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Abstract—The Tor network is widely recognized as an impor-
tant tool to preserve online privacy. In addition to anonymous
Internet access, it allows hosting anonymous services, i. e., Onion
Services. However, connecting to an Onion Service is realized
in a way that makes them vulnerable to Denial-of-Service
attacks (DoS). In this work, we propose Onion Pass, an extension
of the Tor protocol that utilizes anonymous cryptographic tokens
to mitigate the issue. Clients can solve a challenge to acquire
tokens that later can be presented to the Onion Service. The
Onion Service can thus differentiate between valid and malicious
requests when under attack. Please note that Onion pass is
agnostic on the specific challenge-response scheme and follows
a design philosophy that puts Onion Services in control of the
Onion Pass protocol. We implemented a prototype of Onion Pass
and present experimental results that indicate its potential to
prevent DoS attacks on Onion Services by reducing their CPU
usage required to identify malicious requests by a factor of 47.

Index Terms—Internet security, Tor network, Denial of Service

I. INTRODUCTION

Undoubtedly, the Tor network [1] constitutes one of the
most important tools for today’s Internet users to protect
their online privacy. For sensitive applications, Tor’s Onion
Service protocol allows users to host services anonymously.
Specifically, it provides sender-receiver anonymity by concate-
nating two circuits that achieve sender and receiver anonymity,
respectively.

The current design of Onion Services in Tor, however, is
prone to denial-of-service attacks (DoS). It is easy to force an
Onion Service to spend considerable amounts of computing
and networking resources with only little resources required
for the attacker. This attack vector has been known for several
years [2], but remains an open challenge as of today.

In this paper, we present a solution to the DoS vulnerability
of Tor Onion Services. Our proposed protocol, Onion Pass,
allows clients to prove their legitimacy using cryptographic
tokens. This way, Onion Services can prioritize provably valid
over unverified users and thus ensure availability even when
flooded with bogus requests. While the core idea to use tokens
for DoS protection in Tor is not new [3], Onion Pass takes
the deliberate architectural decision to have Onion Services
issue access tokens for their service themselves, instead of
introducing a central token-issuing authority. This does not

only give the Onion Service maximum flexibility for choosing
the desired level of protection and means of authentication, but
also allows building upon established cryptographic solutions.
To this end, Onion Pass leverages Privacy Pass [4] as its
cryptographic basis.

We show that our approach is actually feasible and deploy-
able by extending the Onion Service protocol in a backwards-
compatible manner. In particular, we implement Onion Pass
as a prototype and show in real-world experiments on the Tor
network that it can help prevent DoS attacks on Onion Services
by reducing the CPU usage required to identify malicious
requests by a factor of 47.

The contributions of this paper are the following:
• We present the design of Onion Pass, an extension to the

Tor network for effective DoS mitigation against Onion
Services.

• By providing a prototypical implementation, we demon-
strate the feasibility of building and deploying Onion Pass
on the Tor network.

• We analyze Onion Pass’s effectiveness against DoS at-
tacks by conducting real-world measurements that indi-
cate its improved DoS resilience.

In the following, we provide a problem statement with
necessary background information in Section II. In Section III,
we present the technical details of our Onion Pass protocol. In
Section IV, we introduce our prototypical implementation and
summarize the results of our evaluation. Before concluding
this work, we put our contributions into perspective of related
work in Section V.

II. PROBLEM STATEMENT

In this section, we define the scope of our work and provide
a problem statement. To this end, we first introduce the
underlying attack vector’s background.

A. The Tor Network

The Tor network [1] is an anonymity system based on the
principle of onion routing [5]. It is comprised of thousands of
servers operated by volunteers and organizations. Anonymity
is achieved by relaying users’ streams of communication over
multiple intermediate nodes. Clients construct such circuits
by choosing three random relays from the Tor network. By
applying a telescope-like cryptographic scheme of multipleISBN 978-3-903176-39-3 © 2021 IFIP
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Fig. 1. The Onion Service protocol in normal operation and during a DoS attack against an Onion Service (IP = Introduction Point, RP = Rendezvouz Point).

layers of encryption, it is ensured that each relay within a
circuit only knows its immediate predecessor and successor.
This way, no single entity can observe both the source and
the target of any stream of communication. At a lower level,
communication over circuits is realized by splitting data into
packets of constant size, called cells. The normal use case for
Tor is to access servers on the “clear” Internet anonymously.
To enable this, some relays opt-in to behave as so-called exits.
When doing so, they are used as the last relay of a circuit and
connect to the desired remote server outside the Tor network.
Consequently, the server cannot see the original client, but
only the exit relay. Therefore, this behavior creates sender
anonymity for the client.

