilayerTuple
creates the next layer recursively and further splits the prefix
length of each field into two ranges. We also implement
MultialyerTuple in the OpenFlow table of OVS. For MegaFlow
cache of OVS, MultilayerTuple sorts the tuples according to
the sum of prefix lengths as described in Section IV.

C. Evaluation Metrics:

We mainly use three metrics to measure the performance of
each algorithm: the lookup speed, the update speed, and the
memory cost. For each rule set, the packet set contains 100K
packets to perform the lookup operation and get the average

1https://github.com/drjdaly/tuplemerge
2https://github.com/sorrachai/PartitonSort
3https://github.com/zcy-ict/MultilayerTuple

lookup throughput in 100 rounds for this packet set. The
update operation includes the insertion and deletion, and we
use 25% rules in each rule set to perform the insert and delete
operations. The memory cost is the memory space required by
each algorithm to build its data structure.

D. The Performance of Methods
We compare the performance of MultilayerTuple with the

methods that support incremental updates, including TSS, Tu-
pleMerge, and PartitionSort. First, the rule with ranges is split
into multiple rules with prefixes, and we observe the expansion
ratios of 10K rules for different types. Then we calculate the
access numbers of tuples and rules for each method. Finally,
we compare the lookup speeds, update speeds, and memory
costs among these methods.

The number of rules: Considering that OVS only processes
the rules with prefixes, we first split the rule with ranges
into multiple rules with prefixes. As shown in Fig. 5(a), the
expansion ratios of twelve 10K rule sets are different. Each
rule in IPC2 can be expressed by prefixes, thus the number
of rules in IPC2 does not change. However, a lot of rules in
FW4 have ranges in source port or destination port. The 10K
rule set of FW4 can expand to 61K. On average, the 10K rule
set will expand to 22K.

The average access number of tuples: The average access
numbers of tuples for different methods and rule sets are
shown in Fig. 5(b). The lookup process of TSS requires
traversing a large number of tuples, thus the tuple access
number for TSS is much larger than other methods. Tuple-
Merge only creates tuples according to the prefix lengths of
source and destination IP addresses, and accurate source and
destination ports, it ignores to deal with ranges. PartitionSort
uses the complex tree structure to store sortable rules with
specific fields. Even though TupleMerge and PartitionSort have
fewer tuple access numbers, both two methods are unlikely to
be implemented in OVS. With generality and scalability for
multiple fields with different lengths, the tuple access number
for MultilayerTuple is only 9% that of TSS, which greatly
improves the lookup speed.

The average access number of rules: As shown in
Fig. 5(c), the average access number of rules for Multilayer-
Tuple is 1.6x, 0.5x, and 0.04x that of TSS, TupleMerge, and
PartititonSort. TSS creates tuples according to the combina-
tions of all prefix lengths. At the cost of more tuple accesses,



(a) The lookup throughput in 10K rule sets. (b) The lookup throughput in different sizes of
rule sets.

(c) The update throughput.

Fig. 6. The performance of methods.

the rule access number for TSS is smaller than other methods.
On the contrary, to reduce the tuple accesses, TupleMerge
and PartitionSort have more rule accesses. TupleMerge has
too many rules with the same reduced prefix, the long rule
chains increase its average rule access number. PartitionSort
performs the binary search in each tree structure with more
rule accesses. Compared to TupleMerge and PartitionSort,
MultilayerTuple has fewer rule accesses. If a rule chain in
MultilayerTuple is too long, MultilayerTuple will create the
next layer to replace it.

The lookup throughput: We compare the lookup through-
put among TSS, TupleMerge, PartitionSort, and MultilayerTu-
ple. The sizes of rule sets are 10K in Fig. 6(a), and sizes vary
in 10K, 50K, and 100K in Fig. 6(b). TSS has a large number
of tuple accesses, thus the lookup speed of TSS is the slowest.
TupleMerge and PartitionSort have fewer tuple accesses at the
cost of more rule accesses. Both two methods can perform
higher lookup speeds than TSS, especially for FW2 and IPC2.
However, the lookup speed of MultilayerTuple is higher than
TupleMerge and PartionSort in most rule sets. Compared to
TSS, TupleMerge, and PartitionSort, MultilayerTuple achieves
21.8x, 2.1x, and 2.2x lookup speed. Furthermore, the lookup
speed of MultilayerTuple is more stable in different rule types
and sizes.

