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Abstract—In this paper we study design principles of conges-
tion control supporting low-latency applications. In this regard,
we show the attractiveness of a bounded-delay model satisfying
latency constraints instead of optimizing them. Under this model,
we propose two transformations automatically generating policies
with finite buffers from policies with infinite buffers while keeping
performance guarantees. These transformations allow us to
reconsider design principles of congestion control, in particular,
avoiding delivery of unnecessary traffic. We study the impact of
different policy properties on required buffer sizing and at the
extreme case define potential ways to build reliable transports
without retransmissions. In addition, we build a taxonomy of
management policies for various types of extra knowledge and
propose another transformation kind constructing policies that
optimize weighted goodput from policies optimizing throughput
while keeping performance guarantees. Our analytic results are
supported by extensive evaluations demonstrating attractiveness
of the proposed design principles.

I. INTRODUCTION AND MOTIVATION

Recent years have seen a bunch of papers proposing conges-
tion controls for datacenter transports supporting low-latency
applications [1], [2], [3], [4], [5]. Very quickly it has become
clear that to satisfy aggressive low-latency constraints, design
principles of congestion controls should be reconsidered. In
this regard, there are several fundamental questions to be
raised. What is a service model that should be implemented?
Currently, in the case of TCP, all packets, even those that do
not satisfy latency requirements, are still reliably transmitted.
Most likely these packets will be useless once delivered to
low-latency applications.

The second interesting question is related to buffer sizing
and its management. The previous common perception was
that while bigger buffers can absorb longer and more intensive
bursts (in the case of reliable service models also reducing
retransmissions), they are not appropriate for low-latency
applications. This observation is mostly valid for FIFO-based
buffer management inside switches, but not for advanced
processing orders transmitting “more desirable” traffic first.
In the latter case, infinite buffers can play their role and
avoid retransmissions of packets dropped due to congestion
while still implementing low-latency requirements. Even with
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infinite buffers, what are the right processing orders that should
be deployed (e.g., shortest remaining processing time, some
kind of deadlines, virtual values, etc.)? Clearly, infinite buffers
are infeasible in practice but what are those factors allowing to
achieve comparable performance with finite buffers? Can these
finite buffer sizes be implemented in practice? Requiring ultra
low latency under 1 µs raises additional feasibility questions:
should reliability be implemented through retransmissions?
Instead of proposing new transports and comparing their
performance on typical workloads, we consider the questions
raised above and propose general design principles for con-
gestion control mechanisms with analytic guarantees.

Our contribution: (1) In Sections II and III, we carefully
show suitability of a bounded delay model [6], where every
packet p is prepended with a packet value and a maximal offset
in time (slack), by the end of which, p should be delivered to
the application. Thus, instead of optimizing latency, we pro-
pose to satisfy latency constraints. This avoids retransmission
of unnecessary packets with “expired” slacks and saves extra
bandwidth for “preferable” traffic. Advanced processing orders
starve less preferable packets inside switch buffers, and these
packets naturally die due to expired slacks, thus preventing less
preferable traffic from advancing towards congested hotspots.
As a result, we claim that congestion control mechanisms
should be implemented under mechanisms supporting reliable
communication. (2) As a by-product, packet slacks implicitly
restrict buffer sizes. In Section IV, we analytically study
this dependency and introduce transformations allowing to
automatically convert online buffer management policies with
infinite buffers to online buffer management policies with finite
buffers by keeping exactly the same performance guarantees.
In addition, we show which properties of processing orders can
significantly reduce buffer sizes. The proposed transformations
in Section IV show potential ways to achieve reliable commu-
nication on the transport layer without retransmissions. (3) In
Section V, we build a taxonomy of management policies ex-
ploiting additional levels of extra knowledge related to retrans-
mission behaviors and compare their impact on overall per-
formance. It can help researchers better understand tradeoffs
of different congestion control implementations: “coupled” vs.
“decoupled”, centralized with global view vs. fully distributed
local. (4) In Section VI, we discuss additional universal
transformations for the bounded-delay model automatically
constructing an online policy optimizing weighted goodput
from a given online policy optimizing weighted throughput
preserving performance guarantees. Again our major goal is
not to find a “winning” transport but to show attractiveness of
the proposed design principles.ISBN 978-3-903176-39-3© 2021 IFIP



II. RELIABILITY AND DELAY-SENSITIVE APPLICATIONS

As network resources are limited, there will always be some
level of congestion, so there will be data that is not delivered
on time. Thus, for better utilization of resources, the network
should only be concerned with data that is not yet overdue.
This has already been indirectly captured by applying to delay-
sensitive applications a different (from non-delay-sensitive) set
of metrics, e.g., tail flow completion time (see Homa [5]) and
application-level throughput (see D2TCP [7] and D3 [8]).

A. Adapting existing service models

Traditional reliability-first network service models are not
well-suited for this goal. To guarantee reliable delivery, they
suggest to keep trying to deliver data, no matter how late that
data is and whether the application still wants its delivery.
If we adapt the traditional service model to delay-sensitive
applications by guaranteeing reliability only as long as de-
lay requirements are satisfied, we potentially save network
resources on several levels: state at end hosts, link bandwidth
in the network, and buffer space at network devices. In
what follows, we discuss how the network may understand
that delay requirements are no longer being satisfied—a key
precursor to implementing the adapted service model.

