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Abstract—Over the last two decades, Voice-over-IP (VoIP) and
specifically SIP have become standard solutions to realize voice
telephony in residential, commercial, and telecom environments.
As by now, an abundance of SIP endpoints exist, it has become
financially lucrative for cybercriminals to systematically search
for VoIP installations, with for example the aim to abuse them
for billing fraud or to hide their criminal activities behind a
legitimate connection and phone number. By now, this has made
SIP one of the most scanned UDP protocols on the Internet.

In this paper, we take a look at the actors behind these attacks.
Using a large network telescope, we collect over 822 million SIP
brute-forcing attempts from 5,691 sources over 187 countries
and analyze who is searching for and attacking VoIP endpoints.
As each tool and campaign exhibits specific implementation
differences, we can relate individual attempts into campaigns
and can thereby provide a detailed view into different actors in
the ecosystem, different techniques and tooling, and how these
are developing over 5 years. We show that we can fingerprint
different SIP scanning tools, show that actors hardly ever change
their toolkit, and identify an increase in highly distributed and
coordinated scanning.

I. INTRODUCTION

Voice-over-IP or VoIP provides the technical means for
carrying telephony calls in the form of regular IP packets over
data communication networks, thereby eliminating the need
for dedicated voice lines and the associated circuit switch-
ing. This drastically reduces required resources, starting with
lower bandwidth per call, but also simpler and less expensive
telecommunication infrastructure. As a result, charges for
telephony have plummeted, and the widespread adoption of
voice-over-IP makes it possible for all-you-can-call plans to
exist for landlines and mobile handsets, sometimes at prices a
long-distance call had been charged per minute in the 90s.

There are two main components to Internet telephony: first,
protocols such as RTP or SRTP transmit the packetized audio
and video data, but before a call can be made, a signaling
protocol has to locate the user, set up a call, negotiate the
connection and ultimately end the session. One of the most
popular protocols of this second category is the Session

Initialization Protocol (SIP). Standardized in RFC 3261, it is
responsible for VoIP signaling in Internet telephony but also
adopted by the 3GPP for mobile phone calling over LTE.
As VoIP has become the dominant solution to realize voice
telephony in residential or commercial environments as well
as been adopted by telecommunication networks themselves, a
plethora of endpoints exists listening for incoming connections
signaled by the SIP.

This ubiquity of SIP-speaking endpoints however also opens
up the possibility for abuse, as misconfigured systems or
those insufficiently secured may be used by cybercriminals, for
example fraudulently placing long-distance calls via the phone
lines of the victim [1]. Furthermore, by making malicious
calls through a victim’s systems, criminals could cloak their
identities and origin, and even impersonate authorities or
legitimate users as part of a social engineering attack [2]. To
discover potentially vulnerable systems, criminals scan public
networks such as the Internet for hosts responding to SIP
requests, and given the wide opportunities for abuse and the
plethora of potential victims, SIP has become a wide-scanned
protocol on the Internet today.

While we know already much about the vulnerabilities of
SIP in general and how it can be abused, we know relatively
little about the adversaries who abuse it. Knowledge of the
actors and the overall ecosystem, the techniques in use to scan
and compromise hosts provides however important intelligence
to detect malicious activities, modify systems to reduce incen-
tives for an attack, and ultimately identify the criminals behind
it. Furthermore, when we can effectively detect the tooling
used by adversaries for a compromise, malicious activities can
be stopped early before causing significant damage.

In this paper, we address this gap and asses the adver-
saries, their techniques, and tools for the exploitation of SIP
endpoints. Using a large network telescope of two partially
populated /16 networks located in enterprise systems, we
redirect and analyze incoming SIP requests for analysis. Based
on 822 million SIP connection attempts sent by 5,691 sources
over 5 years, we are able to provide a detailed view into
this ecosystem of cybercrime. With this work, we make theISBN 978-3-903176-39-3 c©2021 IFIP



following main contributions:
• We create a method for fingerprinting SIP scanning tools

and apply this method in the wild to identify tools used
to scan for SIP servers.

• We show that actors do not change their tools, but rather
keep the same tool even when running their operations
over multiple years.

• We show most actors use standard tools and run these
without any customization.

• We show that custom-made tools are used more in highly
distributed and coordinated scanning.