B. Onion Services

Apart from sender anonymity, the Tor network also offers
sender-receiver anonymity through its mechanism of Onion
Services (formerly known as Hidden Services). In particular,
Onion Services allow Tor users to host services anonymously,
where traffic resides entirely within the Tor network. In order
to achieve anonymity for both the client and the server, each
of them constructs a circuit that are concatenated. As depicted
in Figure 1a, concatenating circuits requires two designated
nodes in the network: The Rendezvous Point is the Tor relay
at which the two circuits eventually meet and which is used
to exchange payload data. Together, they are also known as
rendezvous circuit.

As a first step, the client constructs a circuit, where the last
relay serves as the Rendezvous Point. In addition, the client
needs a way to communicate the Rendezvous Point’s address
to the Onion Service. To this end, designated Introduction
Points exist. Similarly to the Rendezvous Point, they serve
the purpose of enabling the client and the Onion Service
to communicate with each other. However, the Introduction
Points are chosen by the Onion Service instead of the client.
The Onion Service maintains a permanent circuit to the In-
troduction Points, independent of specific client requests. The
Introduction Point that has to be used to connect to an Onion
Service is published together with its cryptographic keys as
part of the Onion Service’s descriptor. These descriptors are
published in a network-wide distributed hash table, called
HSDir [6]. After connecting to the Rendezvous Point (Step 1

in Figure 1a), the client signals to the Introduction Point its
intent to connect to the Onion Service using an INTRODUCE1
cell (Step 2a). This intention is then forwarded to the Onion
Service as an INTRODUCE2 cell (Step 2b). These cells include
details on the Rendezvous Point and an authentication key,
which is used by the Onion Service to connect (Step 3).

C. Problem Statement: DoS Attacks on Onion Services

The Onion Service protocol unfortunately gives room to at-
tackers for carrying out denial-of-service attacks (DoS) against
Onion Services. Such attacks exploit the fact that establishing
a connection requires a considerable amount of resources from
the Onion Service. This resource consumption can be triggered
by clients with relatively little effort, resulting in asynchronous
resource requirements.

In particular, on the reception of an INTRODUCE2 cell
(Step 1b in Figure 1b), the Onion Service has to carry out
two steps: First, it has to build a circuit to the specified
Rendezvous Point (Step 2). This requires a certain amount of
networking and computational resources. Additionally, how-
ever, the INTRODUCE2 cell contains the first half of a
cryptographic handshake between the client and the Onion
Service. Therefore, the Onion Service has to carry out com-
putationally expensive asymmetric cryptography to complete
the handshake.

The asynchrony between the client and the Onion Service
now stems from the fact that the client can easily shortcut
the effort the Onion Service has to take. To this end, there
are a number of ways to minimize the adversary’s effort and
maximize impact. In the INTRODUCE1 cell, the adversary can
specify any relay as a Rendezvous Point, without previously
connecting to it. Also, its half of the cryptographic handshake
can contain bogus information. The attacker could even con-
sider building a shorter-than-normal circuit to the Introduction
Point, i. e., connect directly (Step 1a), to further reduce its
resource requirements. All of these points allow a malicious
client to trigger amplified resource consumption at the Onion
Service, which will eventually result in the Onion Service
being unavailable due to resource exhaustion if the attacker
initiates enough circuits.

It is noteworthy that the anonymity properties of Tor circuits
protect the attacker as well. That is, the Onion Service has no



way of differentiating the attacker from valid clients.
In essence, this attack currently makes Onion Services

vulnerable to relatively weak adversaries. Due to the under-
lying resource amplification, attackers require only limited
resources. At the same time, they behave very similarly to reg-
ular users and launch the attack only by initiating connections
to the Onion Service. Unlike other attacks, the adversary’s
goal consists in making a specific Onion Service unavailable
instead of attacking the network as a whole. With our work,
we aim to reduce the effectiveness of such attacks at least for
a certain set of clients.

III. ONION PASS

In the following, we present Onion Pass, our system for
protecting Tor Onion Services. It is based on cryptographic
tokens that are issued by the Onion Service to clients for
proving their legitimacy when accessing the Onion Service
in the future.

A. Design Decisions

Any DoS protection scheme for Onion Services can only
be effective if it avoids or at least reduces the resource
amplification that currently allows clients to attack Onion
Services with relatively little effort. In the following, we briefly
review design options to derive our approach.