B. Knowing when data becomes irrelevant

Applications are the entities that have true understanding of
when a particular piece of data becomes irrelevant, such under-
standing must then reach the network. While there are several
options, applications may supply at connection establishment
an explicit slack—the time frame by the end of which data has
to be delivered. Though this requires applications to preform
slack estimation, but it allows for a longer decision window,
improving optimization opportunities on the network side.
Moreover, for low latency applications with less than half-RTT
delay requirements, explicit per-packet slack is the only way
for the information to reach in-network devices on time. For
these reasons, our focus, thereafter would be on in-network,
packet-level slacks, studied earlier by Kesselman et al. [6].

The slack estimation needed for the chosen approach can
already be derived for many delay-sensitive applications from
a bound on overall system response time and desired pro-
cessing time [9], which are derived, respectively, from user
studies and the complexity (content) of the request. In addition,
infrastructure can infer delay requirements in some cases [10].
In subsequent sections we address the design implications of
using the bounded-delay model, and, in particular, its relation
to end host control logic and buffer management.

III. DESIGN IMPLICATIONS OF BOUNDED DELAY MODEL

When application delay requirements are available to the
network as a slack, data transmissions must be scheduled
properly to optimize the desired objective. There are two
components that come into play when we analyze scheduling:
control logic at end-hosts and buffer management policies.

A. Congestion control at end hosts

A part of end-host control logic that is notoriously hard to
get right is the congestion control. Congestion control deci-
sions must be made under incomplete and delayed information,
which, in relation to delay-sensitive applications, appears to be
even more challenging due to very limited reaction window.

Before accepting the challenge, let us make clear, why
congestion control was needed in the first place. Without
congestion control, reliability requirements would force the
network to keep retransmitting data, which anyway would
not be able to make it due to downstream congestion. Re-
transmissions are required to maintain reliability under the
following events: buffer overflows due to congestion and
packet corruptions. The latter are exceptionally rare in modern
data centers, so we ignore them in this work by assuming
either that we can tolerate a tiny fraction of packets missing
their deadlines due to corruption or that receivers explicitly
request retransmission of corrupted packets (e.g., as in [5]).
Buffer overflows we can “easily” avoid by placing “infinite”
buffers at sufficiently flexible switches. In order to explain the
details rigorously we introduce a formal model.

B. Introduction to the bounded delay model

Our model follows the bounded delay model of [6]. In
particular, we assume that every packet arriving at a switch
has an intrinsic value v(p) and a slack sl(p); the objective is
to maximizes the total value of packets transmitted on time:

WSWTPUT =
∑

i
v(pi) · [deli(pi) ≤ sl(pi)], (1)

where pi is the ith packet transmitted by the switch, and
deli(p) is the time between ith transmission event and p’s first
arrival; sl(p) is also defined with respect to p’s first arrival.

The buffering model is a single queue that holds at most
B packets. The queue is managed by a buffer management
algorithm ALG. Time is slotted, and we split every time slot into
two phases: 1) arrival: a set of packets arrives, and ALG must
ensure that at most B packets remain in the queue; 2) trans-
mission: ALG transmits one packet from the queue. We assume
sl(p) and del(p) to be in time slots, and that queue drops p
automatically at the end of the timeslot where del(p) = sl(p).
For a given sequence of arrivals σ, an algorithm ALG, and an
objective function ω, we denote by ω(ALG, σ) the value of ω
earned by ALG’s when run on the sequence σ. We would be
mostly interested in ω = WSWTPUT.

C. Choosing processing orders for infinite buffers

At a first glance, infinite buffers seem to contradict our
main motivation—support for delay-sensitive applications. If
packets follow the FIFO processing order, then bigger buffers,
indeed, lead to higher queuing delays and, as a result, are
not appropriate for low latency applications. In contrast, non-
FIFO advanced processing orders (e.g., priority based as in
pFabric [2]) allow to transmit “more critical” packets while
absorbing longer and more intensive bursts with bigger buffers.

The FIFO constraint actually makes algorithms provably
weaker w.r.t. WSWTPUT. Let us say that an algorithm A



α-dominates an algorithm A′ if for each input, A performs
no worse than A′, and there is at least one input where A
performs α times better w.r.t. a given objective. An algorithm
A is equivalent to A′ if A 1-dominates A′ and vice versa.
To keep track of the buffer size, we denote by A[B] an
algorithm operating on a buffer of size B and by A[∞]—an
algorithm with an infinite buffer. The following fact quantifies
the potential gain for non-FIFO processing orders.

Theorem 1. For WSWTPUT objective and B ≥ 2, OPT [B]
1.5-dominates OPTFIFO[B], where OPTFIFO[B] is the optimal
offline FIFO algorithm, and OPT[B] is the optimal offline
algorithm with no restrictions.