• We identify an increase in distributed scanning over the
years, where actors aim to stay undetected.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview of previous work and existing
knowledge on SIP abuse. Section III briefly introduces the
SIP protocol. Section IV outlines our method used for data
collection and highlights the methodology used to create
tool-specific fingerprints. Section V analyzes a set of 21
tools found in-the-wild. In Section VI we identify scanning
campaigns conducted using these tools and show how actors
are distributing their operations. Section VII summarizes and
concludes our work.

II. RELATED WORK

In 1999, Handley et al. introduced the Session Initiation
Protocol (SIP) [3], used for initiating and maintaining real-
time session for messaging applications including voice and
video messaging. Over the years, the protocol has seen many
scrutinous changes adding new functionalities and security
improvements [4], [5], [6], [7], [8].

As SIP is a widely adopted protocol, a large body of
research work exists identifying and solving security vul-
nerabilities of the protocol. Attacks on SIP are discovered
impairing the availability of servers, leaking sensitive infor-
mation [9], injecting data in SQL databases, or even using SIP
servers as an amplification service to perform DDoS attacks
[10]. To aid in finding SIP vulnerabilities, many researchers
have created automated tools which automatically scan and
identify problems in the software [11], [12], [13], [14]. Along
with automated vulnerability scanning tools, other tools were
introduced to scan the Internet identifying hosts running SIP
such as NMap [15] and SIPVicious [16]. This so-called port
scanning allows attackers to identify and consequently exploit
hosts running SIP. To examine the threat-landscape of SIP,
Nassar et al. [17] created a honeypot system capable of
capturing attack traffic in the wild. In similar work, Hoffstadt
et al. [1] deploy a honeypot system in the wild for almost
one full year, capturing over 47.5 million SIP messages. Aziz
et al. [18] record in a similar study 857 different attackers in
their honeypots over 1.5 months. While these works report on
exploitation behavior in the wild, the authors do not go into
differences in scanning tools and the evolution of SIP scanning
over multiple years.

In other work capturing SIP scanning in-the-wild, Dainotti
et al. [19] analyze a large horizontal network scan targeting the

Fig. 1: SIP Signaling and RTP media flow during a VoIP call.

SIP protocol, identifying the SIP payloads used in the attack
and noting that the structure of the payload is similar to that of
the SIPVicious scanning tool, which the malware authors most
likely modified. In a follow-up paper, Raftopoulos et al. [20]
identify exploits attempts following the large SIP scan in 2011
and identify a surge in IP addresses performing exploitations
of SIP. While previous works have identified in-the-wild attack
traffic, only one focused on detecting the Tools, Techniques,
and Procedures (TTPs) used by attackers to perform these
attacks [21]. While the authors identify tools used to scan and
exploit their SIP servers and note that adversaries change SIP
fields to circumvent IDS detection, they did not identify large
scanning and exploitation campaigns or fingerprints of specific
tools. In this paper, we aim to address the gap by fingerprinting
the tools used to perform SIP scanning and analyze 6 years
of in-the-wild scanning traffic to identify actor evolution.

III. THE SESSION INITIALIZATION PROTOCOL

Before we go into the discussion of our data collection
and results, we will first briefly introduce the necessary flows
in Voice-over-IP and specifically the Session Initialization
Protocol as background for the messages we observe later and
their interpretation in the protocol.

As discussed in the introduction, Internet telephony uses two
components: first, the signaling protocol SIP communicates
status messages, setups and terminates calls, or exchanges con-
figuration information, and second, a media transfer protocol
such as RTP carries the actual voice and video payload be-
tween the two communicating endpoints. While for efficiency
and latency reasons media is transmitted directly between
caller and callee, this of course requires knowledge of the
location and network address of the remote party. When users
are mobile or we are making a connection for the first time, we
would clearly not know yet where to find the other party; hence



signaling messages are exchanged via proxy servers. VoIP user
identities come in the form of sip:username@domain, which
would tell the caller which server to contact to establish a
connection with the desired endpoint. As shown in figure 1,
a SIP endpoint requests its own SIP proxy to make a call,
which would contact the server responsible for the destination.
As the called user would keep alive a connection with its
own SIP proxy, this server would know how to reach its user
and pass along the request for a connection to the client. If
the connection is accepted and passed back via the proxies,
both parties would have all information necessary to start
exchanging data directly.