First of all, we considered a Proof of Rendezvous. In such
a scheme, a client would obtain a proof from the Rendezvous
Point that it has indeed established a circuit. When connecting
to the Onion Service, this proof would then be included
into the INTRODUCE1 and INTRODUCE2 cells such that the
Onion Service can verify that the contained Rendezvous infor-
mation is valid and has required the client to spend the same
amount of resources as the Onion Service. However, we see
a number of issues: Firstly, the attacker could have connected
to the Rendezvous Point using a shorter-than-usual circuit in
order to save resources. Even more significantly though, the
Rendezvous Point—which is chosen by the client—may also
be malicious, operated by the same attacker.

Instead, we pursue the idea of the client proving that she is
a legitimate user by presenting a cryptographic token. Again,
different approaches are conceivable: Firstly, a network-wide
authority could issue such tokens. Any such solution would
imply that the tokens are issued by one entity (a network-
wide authority), but verified by another one (e. g., the Onion
Service). For this, however, a suitable cryptographic solution
is not yet available [3]. Moreover, this would likely require
asymmetric cryptography for token verification. The usage
of asymmetric cryptography however would diminish the
protection level due to the larger computational cost on the
“hot path” of handling new circuits at the Onion Service.
Token verification must be as efficient as possible. Otherwise,
an attacker can still exhaust the Onion Service’s resources by
providing a large number of invalid tokens.

We therefore decided to have the Onion Service itself issue
and verify tokens. This design decision addresses the outlined
weaknesses. Additionally, it provides maximum flexibility for

Onion Services as we believe the requirements may vary
considerably, e. g., depending on the load they can handle. It
allows the Onion Service to decide on its own when a client
is legitimate, implying different types of proofs. For instance,
Onion Services may want clients to identify themselves as hu-
mans by solving a CAPTCHA or by registering a user account.
In other cases, a computational challenge-response puzzle, like
a proof of work, may be more appropriate (e. g., to still allow
a limited amount of automation). To accommodate these needs
and give the Onion Service maximum flexibility and control,
we decided that the Onion Service itself should be in charge
of issuing tokens instead of handing this responsibility to a
network-wide authority. One drawback of this approach is
that tokens can only be issued to clients who have previously
been able to successfully connect to the Onion Service. We
argue that, for many use cases that involve regular users, e. g.,
news and media outlets, this is still a clear improvement in
availability.

Note that all approaches also comprise common challenges,
e. g., determining the rate of token issuance and thresholds
for attack detection. Such challenges imply separate research
questions and are out of scope of this work.

B. System Overview

The core idea of Onion Pass consists of giving clients the
ability to prove their legitimacy, using a cryptographic token.
If the Onion Service is under attack and cannot accommodate
all clients anymore, it can decide to require such tokens to
be presented. Since these can be validated (and rejected)
much more efficiently than reacting to a normal INTRODUCE2
cell, the asymmetric resource usage between client and Onion
Service is reduced and the denial-of-service attack will fail to
exhaust the Onion Service’s resources.

As laid out before, the Onion Service issues and verifies
the tokens itself. In order to bootstrap the process—allowing
clients to connect to the Onion Service for obtaining tokens to
redeem during later connection attempts—the Onion Service
will typically only strictly require token if it is under attack
(e. g., when a predefined client connection rate is surpassed).

Figure 2 shows the schematic behavior of Onion Pass,
visualizing the data flows that happen during the different
protocol phases. In the setup phase, the necessary key material
is distributed. For issuing tokens to the client during the next
phase, the client first has to connect to the Onion Service and
prove its legitimacy by solving a challenge (typically on the
application layer). The challenge to be solved by the client is
not specified in the Onion Pass protocol and can be realized at
the Onion Service’s discretion. It is therefore up to the Onion
Service to decide when a client should be regarded as valid.
The client then requests the Onion Service to sign a blinded
token and verifies that it has been issued by the publicly known
key, using the previously published key material. The client
can then unblind the token and redeem it, sending it to the
Onion Service when it is under attack.

Implementing a token for this purpose appears to be a
nontrivial cryptographic task as a number of conditions have
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Fig. 2. Conceptual data flows in Onion Pass at the different protocol phases.
The challenge/response phase is not specified by Onion Pass and is up to the
Onion Service.

to be met for application in Tor. Fortunately, however, we
can build upon solid previous work that solves this task in a
different context: Privacy Pass [4] introduces the cryptographic
base for implementing the token in a way suitable for our use
case, because of the following properties:

Firstly, it does not impact on the anonymity of the clients. In
particular, after issuing the token to a user, these are unlinkable
to other tokens and identities. That is, it is neither possible to
determine whether the token was issued for a particular client,
nor to determine whether two tokens were issued for the same
client. Part of this is key auditability: Clients have a way to
ensure that their token was generated using the same key used
for any other client, such that the token is not watermarked.