Proof: On the first time slot two packets arrive: p and q,
s.t. v(p) = v(q) = 1, sl(p) = 2 and sl(q) = 1. On the second
time slot only packet r arrives, s.t. v(r) = 1 and sl(r) = 0.
FIFO algorithm cannot process all three packets because if it
processes r, then it cannot process either p or q. Thus it can
earn at most 2, while the priority algorithm can earn 3.

D. The infinite-buffers assumption

Assuming that buffers are infinite does not automatically
make all the logic at end hosts redundant. First, we already
discussed corruption-induced retransmissions, they still re-
main. Second, end hosts can maintain per-flow state useful for
scheduling purposes, which is too expensive to keep on each
and every switch. Nonetheless, by combining two observations
1) the network has infinite memory for storing packets, and
2) the packet’s “timer” starts ticking since the moment of
packet’s creation, we conclude end-host rate adjustment logic
unnecessary for both congestion and flow control.

Neither infinite buffers imply that scheduling is trivial and
all delay requirements can be satisfied. Since link capacities
are still bounded, there are only so many packets that can be
transmitted before their slacks start to expire, hence, some
drops are unavoidable. For instance, let the link rate be
10 Gbit/s and assume there simultaneously arrive 10 packets
of size 1500 B whose deadlines are all 10 µs; clearly, at
least two packets are bound to expire. The simplification the
infinite buffers bring is that nothing can be possibly done
at the end host once a packet gets dropped, for “packet is
dropped” is now equivalent to “packet is expired”, and, as
we discussed in Section II, for delay-sensitive applications an
expired packet bears no reliability constraints. The one thing
that prevents us from forgoing most of the end host logic
complexity, including congestion control, is infinite buffers
being extremely expensive to build. The next section explains
how to emulate buffer management algorithms designed for
infinite buffers using only finite buffers.

IV. REPLACING AN INFINITE BUFFER WITH A FINITE ONE

Due to bounded transmission rate, algorithms exploiting
infinite buffers are still unable to transmit all packets in all
cases, especially, if faced with large bursts of tight-deadline
packets. The algorithm is free to choose the set of packets to
transmit; which choice depends on the desired objective. We

Application Delay req. B (Theorem 2) B (Theorem 3)

Web pages few ms [12] few 7.76 GiB few 4.77 MiB
Interactive analytics � 1ms [13] � 7.76 GiB � 4.77 MiB
Social-networks 200 µs [14] 318.36 MiB 0.95 MiB
Distributed caches ≈ 10 µs [15] ≈ 838.2 KiB ≈ 48.83 KiB
Machine learning ≈ 10 µs [15] ≈ 838.2 KiB ≈ 48.83 KiB

Table I: Minimum required buffer size as in Theorem 2 and Theorem 3. The
link rate is 40Gbit/s and the packet size is 1.5KB.

seek the “ideal” set of transmitted packets only among those
that can be realized by some buffer management algorithm
with infinite buffer. Packet slacks would naturally “sanitize”
unwanted packets dying due to expired slacks.

In what follows, we are interested in taking an arbitrary
A[∞] and emulating it with respect to a given objective by
some other algorithm A[B] with a limited buffer of size B. The
goal is to make B as small as possible. Intuitively, B should
be implicitly bounded by some function of the maximum slack
value. We start with the WSWTPUT objective, which is a
natural and yet generic choice for the bounded delay model
that has already been studied in the infinite-buffers setting [6].

Theorem 2. For a maximum slack S and a given online
algorithm A[∞], there is an online algorithm A[S(S + 1)/2]
equivalent to A[∞] w.r.t. WSWTPUT.

Proof: Let S2 = 1+2+. . .+S = S(S+1)/2. Consider an
arbitrary A[∞]. The emulating algorithm A[S2] has a separate
virtual queue of size s for packets with remaining slack being
exactly s. The admission behavior of A[S2] is independent
for every virtual queue always preferring higher values. On
processing, A[S2] checks which packet A[∞] would have sent.
Let us denote this packet as p. Then A[S2] transmits a packet
p′, s.t. sl(p′) = sl(p), v(p′) ≥ v(p) and v(p′) is the minimum
among all such p′. It remains to show that there would always
be at least one such packet in A[S2]’s buffer. For any given
point in time, we denote by P ′s and Ps, the sets of packets with
slack s in A[S2] and A[∞] buffers, respectively. We show by
induction on the number of events that at any point in time if
we take Ps and P ′s and sort them by decreasing value, then:
1) |P ′s| ≥ min{|Ps|, s}, and 2) for a pair of corresponding
packets pi and p′i, v(pi) ≤ v(p′i) There are the following
events: 1) change of a timeslot; 2) packet arrival; and 3) packet
transmission. 3) preserves the property by A[S2]’s definition.
On 1) a packet can be removed from A[S2] buffer only if there
are already s + 1 packets with slack s. And on 2 it follows
from the two sequences being already sorted and aligned by
value, see [11, Lemma 1].