The update throughput: The update throughput is shown
in Fig. 6(c). For the update process of a rule, TSS can quickly
find the corresponding tuple according to the combination
of prefix lengths, then updates in the hash table. However,
TSS maintains a large number of tuples with their priorities
ordered from high to low, which slows down its update speed.
TupleMerge and PartitionSort traverse tuples to find the first
tuple in which the rule can be inserted, thus their update
speeds are much slower than TSS. MultilayerTuple can not
only quickly find the corresponding tuple like TSS but also has
fewer tuples to maintain their order in each layer. Therefore,
the update speed of MultilayerTuple is 2.3x, 12.3x, and 8.5x
that of TSS, TupleMerge, and PartitionSort.

The memory cost: The memory cost is shown in Fig. 7.
PartitionSort implements the complex tree structure to store
sortable rules, thus its memory cost is much higher than other
methods. MultilayerTuple can achieve the small linear memory
cost as TSS and TupleMerge.

Fig. 7. The memory cost of methods.

E. The Performance in OVS

OpenFlow table: As shown in Fig. 8(a), we have im-
plemented MultilayerTuple in the OpenFlow table of OVS.
Because the system code is more complex, the performance of
TSS is much slower than Fig. 6(a). Compared to PartitionSort
and TupleMerge, only MultilayerTuple has the generality and
scalability to replace TSS in OpenFlow table. By implement-
ing MultilayerTuple, the lookup speed in OpenFlow table is
16.0x higher than before.

MegaFlow cache: As shown in Fig. 8(b), we have imple-
mented MultilayerTuple in the MegaFlow cache of OVS as
described in Section IV. Because the rules in MegaFlow cache
are non-intersect, we generate them according to the packet
sets. The TSS in MegaFlow cache still has too many tuples
that influence its lookup speed. MultilayerTuple constructs
multilayer data structure to reduce the number of tuples, and
the packet only requires searching in the first matching group
in each layer. Therefore, the lookup speed of MultilayerTuple
in MegaFlow cache is 10.2x that of TSS.

MegaFlow cache in TSE attack: As described in Section
IV, the MegaFlow cache in OVS can be easily attacked by a
few rules and packets, and generates a large number of tuples
with different combinations of prefix lengths. Fig. 8(c) shows
the lookup speed of MegaFlow cache with different numbers
of rules. When TSE attack generates 1-50K rules, the lookup
speed of TSS is only 0.096-0.002 Mlps, which influences the
performance of OVS seriously. However, by implementing
MultilayerTuple, MegaFlow cache still has 0.76-0.32 Mlps
lookup speed, which is 8-190x higher than TSS. Therefore,
MultilayerTuple can defend against TSE attack effectively.



(a) The lookup throughput of OpenFlow table. (b) The lookup throughput of MegaFlow cache. (c) The lookup throughput of MegaFlow cache in
TSE attack.

Fig. 8. The performance of OpenFlow table and MegaFlow cache in OVS.

VI. CONCLUSION

We mainly propose a general, scalable, and high-
performance algorithm MultilayerTuple for packet classifica-
tion problem. MultilayerTuple can handle rules with multiple
fields and different prefix lengths. To reduce the number of
tuples, MultilayerTuple splits the prefix lengths into three
ranges for each field. If there is a long rule chain with the
same reduced prefix, MultilayerTuple creates the next layer
to replace it recursively and further splits the prefix lengths
into two ranges. The experimental results demonstrate that
compared to TSS, TupleMerge, and PartitionSort, Multilayer-
Tuple achieves 21.8x, 2.1x, 2.2x classification speed and 2.3x,
12.3x, 8.5x update speed. Furthermore, we have implemented
MultilayerTuple in the OpenFlow table and MegaFlow cache
of OVS, and MultilayerTuple achieves 16.0x and 10.2x lookup
speed respectively. Especially when TSE attack happens, Mul-
tilayerTuple can effectively defend against it.

VII. ACKNOWLEDGEMENT

This work is supported in part by National Key R&D Pro-
gram of China (Grant No. 2019YFB1802800), and the NSFC
with Grant NO. 61725206. Corresponding author: Gaogang
Xie.

REFERENCES

[1] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about
sdn flow tables,” in International Conference on Passive and Active
Network Measurement. Springer, 2015, pp. 347–359.

[2] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), 2015, pp.
117–130.