Secondly, the token operations can be performed using rela-
tively little computational effort. In particular, Onion Services
are able to validate tokens with limited resource usage. If this
was not the case, there might not be a benefit compared to the
previous behavior that involved establishing a new circuit on
every request.

And thirdly, Onion Services can prevent tokens from being
used multiple times and enforce a maximum validity time.
Otherwise, an attacker could simply reuse tokens or accumu-
late them to launch an attack.

C. Privacy Pass

Privacy Pass was introduced in [4] as a cryptographic
scheme for allowing users to prove to web servers the posses-
sion of some previously issued token. The original use case
was to avoid unnecessary CAPTCHAs when servers could not
easily differentiate between users based on their IP address
(e. g., because they are using Tor). This is similar to our use
case because users first have to obtain an anonymous token
from the server and can later use that to prove their legitimacy,
without revealing their identity.

/* Setup Phase, at server */
setup() → private token signing key,

public DLEQ verification key

/* Token Issuance, at client */
prepare_blinded_token() → blob

/* Token Issuance, at server */
sign_tokens(blobs[]) → signed_blobs[],

dleq_proof

/* Token Issuance, at client */
verify_dleq(dleq_proof, signed_blobs[],

dleq_pubkey) → bool

/* Token Issuance, at client */
unblind_token(blob) → token

/* Token Redemption, at server */
verify(token) → bool

Fig. 3. Privacy Pass API with conceptually-named procedures derived for
this paper.

Privacy Pass can be regarded as a blind signature scheme
based on elliptic curve cryptography. In essence, clients ob-
tain tokens by having the server sign some blinded secret.
Afterwards, the client unblinds the signed message, so the
server will not be able to link issued tokens to those that are
presented for redemption. The unblinded message can then be
used by the client to prove to the server that a valid token was
previously obtained. Note that, unlike RSA blind signatures,
Privacy Pass does not use a key pair, but a single key.

A special feature of Privacy Pass is that it can also protect
against tagging attacks in which a malicious server would use
different keys for issuing tokens to different clients in order to
be able to later differentiate between them. To protect against
such attacks, Privacy Pass makes use of discrete logarithm
equivalents proofs (DLEQ) [7]. These require that all clients
share knowledge of a publicly known generator G of the
server’s private key which thus has to be published in advance.
When issuing tokens, the server can then use DLEQs to prove
to each client that the tokens were generated by the very same
key, without revealing the key itself. DLEQs thus constitute
non-interactive zero knowledge proofs about the key used to
issue the tokens.

For the purpose of this paper, we summarize Privacy Pass’s
behavior into an API that allows us to easily reference the
different protocol steps in the remainder of this paper. This
API is depicted and commented in Figure 3.

With these features, Privacy Pass is a prime candidate for
use in our scheme for DoS protection of Onion Services. In
order to attribute to its core cryptographic mechanism, our
system is called Onion Pass.

D. Onion Pass Details

Onion Pass denotes the integration of Privacy Pass into
the Tor protocol for protecting Onion Services from denial-



of-service attacks. The extensibility of the different parts of
the Tor protocol allows this embedding to be realized in a
backward-compatible manner. Onion Pass needs to implement
the following protocol steps:

• global distribution of cryptographic key material (public
key for the DLEQ proofs)

• token issuance (from the Onion Service to the client)
• token redemption (from the client to the Onion Service)
To tackle these challenges, the central approach is to extend

existing Tor cell types and add new ones, as well as extend
the Onion Service descriptor stored in the HSDir. Onion Pass
is activated and configured by defining a set of parameters in
the Tor config file (torrc).

a) Setup Phase/Key Distribution: In order to start us-
ing Onion Pass, an Onion Service executes Privacy Pass’s
setup() routine for generating the private signing key as
well as the public DLEQ verification key. It then starts includ-
ing the necessary information into its service descriptor. This
step serves several purposes: Firstly, by setting an appropriate
flag, the Onion Service signals to the client that it is using
Onion Pass at all. As a consequence, the client can decide to
include previously obtained tokens into the circuit construction
process to prove its legitimacy. If the client does not yet
have tokens, it can later request a number of tokens once a
regular circuit has been set up to the Onion Service. Secondly,
the Onion Service includes cryptographic information into its
service descriptor that enables the client to carry out the DLEQ
verification so the client can be certain that it has not been
issued tokens from a tagged key. During token issuance, the
Onion Service then includes a zero-knowledge proof indicating
that the issued tokens stem from the private key represented
by the public DLEQ verification key. Due to the fact that the
service descriptor is accessed anonymously by the clients and
cryptographically secured, this prevents Onion Services from
tagging tokens by using different keys. Apart from publishing
this information to the descriptor, during the setup phase, the
Onion Service locally initializes a persistent storage to keep
track of used tokens and avoid “double spending”.

