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Abstract—Network measurement is essential to many network
applications. The trend of ever-increasing network traffic calls for
contemporary network measurement approaches to have three
key characteristics: accuracy, timeliness, and memory efficiency.
The sketch algorithm offers a suitable trade-off between accuracy
and memory consumption; however, its interval method is not
as accurate and rapid as the sliding window method in Heavy
Hitter detection. However, the sliding window method is believed
to be highly memory-consuming. Accordingly, this paper pro-
poses ARMHH: Accurate, Rapid, and Memory-efficient Heavy
Hitter detection, which combines the sliding window and sketch
algorithm approaches. Compared with the interval method,
our experiments show that ARMHH improves the accuracy by
121.8x, 2.8x, and 3.5x on average for CM, CU, and Hashpipe,
respectively, by consuming additional memory overhead for the
sliding window. ARMHH also compresses the sliding window
memory by at most 60%.

Index Terms—Heavy Hitter detection, Sliding window, Net-
work measurement and analysis, Software-Defined Network

I. INTRODUCTION

Network measurement is essential to many network appli-
cations, including anomaly detection [1], congestion control
[2], [3], and billing [4]. The trend of ever-increasing network
traffic results in the need for three key properties in network
measurement: accuracy, timeliness, and memory efficiency.

However, measuring network traffic with full accuracy can
result in high memory consumption. A network flow can
be distinguished by its flow key, which is usually a 5-tuple
(comprising source and destination IP addresses, source and
destination ports, and protocol) in IP networks. The memory
resources are excessively used if we measure each flow with
full accuracy.

To achieve memory efficiency, many existing sampling
methods [5]-[9] rely on probabilistic sampling the packets in
the stream, which inevitably reduces accuracy.

Sketch algorithms [10]-[18] are developed in response to
the desire to ensure high accuracy and low memory overhead
in network measurement, which result in trade-offs of accuracy
and memory consumption. A sketch algorithm allows different
flows in the stream to share the same memory slot while ex-
tracting the statistics with guaranteed probability and provable
accuracy loss. The emerging Software-Defined Network (SDN)
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[19] enables sketch algorithms to be deployed in network
devices owing to its flexible data plane.

Heavy Hitter (HH) detection is a significant function within
the sketch algorithms such as Count-Min (CM) sketch [16],
Count-Min sketch with Conservative Update (CU Sketch)
[17], and Hashpipe [18]. HH detection is designed to detect
the flows whose traffic volume exceeds a given threshold
percentage of the total traffic volume in the stream.

While traditional HH detection algorithms [16]-[18] address
memory space and accuracy requirements simultaneously, they
are still not accurate and rapid enough at finding HHs, because
of the interval method (INT), which collects flow statistics
from a given time interval, while only analyzing the HHs at
the end of the interval. The chief drawback of INT is that it
may fail to detect the HHs that appear on the boundaries of
different intervals. Moreover, the time span of the interval can
be reasonably large, leading to a delay in finding HHs.

The sliding window method is a novel direction that presents
an alternative to the traditional INT and is more accurate and
rapid in HH detection. Firstly, the sliding window method
detects HHs continuously, which eliminates the HH loss in
the interval boundaries. Moreover, the sliding window method
can report large flows at any time during the interval, meaning
that HHs can be reported at real time.

Notably, the sliding window method can be highly memory-
consuming, which violates the original intention of sketch
algorithms (namely to save memory).

Accordingly, this paper proposes ARMHH: Accurate,
Rapid and Memory-efficient Heavy Hitter detection with slid-
ing window in the SDN context. The main contributions of
this paper are as follows:

o This paper proposes ARMHH, which introduces the
sliding window method into sketch network measurement
algorithms and elaborates on the framework of ARMHH.

o« We partition the ARMHH framework workflows into
two parts, namely the SDN control plane part and SDN
data plane part, to accommodate the framework to SDN
architecture.

e We compress the sliding window memory space in
ARMHH to save the on-chip memory, which is typically
limited on network devices.
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Fig. 1: Count-Min sketch overview.

TABLE I: Parameters in this paper.