We have applied Theorem 2 to different types of latency-
sensitive applications. The results in Table I demonstrate that
applications most sensitive to delay can be easily supported
with slightly under 1 MiB of buffer. The bound puts the buffer
space for less constrained applications in the order of GiBs,
i.e., more than the per-port space available on commodity
devices. We must note that the bounds are quite lose due
to overly general definition of A[∞], specifically, one does



not include implementation constraints that would arise when
running A[∞] at line rate. For example, A[∞] (and A[B])
in Theorem 2 are allowed to have infinite program memory,
which makes little sense when we try to bound buffer space.
To be more pragmatic, we should restrict the class of buffer
management algorithms to those we could actually consider
implementing. Turns out, not only does the bound on buffer
sizes gets reduced as a result, but the bound becomes valid for
any possible objective unlike Theorem 2. Recent abstractions
representing buffer management policies [16], [17], [18] focus
on algorithms processing packets according to a fixed order
(e.g., sorting packets by arrival time, packet deadline, or by
packet value). We will refer to such algorithms as fixed-order.
Interestingly, any fixed-order algorithm with infinite buffer can
be emulated by an algorithm whose buffer is linear in the value
of a maximum slack. The result holds for any objective.

Theorem 3. For a maximum slack S and an online fixed-
order algorithm A[∞], there exists an online algorithm A[S]
transmitting exactly the same packet set.

Proof: Consider an arbitrary online algorithm A[∞] that
processes packets according to an order ≺. A[S] also follows
≺ on processing, but on admission A[S] keeps only those
packets that A[∞] would have processed if there were no
further arrivals. Clearly, there cannot be more than S such
packets. Our claim is that A[S] processes exactly the same set
of packets as A[∞]. For that it is sufficient to show that at any
point in time, the set of packets that have already arrived and
can be potentially processed by A[∞] (i.e., at least for some
arrival) is a subset of packets that are currently in A[S] buffer.
It is straightforward to show by induction that any packet’s
position in ≺ order is monotonous w.r.t. arrival sequence, i.e.,
if we add a new arriving packet, then the position of any other
packet will not decrease. The last statement implies that the
transmission time cannot move to a later point if we remove
some packet from the arrival sequence. Thus, if an already
arrived packet p is ever processed by A[∞], then p is processed
by A[∞] with no further arrivals.

For packet slacks, Theorem 3 implies that to emulate fixed-
order algorithms with infinite buffers for an arbitrary objective,
buffer sizes linear in the maximal slack value are sufficient.
We also present in Table I buffer requirements assuming fixed-
order algorithms, i.e., when applying Theorem 3.

Theorem 3 raises an even harder design question. Namely,
do we really need to implement reliability at the transport layer
if the maximum slack value S is appropriate, given that A[S]
is guaranteed to have have no losses due to congestion?

We do not go further by covering corrupted packets or
proposing specific transport designs for low latency traffic.
All we demonstrate is the potential impact of the model with
packet slacks and WSWTPUT objective.

Using slacks in WSWTPUT, we explicitly communicate to
the network that there is no need delivering packets once
packets have expired. Hence, if we have just enough buffer
space, we do not need anymore congestion-induced retrans-
missions for delay-sensitive applications. Implementing con-

gestion control for delay-sensitive applications is a formidable
task; considering sub-RTT delay requirements, it is not even
clear how to get the control loop that short (previous works
resorted to preallocations [19], which may give suboptimal
utilization). The takeaway of this section hints a solution:
congestion control is not required in a delay-sensitive setting;
the problem is reduced to the management of an infinite buffer.

In the following section, we discuss what can be done if re-
transmissions are unavoidable. We quantify the impact of extra
knowledge on the overall performance, we build a taxonomy
of different algorithmic classes based on that knowledge, and
we propose a universal transformation translating any policy
optimizing throughput to a policy optimizing goodput while
keeping performance guarantees.

V. TAXONOMY OF BUFFER MANAGEMENT POLICIES

To properly analyze buffer management policies in the
presence of retransmissions, we must ensure that the objective
we are using handles retransmissions properly. We model
retransmissions of a packet p as p being a part of the arrival
phase (see Section III-B) for several, not necessarily consec-
utive, time slots. The WSWTPUT objective (see Equation 1)
is not well suited for retransmissions: when for some i 6= j a
switch sends the same packet, i.e., pi = pj , the contribution
of that packet to WSWTPUT will be double the actual one.

To make WSWTPUT more appropriate to retransmissions,
we prepend to every packet p its identity denoted by id(p),
allowing the switch to correctly distinguish packets with the
same values and slack. Then, we calculate the goodput:

WSWGPUT =
∑

p∈P
v(p) · [del(p) ≤ sl(p)], (2)

where del(p) = min{deli(pi) : id(pi) = id(p)}.
Originally, due to end-to-end design principle, congestion

controls were mostly based on implicit network feedback and
decoupled from buffer management decisions. Recently more
and more data-center transports represent monolith solutions
combining both control programs at end hosts and buffer
management policies inside switches to achieve better per-
formance; e.g., pFabric [2] and DCTCP [1] (to list just a
few). In what follows, we address the issue of composing
local buffer management policies with congestion control and
retaining performance guarantees by capturing the external
information available at the switch, yet without restricting
congestion control behavior beyond what is necessary.