The Session Initialization Protocol has a message structure
comparable to HTTP. Requests are made from a client to
a server, which returns a response message in the same
connection. The protocol messages are text-based, the first line
of the text contains the request or response (like an HTTP
GET or POST), followed by headers and a message body.
As SIP monitors for timeouts and has the functionality for
retransmits built into the protocol, SIP messages are preferably
sent over UDP instead of TCP to reduce connection latency
and overhead of the transport layer. There are six general
types of requests in the protocol: INVITE messages request
the establishment of a SIP session - thus a VoIP call -, an ACK
confirms the receipt, a BYE terminates an existing connection,
and CANCEL stops a transaction that is currently ongoing.
An OPTIONS message asks the other side for its capabilities
with starting a session, and a REGISTER performs a sign-in
of an endpoint with the proxy server of its SIP registrar. This
means that to get an insight into SIP abuse and brute-forcing
in the wild, we need to open and listen to UDP port 5060 on
publicly exposed IP addresses. An abuse will either start by
a registration attempt through REGISTER or the request for a
call in an INVITE, which we can harvest when monitoring a
large number of IP addresses for incoming SIP traffic.

IV. DATASET COLLECTION AND PROCESSING

The data source used in this study is a network telescope
of two partially populated /16 networks. All incoming data
directed at the unused IP addresses is logged, which gives
insights into all unsolicited traffic such as port scans probing
for available systems as well as backscatter traffic originating
from current attacks on the Internet. As a network telescope
consists solely of unused IP space, this dataset is void of
any user traffic and therefore provides a clear overview into
Internet-wide scanning for SIP services. This section provides
an overview of the dataset collected from the network tele-
scope and the method used to process SIP packets.

A. Dataset

As the network telescope consists of two partially populated
/16 networks, it receives a large amount of data that needs to
be processed. On average in 2020, the telescope recorded 1.3
Tb of raw network traffic per month. To manage the size of
the data we aim our analysis at the last 6 months of 2020,
providing a recent analysis of SIP scanning attempts in the

wild. In addition, to allow for a longitudinal analysis of the
TTPs used by attackers and their evolution, we include the
first two months of each year from 2016 until 2020.

We select all packets sent to the SIP service running on
the IANA default UDP port 5060 and discard 9.6 million
packets that do not contain a valid SIP message. During
the measurement period, we observe 822 million packets
containing a valid SIP header originating from 5,691 unique
sources, sending on average 144,439 packets.

B. Data processing

While SIP runs over UDP and is therefore vulnerable
to adversaries spoofing their source IP address, this would
prevent the adversaries from receiving the response packet
sent by a server. As scanners need the answer to the probe
packet to establish whether a port is open, source IP addresses
observed in the network telescope will be controlled by the
scanning actor. We can thus group packets originating from an
IP address into a scanning “flow”. Flows are an aggregation
of the SIP packets originating from a single source IP address
with an inactivity time-out of 20 minutes. After these 20
minutes of not observing a packet in the telescope, the flow
is closed and the next packet coming in from this IP address
will create a new flow. These flows aim to identify artifacts
inside the packets sent by a specific scanning tool.

To ensure we do not lose essential data while aggregating
the packets, we leverage the structure of a SIP packet to
devise a single-pass algorithm that can create a fingerprint
for a scanning tool. The SIP and SDP header contain text-
based variables in the form: key:value. To combine these
text-based values, we compare the values by key, and only
keep the overlapping characters in the values corresponding
to a key in two packets. For example if we compare the
following two “from” fields: <sip:nm@nm>;tag=1526 and
<sip:nm@nm>;tag=8711, we keep the part that is an exact
match: <sip:nm@nm>;tag= and replace the non-matching
part with a non-Ascii character to ensure the location of all
parts of the string remains the same. In this paper we use
a dash to denote a non-matching character, the compared
strings will thus return: <sip:nm@nm>;tag= - - - -. When
all packets are compared and aggregated, only the part that
is constant over all packets will be saved. By aggregating all
keys of both the SIP and SDP header, we obtain a fingerprint
containing parts of fields that are randomized and parts of
fields that are constant in every packet. The characteristics
captured in these fingerprints allow us to distill information
about specific tools, as every implementation of a SIP scanner
will generate these packets differently and therefore randomize
header fields differently. For example, the standard NMap [15]
SIP fingerprint is:
accept:application/sdp
call-id:50000
contact:<sip:nm@nm>
content-length:0
cseq:42 OPTIONS
from:<sip:nm@nm>;tag=root
max-forwards:70