Parameter Description
g packet stream with m packets,
S = {507 S1,° 757n71}
h length of the flow key (in byte)
g length of the timestamp (in byte)
P threshold of Heavy Hitters
t time span of interval (in millisecond)
d depth of the sketch
w width of the sketch
Vixw the sketch array
H;() hash function
M memory overhead
q=re depth of the sliding window
number of distinct flows
p in the sliding window
%) packet repetition rate
L set of HHs in S, L = {s;|fs, > ®q}

o We formulate the optimization problem of on-chip mem-
ory allocation for the sliding window and sketch algo-
rithm.

o We demonstrate via experiments that the ARMHH is
more accurate than the INT in terms of HH detection
with the help of the sliding window.

II. BACKGROUND AND MOTIVATIONS
A. Sketch algorithm

Sketch is a particularly powerful technique for real-time
analysis of the massive, high-speed data generated by IP
networks. Sketch is approximate and probabilistic, capable of
answering a query within the error factor of ¢ with probability
1 — 4. For example, Figure 1 presents an overview of the
Count-Min (CM) sketch [16]. CM sketch records the packets
{50,581, ,8m—1} of flow S in a d X w array V., where
d is the depth of the multi-level sketch and w is the width
of the sketch. CM sketch records a packet s; in d slots from
the arrray, one in each level, by using d independent hash
functions. Table I summarizes the parameters used in this

paper.
B. Sliding window overview

Figure 2 illustrates the basic idea behind the sliding window
method. The m packets sg, 1,582, ,Sm—1 Of stream S
arrive sequentially. The sliding window is a First In First Out
(FIFO) queue where each newly arriving packet enters the
queue at the rear, while the outdated packets leave the queue
at the front. The packets at the front of the sliding window
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Fig. 2: The superiority of sliding window method against the
traditional interval method in Heavy Hitter (HH) detection.

are examined every time when a new packet arrives and enters
the sliding window at the rear. The front packets are expelled
only if found to be outdated. This method behaves like a
window sliding over the stream continuously, which is why
it is referred to as the sliding window method.

C. Superiority of sliding window

The sliding window method is more accurate and faster
than the interval method in HH detection. For example,
in Figure 2, supposing that the span of the interval is ¢
seconds and the threshold ® = 0.3, the m = 12 packets
{s0, 81, , 811} of stream S arrive in two sequential intervals
[0,) and [t,2t) at a constant rate of ¢ packets per second.
Hence, both intervals include the same number of packets,
namely six. For simplification, S only has two flows, the
red-colored Sy = {so, s3, S5, 7, S8, S9} and green-colored
S1 = {s1, 82, 84, S¢, S10, 11 }. The red-colored Sy is a HH
in reality, as the four packets {ss, s7, Ss, 9} arrive in a period
shorter than ¢ and are detected as a HH by the sliding window.
However, in the interval method, Sy is not recognized as a
HH, as s5 arrives in the previous interval [0, t), while s7, sg, Sg
arrive in the current interval [¢, 2t); thus, Sy is a false negative
(Fn) in the interval method. The interval method naturally
splits the whole stream S by epochs, meaning that the HHs at
the boundary of intervals are neglected. We could decrease the
threshold ® = 0.25 to detect the flow Sy as a HH; however,
this would mean that the flow S; is recognized as a HH as
well, which is a false positive (Fp).

The sliding window method is more accurate than interval
method in two key respects. Firstly, the sliding window method
always counts the packets in the latest ¢ seconds, i.e., its
behavior involves sliding continuously over the stream, which
eliminates the false negatives at the boundaries of intervals.
Also, the HH is detected with a larger threshold ®, which
reduces the number of false positives.

Another advantage of the sliding window compared to the
interval method is the speed with which it reports HHs. The
sliding window method can report the HHs at any time, while
the interval method can only report the HHs at the end of
each interval. Notably, the time span of the interval can be
reasonably large, leading to high latency in reporting HHs in
the interval method. The sliding window always reports as
soon as it finds HHs.



D. Challenges

SDN [19] has opened up a new era in sketch algorithms
[11], [12], [18], [20] owing to its programmable data plane.
However, to maintain the high throughput, the programmable
data plane also places rigid restrictions on programming: (1)
a small number of memory accesses per packet [21]; (2)
no across-stage memory access for each packet [14]; and
(3) simple operations for each packet. Moreover, the on-chip
memory is scarce. For example, the Tofino programmable
switch has only 16.3 MB of on-chip memory in total.

The main challenges of this paper are as follows: (1)
modify the sliding window to satisfy the data plane operation
restrictions; (2) reduce the memory overhead of the sliding
window; and (3) integrate the sliding window with the sketch
algorithm on the SDN architecture.