We consider different knowledge levels that can be exploited
by buffer management policies and study the impact these
levels have on performance. We start with algorithms that
on arrival of a packet p learn all p’s properties, i.e., value,
deadline, and identity—id(p), but nothing else. The class of all
such algorithms we denote by Aid. Intuitively, Aid has mini-
mum knowledge required to optimize WSWGPUT. We contrast
Aid with algorithms studied in the previous works on buffer
management, which completely ignore retransmissions [6],
[20]. To capture the latter formally, we define a class A−
of algorithms that do not have access to id(p). In particular,
an algorithm A ∈ A− cannot distinguish whether two packets



p and q are instances of the same packet as a consequence
of retransmissions or these two are just different packets.
Naturally, we expect that Aid has strictly better performance
than A−. The following theorem states that packet identities
are absolutely required for optimization of WSWGPUT.

Theorem 4. For any B ∈ N, any algorithm A[B] ∈ A−,
and any k ∈ N, there exists an algorithm A′[B] ∈ Aid that
k-dominates A[B] w.r.t. WSWGPUT.

Proof: Consider A ∈ A− and k ∈ N. Let A′ be the
algorithm that emulates A, but 1) A′ never admits an already
processed or duplicate packet; 2) if A′ cannot admit the same
packet as A, it admits an arbitrary packet; 3) if A′ cannot
process the same packet as A, it processes an arbitrary packet
from the queue. Exactly k packets arrive at each of the time
slots t = 1, 2, . . . , k2. For each packet arriving at t = i we
set v(p) = 1 and sl(p) = k2 − i. Packets arriving at t = 1
have id(p) = 1, 2, . . . , k. A processes at most k2 packets in
total, thus, at most for k time slots t A processes all packets
arriving t. There must be, then, at least k2−k time slots with
at least one packet that has been never processed by A. For
every packet p processed by A we set id(p) ∈ {1, 2, . . . , k},
so clearly A(σ) ≤ k. For every packet p that has not been
processed by A, we set id(p) = k+ j for some unique j ∈ N.
It follows that A′(σ) ≥ k2−k and the domination follows.

On packet arrival, buffer management policies can exploit
more information than just packet properties. If they knew
the control program used at end hosts, arrival patterns, and
how the packets were multiplexed, they could, in theory, know
the precise time slots when retransmissions would appear.
Formally, assume that the moment a packet p arrives, a switch
learns a sequence τ(p) = {t1, . . . , tkp}, where ti is the time
slot when p’s ith retransmission would reach the switch. The
class of algorithms possessing such knowledge, we denote by
Aτ . It is no surprise that these can demonstrate even better
performance than Aid if only up to a constant factor of 2.

Theorem 5. For any B ∈ N and any algorithm A[B] ∈ Aid,
there exists an algorithm A′[B] ∈ Aτ that 2-dominates A[B]
w.r.t. WSWGPUT.

Proof: Consider an algorithm A ∈ Aid. Let A′ ∈ Aτ be
an algorithm that fully emulates A, except 1) on admission
between two otherwise equal packets A′ prefers the one that
will never be retransmitted by looking at τ ; 2) if the queue is
not empty and A does not process a packet, A′ processes an
arbitrary packet; 3) if A′ cannot process the same packet as A,
A′ processes an arbitrary packet. Next, 2B packets arrive at
t = 1, each packet p has v(p) = 1 and sl(p) = 2B. A is bound
to drop at least B packets. For every packet p dropped by A
we set τ(p) = {1}, for any other p we set τ(p) = {1, B}. It
remains to note that if A earns k then k ≤ B and A′ earns
k +B and the claim follows.

Clearly, there exist other kinds of knowledge, some may
even include information about yet unseen packets. For in-
stance, we may consider a set of algorithms that at time slot t
learn which packets will arrive at timeslots t+1, t+2, . . . , t+k.

We also may try to relax Aτ by assuming that τ(p) is not
revealed immediately on p’s arrival but after a certain delay,
or is revealed only partially. While fine-grained performance
analysis of these and many other knowledge models is im-
portant to understand the performance of cooperation between
congestion control and buffer management, in what follows we
restrict ourselves to the extreme case of absolute knowledge
that already provides some interesting insights.

Analysis of buffer management behavior with respect to ad-
versarial traffic was traditionally performed using competitive
analysis [21]. Performance results in the competitive analysis
are usually stated positively: an algorithm ALG is called α-
competitive iff for any ε > 0, an optimal offline (clairvoyant)
algorithm OPT does not (α + ε)-dominate ALG. The question
with respect to offline algorithms is whether the knowledge of
τ(p) is sufficient for optimality or there exists a performance
gap between OPT and Aτ . The answer turns out to be the latter.

Theorem 6. For any B ∈ N, any algorithm A[B] ∈ Aτ is
at least 6

5 -competitive (or OPT[B] 6
5 -dominates A[B]) w.r.t.

WSWGPUT.