to:<sip:nm2@nm2>
via:SIP/2.0/UDP nm;branch=foo;rport

As seen from the fingerprint NMap always sends the same
headers in a SIP packets, as the aggragation of all packets
does not show any randomizations in the header fields. A
tool that randomizes more fields is SIPVicious [16], with the
fingerprint:
accept:application/sdp
call-id:-------------------------
contact:sip:100@SourceIP:SourcePort
content-length:0
cseq:1 OPTIONS
from:sipvicious<sip:100@1.1.1.1>;

tag=38336234--------313363340...
max-forwards:70
to:sipvicious<sip:100@1.1.1.1>
user-agent:friendly-scanner
via:SIP/2.0/UDP SourceIP:SourcePort;

branch=z9hG4bK-----------------

In this fingerprint, the call-id field is always randomized
together with the branch number and tag in the from field,
but the user-agent is set to friendly-scanner in every packet.
Additionally, we replace IP addresses and port numbers used
inside the header with the strings “SourceIP”, “DestIP”, “Sour-
cePort” and “DestPort” as they are commonly used in SIP
headers and we will otherwise discard this characteristic if the
source port is for example not constant between packets. The
resulting fingerprints allow for the comparison of tools and
are robust to small changes to a tool, as most other fields will
still match. We have tested this method against four base and
modified versions of NMap and SIPVicious, and can uniquely
identify all the different implementations.

V. SIP SCANNING TTPS

After applying our algorithm to the data, we obtain 187,327
separate flows, with an average of 4,393 packets per flow.
Using these flows, this section will describe and analyze the
behavior of SIP scanners. Using the implementation charac-
teristics mined from the packets as described in the previous
section, this section will list and analyze broadly used, as well
as custom-made tools used in SIP scanning.

A. SIP scanning tools

As shown in section IV, tools generate packets with certain
combinations of SIP header fields. A tool such as SIPVicious
for example includes an optional header field user-agent and
sets this to friendly-scanner. To detect scanning packets from
this tool, a match can be made with this field and all of the
probes will be filtered out. With an abundance of tutorials
showing sysadmins how to filter probes based on this field,
an actor might change this to prevent the probes from being
dropped. To circumvent this detection, some actors might
make minor changes to existing tools to alter the fingerprint to
circumvent various scanning detection mechanisms rather than
create a new tool. In this section, we will differentiate between
tools derived from known open-source tools and custom-made
tools from scratch by comparing fingerprints to those of the
open-source tools NMap and SIPvicious.

Table I shows the 21 most used tools we have been able
to identify in our dataset, the year they first appeared, the
number of packets reaching the telescope, a selection of SIP
headers, their scanning strategy, and whether this tool is known
when searching for it on the Internet. While SIPVicious is
easily detected and the authors even provide a program that
can be used to crash unsolicited scanning campaigns targeting
your network [22], the standard version of SIPVicious is by
far the most popular tool used to scan for open SIP servers.
The alterations of the SIPVicious toolkit mostly change the
user-agent field of the tool to either a name from a list of
user-agents or a single genuine-looking SIP user-agent such
as Cisco or PBX. While changing the user-agent will allow an
attacker to circumvent some detection methods, tool 2 neglects
to also change the other obvious mentions of SIPVicious in
the from and to fields, where sipvicious is written into. Tool
3 and 4 are more thorough, as both change the fields to
respectively a randomly chosen (but valid) agent name or the
string “AmooT”.

While tools based on SIPVicious change their fields and add
more randomization, tools based on NMap keep the normal
structure where no SIP header field is randomized and instead
only change the values present in the fields. The sophistication
of the change in the tool seems to be dependent on the
sophistication of the tool itself, as randomization is harder
to implement in a tool statically sending the same packet than
in a tool already including some form of randomization.

The best way to avoid detection of artifacts created by
commonly used tools is to create a tool from scratch, or
significantly change the tool such that no original fields are
included in the packet anymore. 13 of the 21 tools discovered
are not traceable back to a base version of NMap or SIPVicious
and highly vary in implementation, with more customization in
SIP header fields but also changes in scanning strategy. Most
tools aim to spoof the user-agent field to something believable,
but some tools such as tool 9 selects a random string for each
packet. While this does not generate believable user-agents, it
does circumvent any blacklisting approach as the string will
be different on each probing attempt.