ITII. SYSTEM DESIGN
A. System overview

We introduce the sliding window method into the sketch
algorithm to implement ARMHH. Figure 3 illustrates the
framework of ARMHH, which consists of two parts: the
data plane part and the control plane part. The data plane
is good at processing the large volume of packets with a high
throughput, but cannot carry out complicated operations like
maintaining the HH set. By contrast, the control plane can
carry out complicated operations but has a low throughput.
Thus, the data plane part includes a sliding window and sketch
algorithm that process every packet, while the control plane
part maintains a set that records the key-size pairs of detected
HHs.

The workflow of ARMHH presented in figure 3 comprises
four steps: (1) update the sliding window, which maintains
the packets that entered in the last ¢ seconds; (2) update the
sketch statistics according to the packets within the sliding
window: insert the statistics of the new packet s, 1 into the
sketch and expel the statistics of the outdated packet sg_1; (3)
the data plane reports any potential HH to the control plane
(assuming the estimated size of s,14—1 in the sketch is above
the threshold, it sends sq4,—1.key and estimated size min,, to
the control plane); and (4) the control plane updates the record
in the HH set. Steps 1 and 2 run in the data plane, while steps
3 and 4 run in the control plane.

B. Basic version of sliding window

A basic version of the sliding window operates by directly
storing the original timestamps and keys of packets that arrive
in less than ¢ seconds in a queue. Each packet accesses the rear
element and possibly one or more front elements of the queue.
When the flow rate is steady, one packet ejects only one front
element in most cases; otherwise, we can eject a large number
of front elements through the control plane. Thus, most packets
only access the sliding window memory twice.

Definition 1 (sliding window depth q): ¢ > 0 is the depth
of the sliding window, i.e., the maximum number of packets
that the sliding window queue needs to record in an interval.

The memory overhead for storing the original timestamps
and original flow keys in a sliding window queue is as follows:

M = (9+h)q (D

where g is the timestamp width and A is the flow key width.
However, M 2°“¢ can be reasonably large. For example, when
we use a six-byte integer as the timestamp and the 5-tuple as
the flow key, where g = 6 and h = 13 bytes. On a 100 Gbps
link, assuming the minimum packet size is 64 kB, the flow
rate is 1.56 x 10° packets per second in the worst case. If we
set the interval length to ¢ = 5 milliseconds, the memory size
of sliding window MZ4°“¢ is 148 kB, which is 8 x that of the
sketch My in our experiment.

C. Compressing the sliding window memory

In the basic sliding window scheme, MZ:¢“¢ is positively
correlated to the timestamp length g, flow key length h and
window depth g. MZ!°"¢ can be large when g, h or ¢ is large.
Thus, we reduce the values of g, h and ¢ to compress the
sliding window memory.

1) Reducing the g and h: We can reduce the timestamp
length g by using the precise length needed rather than a 6-
byte. Also, we can reduce the flow key length i by storing
the flow key hash values instead of the original flow keys.

Theorem 1: The memory overhead for storing the com-
pressed timestamps and hash values of the flow keys in a
sliding window queue is as follows:

pauene’ _ % (Mlogs(t x 10%)] +d[logow]) ()

Sw

Proof 1: Assuming the minimum unit of time is one
millisecond, to represent a interval of ¢ seconds, we will need
[log,(t x 10%)] binary bits. Thus, we need § [log,(t x 10°)]
bytes for each compressed timestamp. The length of the
hash value is determined by the width of the sketch w.
To index the w slots in each level of the d-level sketch
will require [log,w] binary bits. Thus, we need 2 [log, w]
bytes for the d indexes of each packet. The total amount of
memory required for the sliding window therefore becomes
Maueue” — 2 ([logy(t x 10%)] 4 d [logy w).

We have MZucue = (g + h)qg; letting M;{f“e/ < Mgueve,
we have the corollary:

Corollary 1.1: In the sliding window queue, storing com-
pressed timestamps and hash values of flow keys uses less
memory than storing the original timestamp and flow keys,
when the width of the sketch array w satisfies

w < 27[Blg+h)—[logy(tx10°)]] -1 3)

Example 1: For CM sketch, we usually adopt d = 4 or
d=3.Letd=4,t=1and h = 13 in Equation 3; thus,
we have w < 232, As long as the width of the sketch array
w is below 232, this compression method is effective in this
condition.