Proof: On the first time slot, 2B packets with sl(p) =∞
arrive, among which B packets will be retransmitted on time
slot t0 = B and B packets on time slot t1 = 2B. ALG drops
at least B packets at t0 = 1, so there exists i ∈ {0, 1} s.t. at
least B

2 of the dropped packets arrive at ti, and let us assume
with loss of generality that i = 0. Then, B new packets with
sl(p) =∞ arrive at t0. Since ALG can accept at most B packets
among at least 3B

2 not-yet-admitted packets arriving at t0, ALG
processes B

2 packets less than maximum possible, i.e., 3B.
OPT, on the other hand, drops all the packets arriving at t1−i
and is able to process all packets, so the claim follows.

In summary, we have classified buffer management algo-
rithms based on the knowledge they use, and, in addition,
we have rigorously quantified the performance gap between
different classes in Theorems 4, 5, and 6. In the next section we
bound the gap between buffer management policies that know
nothing about congestion control implementations at end hosts
and policies enjoying a full global knowledge of congestion
control algorithms and timing of network events.

VI. TRANSFORMING THROUGHPUT TO GOODPUT

In this section we present a guarantee-preserving univer-
sal transformation constructing online algorithms optimizing
WSWGPUT from online algorithms optimizing WSWTPUT.

For an arbitrary online algorithm A[B], we introduce the
transformation TG(A[B]), which essentially ensures that A[B]
never sees the same packet twice by maintaining the set Idone
of processed ids, empty initially:
• On arrival: for an arriving packet p if either id(p) ∈
Idone or A[B]’s buffer contains p′ s.t. id(p′) = id(p),
drop p; otherwise, follow the A[B]’s decision.

• On processing: process the same packet p as A[B], and
let Idone ← Idone ∪ {id(p)}

Note, TG(A[B]) may admit the same packet multiple times,
but every packet gets processed only once. The next theorem



Constraints and existing results Universal transformation results

Algorithm sl(p) B v(p) WSWTPUT B WSWTPUT WSWGPUT

ValueGreedy
N {∞} N 2× opt., [6] {S, . . .} 2× opt., Th. 3 2× opt., Th. 3 + Th. 8

{∞} N N opt.
N 2× opt., Th. 7
{∞} opt., Th. 8

N {∞} {1, α} 1 + 1
α
× opt., [6] {S, . . .} 1 + 1

α
× opt., Th. 3 1 + 1

α
× opt. Th. 3 + Th. 8

EDF N N {1} opt.
N 2× opt.,Th. 7

{S, . . .} opt., Th. 8

1/φ− EDF {1, 2} {∞} N φ× opt., [6] {2, . . .} φ× opt., Th. 3 φ× opt., Th. 3 + Th. 8

GRQ N N N 2× opt., [22] N 3× opt., Th. 7
{S, . . .} 2× opt., Th. 8

Table II: The summary of analytic results for automatically generated policies by the proposed transformations.

demonstrates that the above transformation indeed preserves
performance guarantees, albeit with a small additive loss. The
main idea is to compare the value of the objective function
of the two optimal algorithms: one for the original sequence
of packets, and one—for the sequence A[B] would see after
transformation. We remind, A− is the set of online algorithms
oblivious to packet identities, and Aid—those that are not.

Theorem 7. if A[B] ∈ A− is α-competitive w.r.t. WSWTPUT
then TG(A[B]) ∈ Aid is (α+1)-competitive w.r.t. WSWGPUT.

Proof: Consider an arbitrary arrival sequence σ with
retransmissions and denote by σ′ the arrival sequence as seen
by A[B] during TG(A[B]) execution. The following holds:

α · TG(A[B])(σ) = α ·A[B](σ′) ≥ OPT[B](σ′),

the last inequality follows from α-competitiveness of A[B].
Note, σ′ lacks retransmissions for only those packets that A[B]
has processed successfully. Thus, if we consider sequence σ′′

that adds to σ′ precisely those missing retransmissions used
by OPT[B](σ), σ′′ contains at most one extra copy for every
packet processed by A[B](σ′). The claim follows from:

(α+ 1)A[B](σ) ≥ OPT[B](σ′) +A[B](σ′)
≥ OPT[B](σ′′) ≥ OPT[B](σ).

There are two nice features of Theorem 7: buffer size
preservation and independence from packet slack values. The
result can be further improved if we assume an upper bound S
on packet slacks and large enough buffer, namely, B ≥ S. The
key property we use is that an optimal offline solution that can
reorder packets does not need retransmissions anymore, i.e.,
we can safely assume that OPT[B] accepts p at the moment p
first arrives. To emphasize the necessity for packet reordering,
we use A≺ to denote the set of online algorithms supporting it
and OPT≺[B] to denote a respective optimal offline algorithm.

Lemma 1. For any input σ, if B ≥ S then there exists an
OPT≺[B]’s solution for σ accepting packets on the first arrival.

Proof: Consider an arbitrary solution OPT′[B] and a
packet p that first arrives at t and gets processed by OPT′[B]
at time step t̃. OPT[B] will accept p at t and at any time step
t′ ∈ [t, t̃] p will occupy position (t̃ − t′) in OPT[B] buffer .