b) Token Issuance: Obtaining tokens which can later be
redeemed requires the client to have a working circuit to the
Onion Service at some point. Once this is established, the
client can request tokens to be issued by the Onion Service.
For this purpose, Onion Pass adds a new Tor cell type called
RELAY_COMMAND_TOKEN1. We further refer to it simply as
TOKEN1, but the full name indicates that this is an end-to-end
command between the client and the Onion Service. Figure 4a
displays the structure of this cell.

The main component of TOKEN1 cells is a sequence of
blinded tokens to be signed. More specifically, these are
generated by the conceptual prepare_blinded_token()
function of Privacy Pass. The client can request the issuance
of many tokens at once. However, Tor cells have a fixed
size. The full sequence of tokens may be distributed across
multiple cells, which is indicated using the first_cell and
last_cell flags. Moreover, the first cell contains the total
number of tokens to sign.

first
cell

last
cell

pow
len proof of work batch

size
token
num

seq
num token

repeated per token

1 1 1 . . . 1 1 1 64

(a) RELAY_COMMAND_TOKEN1

first
cell

last
cell

DLEQ
pubkey

DLEQ
proof

batch
size

token
num

seq
num token

repeated per token

1 1 64 64 1 1 1 64

(b) RELAY_COMMAND_TOKEN2

Fig. 4. Structure of the new cell types introduced by Onion Pass. The gray
parts only appear in the first cell of each sequence.

When the full series of TOKEN1 cells was received by
the Onion Service, the Onion Service checks the client’s
legitimacy. This step assures that tokens are not issued to
automated bots, for example. Since requirements vary for each
Onion Service, we intentionally leave this step unspecified.
Onion Pass, however, offers two general approaches to prove a
client’s legitimacy: Firstly, the client can include the response
to a challenge in its TOKEN1 cells (the first TOKEN1 cell
contains a variable-size field for this purpose). This mechanism
may be used if the client’s legitimacy can be proven in an
automated way, for example. Likely, the more common way
is to check the client’s legitimacy on the application layer. For
instance, the client may be requested to solve a CAPTCHA
when using the Onion Service’s website. Likewise, the client
might be required to authenticate. In either way, the Onion
Service application server signals to the Tor daemon whether
the check was successful by issuing an appropriate command
via the Tor daemon’s control port.

Upon successful verification of the request, the Onion
Service then makes use of the sign_tokens() procedure,
providing it the previously received blinded tokens. This step
generates the signed tokens as well as the DLEQ proof for
the whole batch of tokens. Both pieces of information are
then returned to the client using RELAY_COMMAND_TOKEN2
cells, another novel type of cell shown in Figure 4b.

The reason why it is recommended to request and issue
complete batches of tokens instead of single tokens at a time
is that the computational effort for generating the DLEQ proof
is mostly independent of the number of tokens it encompasses.
Therefore, larger batch sizes can significantly reduce the
resource usage of issuing tokens for the Onion Service.

Once the client has received signed tokens as well as
the DLEQ proof via TOKEN2 cells, it first verifies that the
tokens were signed with the publicly auditable key known
from the Onion Service’s descriptor (instead of a custom,
tagged one). Therefore, the client uses the verify_dleq()
procedure. Afterwards, the client unblinds each issued token,
using unblind_token(), so the Onion Service cannot
match them to previously issued tokens. At this point, the
tokens are ready for future use.



c) Token Redemption: Previously issued tokens can later
be used to prove the client’s legitimacy when the Onion
Service is under a DoS attack. To this end, we make use of
the extensibility of Tor’s cell specification [8]. In particular,
we extend the INTRODUCE1 and INTRODUCE2 cells to op-
tionally carry a token to be redeemed. This is possible because
these cell types are already defined by the Tor specification to
allow optional extension headers.

The client includes an (unblinded) token in the
INTRODUCE1 cell, which is forwarded by the Introduction
Point to the Onion Service as part of an INTRODUCE2 cell.
Once this request to establish a rendezvous circuit arrives at
the Onion Service, the Onion Service can use this token to
decide on the legitimacy of the client. Using the verify()
procedure, the Onion Service can tell whether the unblinded
token stems from a blinded token the Onion Service had
issued before. If it is under attack (defined by a threshold
in the Tor config), it may choose to reject any requests that
either have an invalid token or lack a token at all. If the
Onion Service is not under attack, it will typically also allow
requests such requests in order to enable the clients to proof
their legitimacy and obtain tokens.