2) Reducing the q: We can also compress the window
depth ¢ by deleting the redundant keys. We can achieve this
by replacing the queue with a linked list. Figure 4 presents
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Fig. 4: The queue vs. linked list sliding window.

the data structure of a sliding window implemented in queue
and linked list form respectively. The sliding window records
four packets (ss, s4, S3, S5) Where s3 appears twice. The queue
consumes one memory slot for each packet, meaning that the
flow key of sz is repeated. By contrast, the linked list can
merge the packets of the same flow by storing the distinct
keys of the flows and the timestamps and indexes of packets
that have the same flow key. In Figure 4, the packet s3 is
stored with its flow key, two timestamps and two indexes O
and 2.

Definition 2 (distinct flows p): p is the number of distinct
flows in the sliding window. We have 0 < p < q.

Theorem 2: The memory overhead for storing the original
timestamp and flow keys in a sliding window linked list is as

follows: i 1
q 110824
=2 g )

Proof 2: The p distinct flows consumes ph memory to store
the p distinct flow keys. To index one of the ¢ packets in the
queue, we will use [log, (¢)] binary bits. The g packets will
use M bytes to index all slots in the sliding window.
The q packets use q bytes to store the timestamp. Thus,
Mlzst — ph + a 10g2 )] + gq.

Example 2: In Flgure 4, assume the window depth ¢ = 4,
timestamp length ¢ = 6 bytes and the flow key length
h = 13 bytes. The memory overhead for the queue MZ!°"¢ =
(9 + h)g = (13 + 6) x 4 = 76 bytes. The memory overhead
for the linked list Mst = ph + £ ([logy (q)]) + gq =

Mt = ph +

3 x 13+ glogy4 + 6 x 4 = 64 bytes, which saves 12 bytes
compared with M 22¢“¢. Thus, the linked list uses less memory
when there is a repeated flow. Consider a special situation,
when all four packets have the same flow key: under these
circumstances, M5t is only 38 bytes.

Definition 3 (packet repetition rate p): ¢ is the proportion
of packets that have appeared before it in the sliding window.
q9—p p
p="r=1-" 5)
q q

p is the number of distinct flows in Definition 2, while ¢ is the
depth of the queue in Definition 1. Thus, ¢ — p is the number
of packets that have appeared before.

In Figure 4, ¢ =1 — % = i. This means only one of the
four packets (the s3 between s, and s5) has appeared before it
in the sliding window. When ¢ = p, all the flows appear only
once and ¢ = 0. The smaller the p, the smaller the number
of distinct flows and the higher the packet repetition rate (.
When all packets have the same flow key (p = 1), ¢ has the
maximum value 1 — 2. (Note that ¢ < 1, as the front packet

q
of the sliding window is always one that has never appeared
before.) When the queue depth ¢ is infinitely large and p = 1,

1
lim <1 — > =1 (6)
q—-+oo q
Moreover, ¢ > 0, as ¢ > p in Equation (5). Thus,

ql}gl Pmax =

0< 9 < Pmas <1 (M
Theorem 3: M2'<“¢ and M5! comply with

Mgaeue > Méiuft’ 0> [logsy ()]

8h
Mqueue — Mlz'st 0= [IOggz}L(QH (8)
MQueue < Mé;ﬁta 0 < |—10g82h(f1)-\

Proof 3: We now prove that Mdveue > MLst when ¢ >

a7 [1og, (q)]. Let Maueve > MLlist | we have

q [logs q]
8

Equation (9) <= h(q¢—p) > qﬂogz a . e p > ﬂoggiq].

hq + gq > ph + +9q )



As ¢ = % according to Definition 5, we have

o> f10g82h(qﬂ (10)

We can also prove the equations of the other two conditions
in Equation (8) as above.

According to Theorem 3, the linked list is more space-
efficient than the queue only when the packet repetition rate
 is bigger than lo%h(qﬂ. Note that % is the ratio of
the index length to the flow key length; the larger this ratio,
the larger the minimum value of .

Example 3: Assuming g = 1024, h = 13 in Equation (10),
we have ¢ > 9.6%. Thus, as long as over 9.6% of packets
appear more than once in the sliding window, the linked list
will be more space-efficient than the queue.

3) Reducing h, g, and q: However, we still store the orig-
inal flow keys in the linked list sliding window above, which
only reduces g. We now reduce h, g, and ¢ simultaneously by
using a linked list sliding window that stores the compressed
timestamps and hash values of flow keys.