Since 0 ≤ t̃− t′ < sl(p) ≤ S, at most S packets reside in OPT

buffer simultaneously, and there are no overflows.
As a result, we can transfer performance guarantees much

easier between the models with and without retransmissions
(the backward direction is straightforward—the model with
retransmissions represents a more general case).

Theorem 8. For a set of algorithms A≺, a maximum slack
S, and a buffer size B ≥ S, if A[B] ∈ A−≺ is α-competitive
w.r.t. WSWTPUT then TG(A[B]) ∈ Aid

≺ is α-competitive w.r.t.
WSWGPUT

Proof: Consider an arbitrary arrival sequence σ with
retransmissions, and let σ′ be the sequence as seen by A[B]
during A[B]

rt− execution. We have the following:

α ·A[B]
rt−

(σ) = α ·A[B](σ′) ≥ OPT[B](σ′) ≥ OPT[B](σ),

where the last inequality follows from Lemma 1 and the fact
that σ′ preserves first arrivals from σ.

Once S gets larger than B, we lose Lemma 1 and waiting for
a given retransmission becomes essential to achieving optimal
(offline) performance which is accounted for in Theorem 7.

A. Applying transformations

The first transformation that we propose emulates online
algorithms with infinite buffers using algorithms with finite
buffers. Table 3 in [23] surveys more than twenty relevant
algorithms for bounded-delay model in various settings, where
most of them assume infinite buffer size and, hence, subjected
to Theorem 2 and Theorem 3. For the general case [22]
proposes a 2-competitive GreedyQueue (GRQ) algorithm for
a finite buffer size. At least for B ≥ S, we can get this result
automatically by applying Theorem 3 to a greedy algorithm
with an infinite buffer transmitting the largest value first [6].
The second transformation allows to automatically construct
online policies optimizing weighted goodput WSWGPUT from
policies optimizing weighted throughput WSWTPUT, preserv-
ing performance guarantees. To our best knowledge, there
are no theoretical results providing competitive results for
WSWGPUT. So we have little to compare with. The shown
results in Table II are given only to demonstrate that the



proposed transformations are universal tools allowing to ex-
periment with different algorithms during design of congestion
controls in the bounded-delay model.

VII. EVALUATIONS

In the evaluation study we aim to understand the effect
of WSWTPUT optimization on network behavior. No less
relevant to the design principles of congestion control are
the compositional properties of end host programs and buffer
management policies. To address these questions, we present
a series of experiments performed in a simulated environment.

A. Simulation setup

We start by thoroughly describing different parameters of
the evaluation setup. The code for our simulations is based on
NS2 [24] and is made available on GitHub [25].

a) Topology: In our experiments we use the same leaf-
spine topology as pFabric and PIAS [26], [2]. The network
includes 4 spine switches, 9 ToR leaf switches, and links form
a full bipartite graph between spines and leaves. There are 16
servers connected to each of the 9 ToR switches, i.e., 144
servers in total. Server-to-ToR link rates are 10 Gbit/s, ToR-
to-spine—40 Gbit/s, buffer size B is 140 packets as in [26].
Every pair of servers exchanges messages independently.

b) Algorithms: The network is governed by a composi-
tion of: control program at end hosts, and buffer management
policy. To show the interaction between the two, we varied
them using options described in Table III. A complete solution
is a “buffer, control” pair, e.g., “pFabric,D2TCP” means
D2TCP at the end hosts and pFabric at the switches.

Control programs at endhosts

pFabric Data-Center TCP [1] with pFabric’s [2] modifications.
D2TCP Deadline-aware Data-Center TCP [7]

Buffer management policies

ECNRED Tail drop, RED-like ECN marking [1], [7].
pFabric Shortest-remaining processing time [2].
pFabricedf Earliest-deadline first [2].
GRQ The algorithm, presented in [22].

Table III: Endhost and switch components used for evaluations.

c) Performance metric: The ultimate purpose of the
bounded-delay model is to improve network performance as
perceived by applications. Hence, to properly evaluate such
performance, we focused on an application-centric metric
application throughput [8], [7], [2]. We assume that every
application flow comes with two characteristics: a flow size
size(f), and a flow’s slack sl(f). If del(f) is the completion
time of a flow f then the application throughput for a set of
flow F is defined as the number of flows that finish within
their slacks: APPTPUT(F) = |{f ∈ F : del(f) < sl(f)}|.

d) Flow properties: For flow sizes we chose two CDFs
derived from real-world data and often used in the literature
(e.g., pFabric [2] and PIAS [26]): one for web search appli-
cations [1], and the other—for data mining [7]. In addition,
we tested one distribution assigning exactly 20 packets and

one uniform (as in [8]). Similar, again, to [2] we generated
flow slacks sl(f) from an exponential distribution and assumed
to be delay-insensitive, i.e., sl(f) = ∞, flows larger than
200 KiB. For the mean slack we chose 100 µs and 1000 µs
used in previous works. We removed the constraint that a
slack has to be at least 125% of minimum flow completion
time (used in [2]), thus checking if optimization of APPTPUT
handles extremely tight or impossible deadlines automatically.
The distributions are summarised in Table IV.