Most custom-made tools change header fields to expected
values for a SIP packet and pick believable user-agents that
change every packet. Some tools however contain implemen-
tation details that make it trivial to spot that packets do
not originate from a normal SIP client. NMap based tool
8 changed the SIP packet header details by including the
misspelled key content-lnegth (sic!), which a normal SIP
parser would not be able to match with an existing option
in the protocol. Tool 14 even implements the SIP protocol
using a dummy example found in many online tutorials, with
names as Alice and Carol.

B. Scanning artifacts

Scanning tools do not only create artifacts in SIP header
fields but also fields in the IP and UDP header such as the
destination IP address are set by the scanning tool. If the
packets are injected on the network interface without using



ID Variant First seen Packets Selection of SIP header fields used to identify the tool Scan strategy Known

1 Base 2016 694 million
contact:sip:100@SourceIP:SourcePort
from / to:sipvicious<sip:100@1.1.1.1>
user-agent:friendly-scanner

Sequential

2 Changed user 2016 26 million user-agent:[Random agent]
from / to:sipvicious<sip:100@1.1.1.1> Sequential

3 Changed fields 2016 19 million user-agent:[Random agent]
from / to:[Random name]<sip:100@1.1.1.1> SequentialSi

pv
ic

io
us

4 AmooT 2018 26 million user-agent:[Random agent]
from / to:AmooT<sip:100@1.1.1.1> Sequential

5 Base 2016 3.6 million

call-id:50000
contact:<sip:nm@nm>
from:<sip:nm@nm>;tag=root
to:<sip:nm2@nm2>

Random sequential

6 Test 2020 238,623
contact:<sip:test1@test1>
from:<sip:test1@test1>;tag=root
to:<sip:test2@test2>

Random sequential

7 sip:a@a 2020 7.5 million

call-id:97
contact:<sip:test1@test1>
from:<sip:a@a>;tag=1
to:<sip:b@b>

Random sequential

N
M

ap

8 sip:ag@ag 2019 40,883

call-id:5000
contact:<sip:ag@ag>
from:<sip:ag@ag>;tag=root
content-lnegth (sic!):0
to:<sip:ag2@ag2>

Random sequential

9 100rel 2016 501,487

contact / to:<sip:[8 characters]@SourceIP:SourcePort>
from:<[8 characters]<sip:[8 characters]@DestIP:DestPort>;tag=hetfgeeb
max-forwards:30
supported:100rel

Random

10 Random user 2016 11 million
call-id:[10 characters]@SourceIP
contact / from / to:[8 characters]@SourceIP:SourcePort
user-agent:[8 characters]

Random

11 a123 2020 9 million call-id:a123-bc2547-a159
user-agent:Avaya one-X Deskphone Random

12 pplsip 2018 8 million

call-id:a123-bc2547-a159
contact:<sip:me@SourceIP:SourcePort>
from:me<sip:me@DestIP>
to:me<sip:me@DestIP>
user-agent:pplsip

Sequential

13 StarTrinitySecurity 2019 360,363

call-id:startrinityvoipsecuritytestsuite
contact:sip:s3@SourceIP:SourcePort
from:sip:startrinityFriendlyScanner@SourceIP
to:sip:penetrationTest@DestIP
user-agent:StarTrinityFriendlyScanner

Random

14 a84b4c 2019 2 million

call-id:a84b4c76e66710
contact:<sip:alice@pc33.atlanta.com>
from:Alice<sip:alice@atlanta.com>
to:<sip:carol@chicago.com>
via:pc33.atlanta.com

Random sequential

15 sip:b@localIP 2016 2,512

call-id:[32 characters]@127.0.0.1
contact / from:<sip:b@127.0.0.1>
to:<sip:DestIP>
date:[Current date]
user-agent:Asterisk PBX

Random

16 sip:99999 2020 555,146

contact:<sip:99999@SourceIP:SourcePort>
content-length:209
from:<sip:99999@DestIP:DestPort>
to:<sip:[phonenumber]@DestIP>

Sequential

17 x-nat 2019 7,941

call-id:[9 numbers]@[5 letters]
from / to:[5 numbers]<sip:[5 numbers]@SourceIP:SourcePort>
x-nat:nothing
x-serialnumber:[10 characters]
server:o2-IAD 6741-2.6.3.32

Random

18 adoom 2018 2 million

contact:<sip:adoom@SourceIP:SourcePort>
from:<sip:adoom@DestIP>[random string]
to:<sip:adoom@DestIP>
user-agent:Cisco-SIPGateway/IOS-12.x