Theorem 4: The memory overhead for storing the com-
pressed timestamps and hash values of the flow keys in a
sliding window linked list is as follows:

1

"2
Mlzst _
sw 8

(dp [logy w] + g [logy q] + ¢ [log,(t x 10°)])
(1)

Proof 4: We replace the original flow keys with the hash
values of the flow keys and the original timestamps with
compressed timestamps. Thus, we replace h with £ [log, w]
and g with § [log, (¢ x 10®)] in Equation (4); accordingly, we
have M5t = p2 Tlogy w] + & [logy g] + & [log, (t x 10%)] g
= g (dp [ogy w] + q [logy q] + q [logs(t x 10%)]).

Also, we have the following:

Theorem 5: M ggjeue’ and M(ﬁfjt' comply with

ueue’ list’ [logs ()]
MEgee > Mgg®, ¢ > d[[logﬁ

weue’ __ list’ _ 1 (@)
Mgw - M@wt y P = dﬂ?fg% (12)
g < <
Proof 5: Let MUst" < Maueue’: we thus have
dq dp q
5 Nogyw] < <~ [logyw] + 2 [logy ¢ (13)

q—p [log, q] [logs q]
= <.m = p < mWecanalso
prove the equations of the other two conditions as above.
The above conclusion is in accordance with Theorem 3.
Note that -1282(D]_ is the ratio of the index length to the

d[log, (w)]
length of the d hash values.

D. Sliding window Heavy Hitter detection

We now integrate the sliding window with the sketch
algorithm to detect HHs. We here adopt CM sketch and use a
queue as sliding window as an example.

Algorithm 1 shows the transactions in the data plane, which
include steps 1 and 2 in Figure 3. For each packet s; in
stream .S, Algorithm 1 firstly inserts s; into the CM sketch:

Procedure update(s;.key, min, ), update the sliding
window Heavy Hitter set L;w in the control plane of
the Software-Defined Network devices
Input: Flow key s;.key and estimated size min,,
Result: Updated sliding window Heavy Hitters L;w
initialization: L., < 0;
it 31, € L., s.t. [;.key == s;.key then
‘ l;.size :max(l;.size,mim,) ; // update HH size
else
l;ew +— pair (s;.key, min,);
L;w = L;w U {l:’Lew} 5

[ N7 T SR

// insert s; into HH set

Algorithm 1: Sliding window Heavy Hitter detection
with CountMin algorithm in the data plane of Software
Defined Network devices

Input: Packet stream S = {so, S1,* " ,Sm—1}

Result: Updated sliding window S,.,, and updated sketch

value Vixw
1 initialization: Ss,, <— @, hash functions Ho,--- Hy_1:
{0,--+,2%" —1} = {0, ,w — 1}, Vaxw + {037

2 for s; € S do

3 indexgx1 {O}UZ><1 ; // insert s; into CM

4 for j <~ 0tod—1do

5 index; < H;(si.key);

6 k < index;;

7 Vjk < Vi +1;

8 Trear < pair (s;.time,inderqx1);

9 Ssw.pushback (rreqr) ; // push s; to Ssyw rear

10 T front < Ssw.front ();

11 while 7cqr.time — rfrons.time > ¢ and /Ss.empty
do

12 Ssw.popfront () ; // pop Ssw front

13 1dTax1 = Tfront-iNdeTqx1;

14 for j <~ 0tod—1do

15 k < idx; // delete Ssu front in CM

16 L Vjk < Vjk — 1;

17 T front < st.front (),

18 min, < OXTIfTfTr ;
19 for j <~ 0tod—1do
20 | min, < min(miny, vjindes; )

// estimate size of s;

21 if min, > ®q then

2 L call update (s;.key, miny) ; // reprot HH

adds d slots in the d-level CM sketch array vgx.,, Where the
j slot is indexed by H; (s;.key), the j'" hash value of the
flow key s;.key (Lines 3-7). Next, the timestamp s;.teme and
hash values index %1 of packet s; are pushed to the rear of
the sliding window Sy, (Lines 8-9). Moreover, Algorithm 1
deletes the outdated records at the front of the sliding window
(Line 12), and decreases the corresponding slots in the CM
sketch (Lines 13-16). Lastly, Algorithm 1 tracks the minimum
value min, of the d slots (Line 18-20) and reports it as a
potential HH to the data plane if min, exceeds ® |S| (Lines
21-22).