Flow size distributions, size(f), pkts

web_search
CDF [1]

data_mining
CDF [27]

const
20

uniform
U(90, 100)

Flow slack distributions, sl(f), ms

normal
Exp(1) [2]

tight
Exp(0.1) [2]

Table IV: Distributions for flow slacks and sizes, U(a, b) denotes uniform
distribution, Exp(λ)—exponential, CDF—cumulative distribution function.

e) Arrival times: Following pFabric [2] and PIAS [26],
message arrivals are modelled by Poisson distribution, whose
mean depends on the load. Specifically, for a load x ∈ (0, 1),
we derive the mean message arrival rate λ(x) as in [26].

B. Throwing away garbage by in-queue expiration

Only GRQ buffer-management policy “natively” supports
packet slacks. While pFabricedf’s behavior does depend on
deadline imminence, this dependency is rather indirect and
ultimately relies on end hosts setting deadline-based priorities.
In Figure 1, we show the benefit of taking direct advantage
of slacks by augmenting every buffer-management policy
with a simple deadline-awareness: automatically drop expired
packets. The augmented algorithms are denoted by ALG+exp for
respective original ALG. The main observation we make here is
that packet expiration can substantially improve performance
of otherwise deadline-unaware algorithms on similar-sized
messages, e.g., ECNRED (see Figure 1a and 1b) and pFabric

(see Figure 1d at 0.9 load). Interestingly, the performance of
pFabricedf also gets improved (see Figure 1b).

C. Composing switch and end host behavior

In Figure 2, we study interaction between end-host con-
trol and buffer management policies by evaluating eight
“buffer, control” pairs. The single best strategy is hard to
name, for the behavior varies with different inputs. As an
example, pFabric shows very good performance for data
mining and web search workloads (see Figure 2a and 2c)
where short messages dominate, and preferring those improves
APPTPUT. On the other hand, when pFabric is facing a
workload with little message-size variance, it tends to lose
substantially (see Figure 2d and 2b with pFabric). Regarding
the interaction between control programs at end hosts and
buffer management, we note that deadline-aware D2TCP is
not only able to noticeably improve performance of deadline-
unaware pFabric and ECNRED (see Figure 2d and 2b), but
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Figure 1: Studying the effect of in-buffer packet expiration on APPTPUT for different buffer-management strategies.
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Figure 2: Studying the compositional properties of endhost control programs and buffer management policies.

also—of pFabricedf (Figure 2a–d). GRQ is the least affected
by end host logic, which we attribute to the main result of
universal transformation (see Section VI): GRQ is provably
close to having full knowledge of end host behavior.

D. When congestion control comes first

In Section IV we raised a question of whether congestion
control should be implemented on top of guaranteed reliability
or the other way around. So far we were following the former,
traditional, path. In the last set of experiments we gauge the
cost (or the benefit) the alternative approach can bring.

We have modified simulator logic responsible for end-host
behavior so that the connection is automatically reset once
the message deadline passes. The results are presented in
Figure 3, where for an original control program control,
we denote the modified version as control+exp. Our findings
are that the effect on APPTPUT depends on how sensitive
the buffer management policy is to packet slacks. While the
difference for pFabricedf and GRQ is marginal across all runs,
for pFabric (see Figure 3a–b) and ECNRED (see Figure 3b) there

is a significant improvement when the control logic is made
deadline-aware.

VIII. RELATED WORK

Application-supplied deadlines: Explicit application-
supplied slacks have been used recently for end hosts con-
trol logic in [28], [8], and [2], which optimized application
throughput. As we explain in Section II-B, end host-based
control can be too slow for ultra-low latency.

Buffer management policies: A good survey of ad-
vanced processing orders with admission controls can be
found in [23]. Recently, several abstractions expressing buffer
management policies have been proposed [17], [29]. All of
them support fixed processing orders as in Theorem 3. Another
relevant work [30] is investigating when there exist practical
algorithms satisfying all deadlines, assuming all are satisfiable.

Design principles: One of the interesting outcomes
of [31] studying coexistence of several congestion control
properties is that simultaneous optimization of both delay
requirements and throughput is not really possible. Similarly to
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Figure 3: Studying the consequences of reliability being implemented on top of congestion control

our work, [32] aims to understand the impact of various factors
on congestion control performance. [33] studies model-based
vs. model-free approaches in congestion controls.

IX. CONCLUSION

In this paper we show that the bounded-delay model with
weighted throughput (goodput) is a good potential basis for
design of congestion control supporting low latency. Packet
slacks are a natural mechanism to sanitize networks from the
“garbage” traffic with expired slacks. We analyze properties
of the model and propose several types of transformations
allowing tuning performance for specific low-latency require-
ments. We discuss impact of additional policy properties on
required buffer sizing. We show how a service model should
be adjusted and define potential ways to implement reliable
transports without retransmissions for ultra low-latency traffic.
We hope that the proposed study can help other researchers to
experiment with the bounded-delay model in various settings.
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