Due to the fact that verifying the token takes much less com-
putational and networking resources than establishing a circuit
to the (possibly faked) Rendezvous Point, this constitutes the
desired DoS protection. Once the token has been used, the
Onion Service adds it to its local storage of used tokens. This
way, it can reject tokens that are used more than once. In the
simplest case, this may be a hash set, but in order to retain a
constant size of the data structure over time, an appropriately-
dimensioned Bloom filter may also be used [4]. Note that, in
the case of Bloom filters, false positives may occur (tokens
are wrongly rejected). However, this will not put the Onion
Service to danger because it cannot happen that tokens are
wrongly accepted multiple times. If a token is not accepted,
the client can use another one.

d) Key Rotation: From time to time, the Onion Service
will need to rotate its keys. Otherwise, clients could, over
time, still accumulate large amounts of tokens for launching
a coordinated attack. The exact point in time to rotate keys
(both private and public DLEQ key) is not fixed and can
be triggered at the Onion Service’s discretion. The protocol
allows multiple keys to co-exist for a certain time to enable a
graceful transition, if desired by the Onion Service. For this,
clients include the public DLEQ key during redemption, so the
Onion Service decide which key to verify against. Eventually,
however, key rotation will invalidate previously issued tokens.
Keys should therefore not be rotated too often if infrequent
users of the Onion Service should also retain the ability to
access the Onion Service when it is under attack. The Onion
Service may decide to either define a fixed interval of time or
a number of issued tokens after which keys are rotated.

IV. EVALUATION

In this section, we present the results of our initial evaluation
of the effectiveness of Onion Pass as a DoS protection scheme

for Onion Services. In this regard, the effectiveness of Onion
Pass depends on two general factors: the security properties of
the underlying cryptographic scheme and the achieved CPU
load reduction for the Onion Service. We will investigate
those two aspects separately after giving some details on the
implementation of our prototype.

A. Implementation

We implemented the Onion Pass protocol in the original Tor
software, branching off version 0.4.1. The result is a prototype
usable for evaluation of the overall approach, in which non-
central system aspects like the actual user challenges and
key rotation have not been implemented yet. Onion Pass is
currently only implemented for the newer version 3 Onion
Services. In total, we authored 5,707 lines of code in 48 source
code files (another 3,582 lines of code were generated auto-
matically by Tor’s trunnel framework for cell parsing).

Since the publicly available implementation of Privacy Pass
is written in Go, our implementation includes our own version,
implemented in the C language. Since Tor’s cryptography
API was too limited for this, we based the cryptography on
openssl. In particular, we used the secp256v1 elliptic
curve with a bit length of 256 per curve point coordinate.
Moreover, we employed SHA-256 as the main hash function
from which we derived, e. g., the necessary message authen-
tication codes (MAC). For hashing random numbers to points
on the elliptic curve, we implemented the Simplified Shallue-
Woestijne-Ulas algorithm (Simplified SWU) [9] as proposed
in Privacy Pass. As token replay prevention, we used a simple
hash set for storing the used tokens.

All in all, the prototype allows us to further evaluate
Onion Pass’s performance and shows that it is feasible to be
implemented in the Tor code base. We make available the
implementation as an open source project1.

B. Security Properties

Due to its strong reliance on Privacy Pass many of Privacy
Pass’s security properties are directly inherited by Onion Pass
assuming that the underlying elliptic curves cryptography is
secure. In particular, Onion Pass provides strong misauthenti-
cation resistance, that is, the cryptographic implementation of
Privacy Pass ensures that only tokens issued by the Onion Ser-
vice will be regarded as valid. Moreover, limited replayability
is achieved in Onion Pass by remembering used tokens at the
Onion Service. Also, tokens cannot be accumulated arbitrarily
over an infinite amount of time. Instead, they have limited
validity, depending on the validity of the Onion Service’s token
signing key, which is rotated regularly.

Especially in the context of Tor, it is crucial not to harm
the clients’ anonymity. Again, Onion Pass ensures this by
relying on the security properties of Privacy Pass: Tokens
are unlinkable, also due to the key auditability of the system.
Clients use the DLEQ proofs sent with the issued tokens and
the public key from the service descriptor to verify that they

1https://github.com/cdoepmann/onion-pass



TABLE I
CPU TIME FOR RENDEZVOUS CIRCUIT CONSTRUCTION VS. TOKEN

VALIDATION TIME IN ONION PASS.

Operation Mean time [µs] Stddev [µs]

Rendezvous circuit construction 6,416 1,019
Token validation 134 5
Ratio 47.8 —

TABLE II
CPU TIME FOR CRYPTOGRAPHIC OPERATIONS.