Procedure update shows the transactions in the control
plane. The control plane updates the HH set L’ according to



the flow key s;.key and estimated size min, of the received
potential HH. If the flow [ is already in L., and I}.size <
min,, we update its size to min, (Lines 2-3); otherwise, we
insert the pair of (s;.key, min,) as a new HH into L', (Lines
4-6).

We can also integrate the sliding window with CU sketch
and Hashpipe with minor modification in Algorithm 1. CU
uses the same sketch structure as CM; assuming each counter
of sketch is a 4-bytes integer, the sketch memory for CU and
CM is

M, (CU) = Mg, (CM) = 4dw (14)

CU differs from CM only in terms of the way it increases
and decreases the minimum slot across the d-level sketch.
Hashpipe uses a different sketch structure from CM: in this
case, we need to store the flow keys along with the sketch
value in the multi-level sketch. Thus,

M, (Hashpipe) = (4 4+ h)dw (15)

Hashpipe also differs from CM in terms of its sketch operation:
more specifically, it may discard the prior flow’s statistics
when the prior flow collides with a new flow.

The biggest problem associated with integrating the sliding
window with Hashpipe is as follows: we compressed the
sliding window by only storing the hash indexes of the flow. If
the prior flow is replaced with a new one, we may mistakenly
decrease the statistics of the new flow when the packet of the
prior flow leaves the sliding window. We evaluate the policy
in section V-B1.

E. Query runtime

We can now query flow statistics in the control plane,
including HH query and HH frequency query.

HH query. The set L., in the control plane stores all
potential HHs. Given a packet s;, we need to look up whether
31 € Ly, st l.key == s;.key. If yes, s; is regarded as a
HH; otherwise, s; is not a HH.

HH frequency query. We can also query the estimated
frequency f; of a packet s; in the control plane. f; is given
by:

fsi =

R l;-.size . ’ ’ ’ e
{ T W3 L st hey == sihey (o

0, otherwise

where ¢ is the depth of the sliding window.

F. Formulating the optimization problem

We now formulate the optimization problem. Given the
restrictions below:

,6,d>0
st. <w,d,q,h,g € NT
p<g¢, peN

a7

Our goal is to allocate minimum memory according to the
value of ¢:

[log,(q)]

queue’ =2 ]
min M = {MSk N Msl@t/ ’ 0“%;0(5 dlogz (W)l (18)
M+ M, gty < # <1

IV. IMPLEMENTATION

In this section, we implement a prototype of ARMHH,
including a P4 data plane and Python control plane.

A. P4 data plane

We build the data plane in P4 (Programming Protocol-
independent Packet Processors) [22], a language that specifies
how programmable switches process packets.

We implement the sliding window and multi-level sketch
using P4 registers. For the sliding window part, we use a reg-
ister array as a round-robin queue that stores the compressed
timestamps and hash indexes of packets. The data plane
updates the queue driven by the arriving packets. Notably, the
linked list structure is not well supported by the P4 platform;
we may implement the linked list structure of the sliding
window on other platforms in future works. For the sketch
part, moreover, we use one register array for each level of
the sketch value array V., to store the flow statistics. We
also need one additional flow key array K x,, for Hashpipe
to store the original flow keys in the multi-level sketch.

The data plane signals the control plane to eject front
elements in the queue, when flow rate drops sharply. We run
the P4 data plane on BMv2 (Behavioral Model version 2)
[23], a software switch simulator that implements the packet-
processing behavior specified by the P4 program.

B. Python control plane

We build a control plane in Python that receives the potential
HHs from the data plane, updates the HH set and runs the
query task answering the HH query and HH frequency esti-
mation. Moreover, the control plane can also manipulate the
sliding window queue according to the data plane’s requests.

V. EVALUATION
A. Experimental setup

1) Testbed: We build a simulation benchmark in the C++
language. We implement the CM, CU, and Hashpipe in both
the interval method (INT) and ARMHH. We then evaluate
them on an one-hour-long real network trace derived from the
CAIDA 2018 dataset [24]. We use the 5-tuple as the flow key;
thus, the length of the flow key h is 13 bytes. We split the one-
hour-long trace into 3600 one-minute-long traces and compare
the accuracy of INT and ARMHH at the end of each minute.
The results are the average values from 3600 tests.

2) Metrics: We use the following evaluation metrics:

o Average Relative Error (ARE): I%\ SIS EiF i}

fi,
o precision rate: 12

which is the ratio of true positives
(Tp) among all positives |L’| (i.e., the sum of true
positives T'p and false positives Fp).

i
(L]
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o recall rate: % which is the ratio of true positives (Tp)

among all real HHs |L| (i.e., the sum of true positives
Tp and false negatives Fiv).
We use ARE for HH frequency query evaluation, while the
precision and recall rate are used for HH query evaluation.