Sequential

19 VOIP 2019 362,437
contact:sip:[phonenumber]@0.0.0.0:SourcePort
from / to:[phonenumber]<sip:[phonenumber]@DestIP>
user-agent:VOIP

Sequential

20 01146441408560 2019 3 million

contact:sip:DestIP:SourcePort
from:DestIP<sip:01146441408560@DestIP>
to:01146441408560<sip:01146441408560@DestIP>
user-agent:[Random agent]

Sequential

O
th

er

21 Nessus 2017 5,778 contact:<sip:DestIP>
from / to:Nessus<sip:DestIP:DestPort> Sequential

TABLE I: Top scanning tools used and a selection of their most prominent SIP header fields. Fields changing each packet are
enclosed in square brackets. Header fields with exactly the same values are grouped together.



Fig. 2: Destination IP scanning patterns observed from different scanning tools in-the-wild mapped on a Hilbert curve containing
a /22 netblock.

an Operating System socket, which is mostly used for high-
performance scanning [23], fields such as the Time-To-Live or
the IP identification number will also be set by the tool itself.

A tool can select the next target to scan in various ways,
for example by randomizing the destination IP address or
increasing it by 1 every packet. To visualize these differences,
we map our /16 ranges onto a Hilbert Curve, which is a 2D
projection of a list that retains the distances between most
points, where points close to each other in the list are also
close to each other in the projection. We assign all points
of the projection a color depending on when the particular
IP address was scanned inside a flow. Figure 2 shows this
projection for three different strategies seen in scanning tools.
For visibility, we only include a /22 netblock in the figure.

Figure 2(a) shows a random scanning pattern, implemented
by some custom-made tools which randomize the destination
IP address over the entire IPv4 space for every packet. By
doing so, a scanner will hit a specific netblock with lesser
intensity, as the probability of picking an IP address in
this netblock is netblock−size

232 . Figure 2(b) shows a scanning
behavior where the next scanned IP address is sequential,
which is implemented in SIPVicious and is thus also present
in all tools based on this source code. This functionality
can be changed in SIPVicious by providing a –random flag
when running the program, we have however not been able
to identify any SIPVicious based activity that has used this
functionality instead of the sequential scan. While a sequential
scan is simple to implement, this method will scan all IP
addresses in a netblock in a small time frame, making it easier
for IDS systems to identify a scan is going on by matching the
number of packets originating from a single source IP address
in a small time window. Figure 2(c) shows the SIP scanning
behavior of NMap and similar tools, where the IP address
is randomized but generated for small netblocks in sequence,
leading to all IP addresses in a netblock being scanned at once
before moving on to another part of a netblock.

Another field a scanner can customize is the source port
from which the packet is sent. For NMap based scanners these

Message Response
INVITE 100 Trying
REGISTER 401 Unauthorized
BYE / CANCEL 481 Call / transaction doesn’t exist
OPTIONS 200 OK (Options in headers)

TABLE II: SIP message types used for scanning and the
responses from a server.

source ports are randomized on every packet sent, without
customization from users. In SIPVicious however, a user can
choose a port on startup of the scan with a default of 5060
where the program will bind to in the operating system. When
the program is unable to bind to a specific port for any reason,
it will automatically move on to the next port until the program
can bind to the port. Here there is again little customization as
94% of all flows are initialized with the default source port.
3% of the flows are initialized with port 5061, indicating that
another process is already bound to the standard SIP port.

C. SIP messages

As described in section III, there are six general types
of SIP requests: INVITE, ACK, BYE, CANCEL, OPTIONS
and REGISTER. Except for the ACK message, all of these
messages can be used for the detection of SIP servers, as
a SIP server will respond. Table II shows responses of a
plain SIP server to the message types. As every message type
elicits a different response, the messages provide an adversary
with different information after a server is identified. In our
measurements, we have observed the INVITE, CANCEL, OP-
TIONS and REGISTER commands being used to scan for open
services. Most scans use the OPTIONS message type, which
is the default scan type of most tools including NMap and
SIPVicious, and notifies the scanner about server functionality.