Entity Operation Mean time [µs]
per batch per token

Client Token generation, blinding 3,123 104
Signature unblinding and DLEQ ver-
ification

4,156 139

Token redemption — 8

Onion Token signature (incl. DLEQ) 3,482 116
Service Token verification — 114

have not been tagged. In addition, the token blinding that
happens within Privacy Pass realizes backward anonymity:
Issued tokens cannot later be assigned to users because the
blinding factors used during issuance are ephemeral.

The effectiveness of Onion Pass for mitigating the de-
scribed denial-of-service vulnerability primarily depends on
the performance of validating tokens. If invalid tokens can
be identified as such with considerably less computational
effort than establishing a circuit to the Rendezvous Point, the
asymmetric resource requirements between the attacker and
the Onion Service are effectively avoided. We therefore focus
on evaluating the performance of token validation. However,
care has to be taken not to introduce a new denial-of-service
attack surface. We informally argue that this is indeed not
the case. The reason for this is that both, token validation
but also token issuance, are efficient operations. Moreover,
an attacker cannot easily stop the Onion Service from issuing
tokens to benign users when they have at least once connected
to the Onion Service, because there is no strict upper limit on
the number of issued tokens. Accumulating large amounts of
tokens on the other side can be prevented by the Onion Service
by making the application-layer challenge hard enough. For
the same reason, creating Sybils does not benefit the attacker.
We note again, the limitation of Onion Pass is that it only
succeeds in ensuring the availability of the Onion Service for
users who have previously accessed it, obtaining at least one
token. Then, however, clients can utilize this connection for
obtaining more tokens that ensure being able to access the
Onion Service continuously in the future.

Please note that our prototype implementation does not
constitute a production-ready software version. For this, a
more thorough security analysis should be conducted.

C. Performance

The performance of Onion Pass is a crucial factor determin-
ing its effectiveness as a DoS protection. Recall that denial-

of-service attacks against Onion Services work by making
the Onion Service spend large amounts of CPU power on
constructing circuits to Rendezvous Points only on the basis
of bogus client requests. Onion Pass allows Onion Services
to save this effort by validating client tokens beforehand.
Therefore, it can only be effective if validating tokens requires
clearly less work than constructing a circuit.

In order to validate this property, we used our prototype
implementation of Onion Pass. We set up both an Onion
Service and a client running our modified version on the
Tor network. The client repeatedly established circuits to
the Onion Service while we measured resource usage at the
server side. We chose this evaluation strategy due to several
reasons: Primarily, it allows us to investigate the performance
of Onion Pass as a real-world implementation in the original
Tor code base. This is important because benchmark results
are required for comparing against vanilla Tor. Therefore,
alternative popular evaluation approaches like event-discrete
simulations are not applicable. Evaluating the effectiveness of
denial-of-service protections is difficult, because the available
resources cannot easily be modeled or replicated. We therefore
chose to stick to the real Tor network as closely as possible.
Please note that conducting our measurements safely on the
Tor network is possible without putting users or the network
itself to danger. Since we use a dedicated Onion Service under
our control and we do not flood the network with connection
requests, our measurements do not impact Tor users or the
network.

While measuring CPU time for token validation is straight-
forward, determining the CPU effort for circuit construction
required to instrument many different parts of the Tor software
to avoid capturing delays that do not stem from computing, but
from networking or waiting. We therefore manually identified
the relevant pieces of code and added time measurement
procedures, yielding microsecond resolution. We repeated the
measurement 1,000 times. The experiments were carried out
on a desktop computer with an AMD Ryzen 3 1200 quad-
core processor and 16 GB of RAM. Table I shows the results.
We can see that token validation is indeed extremely fast.
In fact, it takes more than 47 times less CPU power than
constructing the Rendezvous circuit on average. As a conse-
quence, attackers that do not have a sufficient amount of tokens
(which the Onion Service can control during issuance) can
cause dramatically less damage to an Onion Service. Note that
the standard deviation of the Rendezvous circuit construction
time is relatively high because a large portion of that time is
spent during circuit selection, which is a random process that
also influences its runtime. The times presented in Table I also
include computational time needed for parsing/processing the
cells.

Apart from token redemption, we also verify that both,
server and client, can handle the additional effort for gen-
erating, issuing and redeeming tokens. For this, we focus on
the raw CPU time used for only the respective cryptographic
operations. Again, we took these measurements from 1,000
accesses to the Onion Service. Moreover, we defined a batch
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size of 30 tokens during issuance. The results are depicted
in Table II. We can see that the required CPU work does
not constitute an obstacle towards real-world adoption since
the required computational effort per token, as well as for
complete batches, is very small, at the order of little more
than 100 µs per token.