B. Accuracy comparison with same sketch memory

We first evaluate the accuracy of INT and ARMHH with
the same sketch memory space, where the ARMHH consumes
extra memory for the sliding window. We set d = 3, w = 1500
and use 4-bytes counter for the sketch, where M, (CM) =
M, (CU) = 17.6 kB, and Mg (HashPipe) = 74.7 kB.

1) Time span of interval t: We fix the threshold ® = 0.001
in order to examine the influence of the interval length t.
Figure 5 presents the results when ¢ varies from 0.5 to 4.5
milliseconds. As we have fixed a relatively small sketch
memory size, the value of t cannot be too large; otherwise, the
conflicts in the sketch will increase and degrade the accuracy.

Figure 5(a) reveals the ARE of the different algorithms. For
CM, CU, and Hashpipe, ARMHH degrades the ARE from
above 0.15 to under 0.07 compared with the INT under all
values of ¢. As the time span ¢ of the sliding window increases,
the ARE of INT, ARMHH-CU, and ARMHH-Hashpipe in-
creases linearly; however, the ARE of ARMHH-CM stabilizes.
ARMHH benefits CM best among three algorithms in terms of
ARE. The average improvements for CM, CU, and Hashpipe
are 121.8x, 2.8%, and 3.5X, respectively.

Figure 5(b) plots the recall rate. ARMHH improves the
recall rate on average for CM, CU, and Hashpipe by 15%,

11%, and 12%, respectively. As t increases, the recall rate de-
creases linearly in INT, ARMHH-CU, and ARMHH-Hashpipe.
ARMHH best benefits CM, whose recall is always close to
100%. Part of the recall drop in ARMHH-Hashpipe is caused
by the flow key compression, which mistakenly decreases
sketch statistics (Section III-D). We also test Hashpipe with
storing the original keys in the sliding window and the
improvement is tiny: the ARE decreases by only 0.01 and
recall increases by 0.015 when ¢ = 4.5 ms.

Figure 5(c) shows the precision rate. The precision rate of
ARMHH-Hashpipe is not affected by ¢ and is always nearly
to 100% in our experiment. The ARMHH reduces the recall
rates of CM and CU because false negatives appear in the
boundaries of different intervals. When ¢t = 4.5 ms, the
maximum recall rate loss is 0.8% in CM algorithm.

Accordingly, compared with the INT, ARMHH obtains
better results in ARE and precision and acceptable loss in
recall under all ¢.

2) Threshold ®: We also fix ¢ = 2 ms and vary the
threshold ® from 0.0016 to 0.012 in Figure 6. The smallest
®,,in is 0.0016; under this threshold, over 90% of all flows
are extracted.

In Figure 6(a) and 6(b), it can be seen that the performance
of ARMHH with all three algorithms is not affected by the
varying ®; However, the accuracy of INT degrades sharply
when & gets larger. Figure 6(a) indicates that the ARE for
INT reaches above 0.25 when @ is 0.012; the HH frequency
estimating results deviate largely from the actual results.



ARMHH improves the recall from below 0.83 to above 0.96 in
the best case when ® = 0.012 in Figure 6(b). In Figure 6(c),
the precision rates for INT and ARMHH are all above 0.99
when ® > 0.0048. The false negatives between different time
intervals account for the accuracy loss in ARMHH. When
¢ = d,,,, = 0.0016, the minimum precision is 95.1% in
ARMHH-CM.

Accordingly, ARMHH achieves better results in terms of
ARE and recall for all values of ®, with minor loss in
precision.

C. Quantifying memory overhead

We now quantify the sliding window memory overhead in
ARMHH and compare it with the sketch memory overhead.
The sliding window memory overhead Mgueve, Nfaveue’
Mlist and M!St (Equations (1), (2), (4), and (11)) are
related to the parameters p and ¢. In Figure 7, p and ¢ are
positively correlated with the time span of interval ¢; moreover,

q increases much faster than p. Notably, ¢ > % >

% in Figure 7.