While SIPVicious and NMap based scanners mainly use
the OPTIONS type in the message, custom-made tools instead
prefer to use REGISTER messages, with 6 out of the 13 custom
tools solely using this message type. By using this message
type, the scanner will immediately find whether an additional
login is needed on the server, or that it can be used to perform



Fig. 3: Sankey diagram of the yearly evolution of tools. Boxes
show the relative number of IP addresses using a tool and the
flows between boxes show the overlap between years.

for example call fraud without having the server credentials.
CANCEL is the least often used with only tool 17 sending this
message type. While a packet containing CANCEL could be
used to forcefully stop a SIP connection, it is very unlikely for
this to happen in a scan due to the entropy of call-ids. INVITE
messages are only used by scanners 11, 12, and 20 and do not
only obtain a reply from the server to identify new SIP servers,
but they also instruct the server to request the establishment
of a SIP session when a phone number is provided in the
packet, which only occurs in 3.5 million packets. In total, 234
unique numbers are included located all over the world. We do
not find any indication why these specific numbers are called,
except for two numbers that are included in over 100K packets
each and are reported to be scammers by a Norwegian phone
number reputation database.

D. Tool evolution

When scanning the Internet for a long time, actors might
opt to redesign their tools to make them faster or change
the payload to prevent their probes from being fingerprinted
and subsequently dropped. To understand how SIP scanning
actors have evolved, we identify the 21 tools found using the
fingerprints in-network telescope data of the first two months
of every year from 2016 to 2020 and compare the tools used

Fig. 4: Geographical distribution of source IP addresses run-
ning specific tools.

by source IP addresses over the years. Figure 3 shows the
evolution of tools used by source IP addresses, where only the
IP addresses that are observed to be scanning for more than
one year are included in our data. When scanning for periods
spanning multiple years, it would be expected that they update
their tools over time, yet we see surprisingly little evolution in
tooling. Most actors never change their tool even when newer
tools are available that are better suited for circumventing
detection systems by for example randomizing destination IP
addresses. Even when IP addresses are observed years apart,
such as an IP address that was only online in 2016 and 2020
running the sip.b.local tool, the same tool is used when they
come online again.

E. Geographical distribution of tools

While scans originate from 75 countries, 65% of scanning
traffic originates from only 5 countries: Germany, the United
States, the United Kingdom, France, and the Netherlands.
Interestingly, this does not follow usual IP allocation; China
has a large address space but only 1.4% of hosts scanning SIP
originates from China. Germany on the other hand has a much
smaller address space while 30% of all SIP scanning hosts
originate from this country. Overall scanning traffic mostly
originates from countries such as China or the US [24], which
is not the case for SIP scanning traffic.

Figure 4 shows the geographical distribution of sources
using one of the tools we can fingerprint. The figure shows
that tools based on SIPVicious are highly distributed, with
countries with large IP space such as the US holding a
significant part of the scanning activity. Tool #4 is also highly
distributed in countries, but a disproportionate amount of
sources is located in the Netherlands and Russia. We can
trace back the scanning activity of this tool to datacenters
and bullet-proof hosting providers. NMap-based tools show
less geographical distribution, with only the base tool and
not its derivations being used from multiple countries. Unlike
SIPVicious, NMap is also used from Chinese sources. The
only other two tools used from China are tool #14 which uses
a standard tutorial packet and tool #20 which uses INVITE
messages. As tool #20 is mostly distributed according to
geographical IP allocation and only sends INVITE messages
we suspect this tool to be used to place phone calls rather than



Fig. 5: Examples of tuples of scanning IP addresses.

discover SIP services, and therefore randomizing the Source IP
address of each packet preventing the answer to these requests
being observed by the actor. Custom tools are as expected
much less distributed than common tools, as common tools are
used by various actors around the world, and custom tools are
most likely used by a single actor or small groups of actors.

VI. CAMPAIGN ANALYSIS

While the fingerprints identify a tool used by a source IP
address, it does not allow for direct identification of scanning
campaigns as the same tool might be used by different actors.
In this section, we will identify behavioral traits allowing for
the identification of scanning campaigns targeting SIP and
analyze the behavior of these scanning campaigns.

A. Behavioral clustering

When scanning the Internet, an actor will either send all
packets from one single source IP address or farm out the
operation over multiple controlled hosts. As it is impractical
to create a new tool for every collaborating host, the actor
will most likely use the same tools on all machines. To verify
this claim we first create clusters of source IP addresses
by grouping them based on their activity and verify that
campaigns we find are conducting scans with a single tool.