[3] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” in ACM SIGCOMM Computer Communication Review,
vol. 29, no. 4. ACM, 1999, pp. 135–146.

[4] P. He, G. Xie, K. Salamatian, and L. Mathy, “Meta-algorithms for
software-based packet classification,” in 2014 IEEE 22nd International
Conference on Network Protocols. IEEE, 2014, pp. 308–319.

[5] J. Daly and E. Torng, “Bytecuts: Fast packet classification by interior
bit extraction,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 2654–2662.

[6] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation, ser. SIGCOMM, 2019, pp. 256–269.

[7] J. Daly and E. Torng, “Tuplemerge: Building online packet classifiers
by omitting bits,” in 2017 26th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2017, pp. 1–10.

[8] J. Daly, V. Bruschi, L. Linguaglossa, S. Pontarelli, D. Rossi, J. Tollet,
E. Torng, and A. Yourtchenko, “Tuplemerge: Fast software packet
processing for online packet classification,” IEEE/ACM Transactions on
Networking, vol. 27, no. 4, pp. 1417–1431, 2019.

[9] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng, “A
sorted partitioning approach to high-speed and fast-update openflow
classification,” in 2016 IEEE 24th International Conference on Network
Protocols (ICNP). IEEE, 2016, pp. 1–10.

[10] L. Csikor, D. M. Divakaran, M. S. Kang, A. Kőrösi, B. Sonkoly, D. Haja,
D. P. Pezaros, S. Schmid, and G. Rétvári, “Tuple space explosion: a
denial-of-service attack against a software packet classifier,” in Pro-
ceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies, ser. CoNEXT, 2019, pp. 292–304.

[11] D. Pao, Y. K. Li, and P. Zhou, “Efficient packet classification using
tcams,” Computer Networks, vol. 50, no. 18, pp. 3523–3535, 2006.

[12] A. Bremler-Barr and D. Hendler, “Space-efficient tcam-based classifi-
cation using gray coding,” IEEE Transactions on Computers, vol. 61,
no. 1, pp. 18–30, 2010.

[13] A. X. Liu, C. R. Meiners, and E. Torng, “Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams,” IEEE/ACM
Transactions on Networking (TON), vol. 18, no. 2, pp. 490–500, 2010.

[14] H. Che, Z. Wang, K. Zheng, and B. Liu, “Dres: Dynamic range encoding
scheme for tcam coprocessors,” IEEE Transactions on Computers,
vol. 57, no. 7, pp. 902–915, 2008.

[15] Y.-K. Chang and H.-C. Chen, “Fast packet classification using recur-
sive endpoint-cutting and bucket compression on fpga,” The Computer
Journal, vol. 62, no. 2, pp. 198–214, 2018.

[16] Y.-K. Chiu, S.-J. Ruan, C.-A. Shen, and C.-C. Hung, “The design and
implementation of a latency-aware packet classification for openflow
protocol based on fpga,” in Proceedings of the 2018 VII International
Conference on Network, Communication and Computing. ACM, 2018,
pp. 64–69.

[17] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A gpu-
accelerated software router,” Sigcomm Comput.commun.rev, vol. 41,
no. 4, pp. 195–206, 2011.

[18] K. Kang and Y. S. Deng, “Scalable packet classification via gpu
metaprogramming,” pp. 1–4, 2011.

[19] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman, “Multilayer packet
classification with graphics processing units,” IEEE/ACM Transactions
on Networking (TON), vol. 24, no. 5, pp. 2728–2741, 2016.

[20] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Hot Interconnects VII, vol. 40, 1999.

[21] V. George and J. WANG, “Packet classification using multidimensional
cuts,” in Proceedings of SIGCOMM, 2003.

[22] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li, “Packet classification
algorithms: From theory to practice,” in IEEE INFOCOM 2009. IEEE,
2009, pp. 648–656.

[23] B. Vamanan, G. Voskuilen, and T. Vijaykumar, “Efficuts: optimizing
packet classification for memory and throughput,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 207–218, 2011.

[24] Z. Liu, X. Wang, B. Yang, and J. Li, “Bitcuts: Towards fast packet clas-
sification for order-independent rules,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 339–340.

[25] W. Li, X. Li, H. Li, and G. Xie, “Cutsplit: A decision-tree combining
cutting and splitting for scalable packet classification,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 2645–2653.