In Figure 8, the memory overheads for sliding window are
linearly positively correlated with t. We have Mdueve > )flist
as ¢ > rlog,;ih(qﬂ and Mgueve’ > Mlst a5 o > %
for all ¢, which is in accordance with theorem 3 and theo-
rem 5. The uncompressed solutions M2%“¢%¢ and M5t exceed
M (CM) = 17.6 kB at around t = 1 ms and ¢ = 1.5
ms, respectively, while the compressed solutions M, ggm’ and
Mlist" exceed My, (CM) = 17.6 kB at around ¢ = 3.5 ms
and t = 4.5 ms, respectively. Mdueue, Nlist Mf}ge“e/ and
M5t are all smaller than M, (Hashpipe) = 74.7 kB for all
values of t. We compress the sliding widow memory overhead
by 70%-72% for the queue and 62%-68% for the linked list,
respectively.

Accordingly, the sliding window memory overhead is lin-
early positively correlated with ¢, and we have further sig-
nificantly compressed it. We can also conclude that the com-
pressed queue and compressed list have comparable memory
overhead; however, the compressed queue is easier to imple-
ment.

D. Tuning the sketch width

We now tune the width w of the sketch array. Figure 9
illustrates the ARE for CM algorithm with INT and ARMHH
under ¢=1, 3 and 5 ms, fixing ® to 0.01. Note that the x-axis
of Figure 9 is logarithmic. As w increases, the AREs of both
INT and ARMHH drop first and then stabilize. Specifically,
INT gets the minimum ARE when w > 200, while ARMHH
gets the minimum ARE when w > 1000; when w increases
from 200 to 1000, the ARE of INT stabilizes, while the ARE
of ARMHH drops sharply. w = 200 is adequate for INT-CM,
while w = 1000 is appropriate for the ARMHH-CM under
this condition. Moreover, the value of ¢ has a influence on the
AREs of both INT and ARMHH, which slightly increases the
AREs.

Accordingly, we can allocate suitable memory for the sketch
array to a better trade-off between accuracy and memory

overhead in ARMHH. Moreover, the results in Figure 9
indicates that w = 1500 is adequate in section V-B.

We also record the sliding window memory access from the
data plane and the control plane. The data plane accesses the
sliding window twice on average and more than twice, with
a probability of fewer than 3%, as our trace has a stable flow
rate.

VI. RELATED WORK

The sliding window method has some applications in the
field of network measurement. Sun et al. [25] use a sliding
window-based dynamic timeout strategy to detect and analyze
UDP flows. ARMHH can monitor both TCP and UDP flows
via sliding window. Ahmed et al. [26] propose a sliding
window-based change detection algorithm for asymmetric
traffic. ARMHH can be extended to achieve this by comparing
the HH set at different epochs. In this paper, we only show HH
detection with ARMHH to reveal its advantages in network
measurement.

Ding et al. [27] propose an anomaly detection approach
based on an isolation forest algorithm for streaming data
using the sliding window method, while Ren et al. [28]
establish a dynamic Markov model in the sliding window
to achieve anomaly detection. These models are accurate and
rapid. However, complicated models of this kind are not well
supported by the SDN data plane due to the rigid restrictions
it implements. By contrast, ARMHH is good at integrating
with sketch algorithms. We may test ARMHH with more
complicated sketch algorithms in future works.

Unlike the software methods described above, ARMHH can
inspect every packet, benefiting from the high throughput of
the SDN hardware. We may implement ARMHH on Tofino
[29] programmable switches in future.

Network-wide network measurement [8], [11], [30], [31]
is important in the large-scale network context. These works
achieve network-wide measurement through coordination be-
tween different network devices. We may extend ARMHH
across multiple devices to achieve network-wide measurement
in future.

VII. CONCLUSION

Our work explores the opportunities offered by replacing
interval method in sketch algorithms with sliding window
method. We observe that sliding window is more accurate
in Heavy Hitter detection, as it eliminates the false negatives
between different intervals produced by interval method; more-
over, sliding window can report Heavy Hitters in real time.

We proposes ARMHH, a framework targeting Accurate,
Rapid and Memory-efficient Heavy Hitter detection in the SDN
context, which integrates the sliding window approach with
sketch algorithms. Notably, ARMHH improves the accuracy
by 121.8%, 2.8%, and 3.5x on average for CM, CU, and
Hashpipe, respectively, with additional memory for sliding
window. We compressed the sliding window memory by 70%-
72% for the queue implement and 62%-68% for the linked list
implement.
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The configuration presented in this research is best for the
trace used herein. ARMHH will obtain the best results if our
memory allocation method is followed.
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