A scanning campaign consists of multiple distributed hosts
scanning the Internet at the same time. Figure 5 shows
timelines of similar scanners, creating a significantly unique
behavioral fingerprint used to cluster similar scanners. We
cluster source IPs in three steps: First, we create a binary vec-
tor spanning our entire measurement period for every source
IP address where a ‘1’ is added on every day the source IP

has been observed and a ‘0’ when it is not observed. Second,
we perform HDBScan clustering using pairwise Euclidean
distances on the resulting vectors and select the clusters with
5 or more hosts. Third, we remove all clusters of IP addresses
that are always active as they do not provide us with a distinct
behavioral fingerprint but will rather cluster all campaigns
scanning every day into one big campaign.

After clustering the 5,691 source IP addresses we obtain 250
campaigns containing in total 2,787 (49%) IP addresses, which
are all scanning the Internet using only one tool. Figure 6
visualizes these campaigns in a bubble chart where every
bubble corresponds to a campaign, colored by the specific tool
that was used to perform the scan. We find that common tools
such as SIPVicious are used to scan the Internet at high speeds
(mean of 520 packets per second in our telescope), and only
limited actors are actively throttling their scanning speed to
avoid detection by IDS systems. While only one campaign
using SIPVicious is sending at a rate where we observe less
than 5 packets per second, we observe highly distributed
campaigns from custom tools that are actively scanning at
very slow rates, with 4 campaigns sending even less than 200
packets per second if we extrapolate over the entire IPv4 space.
We would expect that actors adapt the number of packets sent
based on the number of hosts used to perform the scan, and
thus send half as many packets per host when scanning with
2 IP addresses as opposed to one. To test this we correlate
the size of the cluster with the number of packets sent per
source IP address and find a much weaker relation than we
expect with R = −0.134 (p < 0.05) as many campaigns
scan all IP addresses from all of their hosts. For scanning
speed, we do not find a significant relationship, but there is an
indication of a small negative effect of the amount of source
IP addresses used in a campaign and the average scanning
speed (R = −0.09, p = 0.13), indicating that there is a
slight reduction in scanning speed when distributing scanning
activities, but most distributed scanners are farming out their
operation to obtain a significant speedup of the campaign.
The largest campaign we identify is using tool #10 and is
highly coordinated, evenly distributing the operation over 283
IP addresses and limiting scanning speed.

B. Scanning activity

While scanning the Internet once for open SIP servers might
be enough for adversaries that aim to perform a one-time
exploit, some actors will periodically update the list of open
servers by performing regular scans. Campaigns using tools
#10 and #17 are for example scanning the Internet every
month, while tool #15 is used very sporadically and no clear
pattern emerges in its scanning behavior. From all IP addresses
scanning SIP, 2,634 (46%) only scan the Internet once and
never come back. From the 54% of IP addresses generating
multiple flows, only 642 (21%) are located in Germany,
where the bulk of SIP scanning IP addresses are located.
Instead, most recurring scanning activity originates from the
US, where 1,345 (44%) of the IP addresses generating multiple
flows are located. Additionally, we find that campaigns using



Fig. 6: Bubble plot of scanning campaigns identified in the data colored by tool, with the observed amount of packets per IP
address and the average speed observed in the telescope. A blue dotted line shows the addresses in the network telescope.

custom tools are more likely to perform periodic scanning
with 76% of campaigns being periodic whereas only 29% of
SIPVicious-based scanning campaigns show recurrence. While
over time Internet speeds increase, with only in 2017 already
a global speedup of 30% [25], we do not see a significant
increase in scanning speed over the years (p = 0.79). Instead,
average scanning speeds remain constant as the variation
between clusters becomes larger, where increases in scan
rate are countered by campaigns that are actively throttling
their operation. The number of packets sent per source IP
address in a campaign however sharply drops over the years
(R = −0.41, p < 0.001), showing that the distribution of
scanning campaigns becomes much more frequent.

VII. CONCLUSION

In this work, we analyze tools used for SIP scanning from
2016 until 2020, finding that most actors perform large single-
source scans using standard tools. We analyze who is scanning
and provide a method to identify which tools are used to
perform a scan, uncovering 21 different tools used by various
actors. We find evidence of distributed and persistent scanning
campaigns, where actors scan the Internet periodically and
actively reduce the number of probes sent per second by their
measurement infrastructure. Over time, scanning campaigns
become increasingly more distributed, making these scans
harder to detect for defensive infrastructures.
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