As outlined before, it is recommended to issue complete
batches of tokens instead of single tokens at a time because
this can reduce the overhead needed for the computation of the
DLEQ proofs. We quantified this relationship by measuring the
time needed to issue differently-sized batches of tokens and
calculated the per-token computation time. Figure 5 displays
the result. As can be seen, the per-token time for both,
generating the token signatures and DLEQ proofs, as well as
for verifying the DLEQ proofs is clearly reduced with batches
of more than one token. This is due to the fact that the DLEQ
computation and verification takes almost constant time, in-
dependently of the batch size. Consequently, it is desirable to
issue multiple tokens at once. However, the performance gain
when surpassing a batch size of approximately 50 is negligible.
From this point onwards, the time per token does not further
decrease and potential further benefits are masked by jitter.

V. RELATED WORK

Due to the general increase in DoS attacks on the public
Internet and against the Tor network in particular, previous
research has analyzed those attacks and presented various
potential mitigations for them.

In [2], Nick Mathewson from the Tor Project gives an
overview over different classes of DoS attacks against Tor and
discusses possible mitigations for them. In [10], Borisov et al.
analyze the impact that some DoS attacks can have on
anonymity networks, including the Tor network. The authors
find that DoS attacks are not only a threat to availability, but
may also help deanonymize Tor users. This attack vector was
used in [11] to force user to select attacker-controlled circuits.
The authors of [12] and [13] measure the effectiveness of DoS
attacks in Tor and propose two potential detection algorithms.
The feasibility of DoS attacks on Tor was illustrated in [14].
In contrast to previous papers, our work focuses on preventing
attacks that specifically target Onion Services—not clients that
use Tor to access the regular Internet anonymously.

Bocovich et al. [15] were the first to describe DoS attacks
that exploit the Onion Service design for resource amplifica-
tion. It was based on observations from the first large DoS
attack against the Tor network targeting Onion Services in
December 2017. In 2019, the weakness was addressed and
a mitigation was implemented in Tor [16]. It allows Onion
Services to have their Introduction Point enforce a rate limiting
for INTRODUCE1 cells. This way, the availability of the net-
work is protected by limiting rendezvous circuit constructions.
The general DoS vulnerability of Onion Services, however,
remains. Moreover, it does not protect the availability of the
Onion Service itself. In contrast, Onion Pass makes Onion
Services available even if under attack, focusing not only on
the network but on the service as well.

One approach to achieve this would be to require users to
spend a scarce resource, such as computational power. There-
fore, proof of work may be a conceivable option [17]. Previous
work has indeed considered to require solving cryptographic
puzzles for DoS protection in Tor [18]. The approach, however,
did not focus on Onion Services. While cryptographic proof of
work might be viable for certain non-interactive applications,
it comes with other issues such as adequately tuning the
difficulty for users with devices of differing computational
power. Consequently, Onion Pass also allows to integrate proof
of work schemes (and even reserves suitable fields in its
cell structures), but is generally agnostic about the kind of
challenge the Onion Service would like to implement.

Cryptographic tokens haven been proposed for Tor before,
e. g. as incentives for contributing resources [19]–[21]. How-
ever, they can also be used for DoS mitigation strategies,
such as Onion Pass, that can be regarded as authentication or
allow list schemes [22]. The fundamental idea is to give some
clients precedence over others that may constitute attackers,
making resource exhaustion more difficult. This direction has
also been investigated before: Faust by Lofgren and Hop-
per [23] is an anonymous whitelisting scheme without the
need for a trusted third party. It relies on client signatures
and unlinkable serial transactions [24]. However, it requires a
long-term user identity and is not tailored to Tor and Onion
Services in particular. Onion Pass instead relies on Privacy
Pass [4]. Privacy Pass satisfies the requirements for anonymous
whitelisting and does not require a long-term user identity. It
was intended to be applied in a different use case (reducing
CAPTCHA requests for users accessing websites over heavily
shared Internet access, such as Tor). Our work presenting
Onion Pass, however, shows that it can serve as a building
block for protecting Onion Services from DoS attacks as well.

VI. CONCLUSION

In this work, we presented Onion Pass, a protocol extension
for the Tor network protecting Onion Services from DoS
attacks. Onion Pass works by giving precedence to clients
who can prove their legitimacy using previously obtained
cryptographic tokens. Our prototypical implementation shows
that Onion Pass can clearly increase the robustness of Onion
Services against resource exhaustion attacks.
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