
Minimizing Effort and Risk with Network
Change Deployment Planning

Carlos de Andrade, Ajay Mahimkar, Rakesh Sinha, Weiyi Zhang, Andre Cire†,
Giritharan Rana, Zihui Ge, Sarat Puthenpura, Jennifer Yates, Robert Riding

AT&T † University of Toronto

Abstract
Networks undergo continuous changes to introduce new ser-

vices and improve existing ones. Network change deployment
involves carefully deciding when each change activity will
be executed and who will be executing the change. This is
a complex process because each service group has to plan
its activities following a set of operational and technological
constraints. Besides, multiple groups may be working on the
same or dependent nodes at the same time, and they must co-
ordinate their deployment plans. If they do not co-ordinate,
conflicting change execution could result in unexpected im-
pacts. Traditionally, change deployment has been a tedious
and time-consuming task. To address this, we propose an in-
novative solution Zapper that aims for minimal human effort
to coordinate the changes, minimal risk to service quality, and
efficient plans to rapidly deploy the changes. Zapper maps
change scheduling constraints into mathematical equations and
then uses optimization algorithms to generate conflict-free
change plans that satisfy all constraints across service groups.
We have deployed Zapper at a large service provider and it is
being used regularly by the network operations teams for more
than two years to schedule over 4.5 million change activities.

I. INTRODUCTION

Internet today offers a dizzying variety of services ranging
from mission-critical applications such as emergency and
police communications to business transactions such as stock
trading, as well as end-user entertainment such as video
streaming and online gaming. This wealth of services intro-
duced a massive number of devices such as network routers,
switches, layer-1 equipment, base stations, web servers, multi-
media gateways, set-top boxes, firewalls, and naming servers.
The increasing scale and software complexity of these devices
and their resulting interaction makes service management and
operations extremely challenging.

In addition to day-to-day monitoring and resolution of net-
work issues, operations teams are tasked with continual change
deployment on large-scale networks. New network nodes are
introduced, old ones removed, software and hardware are
upgraded, and configurations and technologies are modified to
introduce new network and service features or patch security
vulnerabilities and bugs. A change deployment typically goes
through multiple phases. First, the operations team designs
the change to be deployed, and the workflow (also referred
to as the Method of Procedure, MOP) required to execute the
change. Second, they execute the change activity on a smaller

scale in an operational setup referred to as the First Field
Application (FFA), or the phased canary approach [1] and
evaluate the impact of the FFA. Finally, once the FFA impact
results are verified, they roll out the change activity across
the whole network as “crawl–walk–run.” People executing
change activities are known as loaders. In the crawl phase,
only a small number of changes are performed by the most
experienced loaders. They may be further restricted to operate
on a limited range of equipment types. Additionally, network
operations teams perform check-ups to ensure that there are no
unexpected service disruptions during the change deployment.
If such disruptions are observed, they perform a roll-back
of the change, or halt the future deployment based on the
magnitude of the disruption. If the crawl phase is successful,
some of the deployment restrictions are relaxed in the walk
phase. Finally, full-scale deployment happens during the run
phase, where the goal is to change the entire network quickly
while ensuring co-ordination across multiple service groups
to minimize the risk of service impact. At any point in the
crawl–walk–run phases, if the teams observe any unexpected
impact, then they can change the overall deployment plan e.g.,
slow down, or halt the deployment.

A. Change Deployment Planning Problem
The goal of the change deployment planning is to design a

plan that avoids all conflicts, satisfies all operational and tech-
nological constraints, and still finishes all changes in a short
amount of time. This problem becomes significantly harder
in a heterogeneous network with complex cross-layer and
service-layer dependencies. The speed of change deployment
matters specifically during application of security patches, or
rapid introduction of new service features.
Change conflicts. There exist changes that cannot be per-
formed simultaneously because of node availability. We call
these situations conflicts because executing one change activ-
ity blocks another change activity. For example, if one were
to plan a concurrent change execution on a cloud hypervisor
and the virtual network function (or tenant) hosted by the
hypervisor, then it would be a conflict. This is because if
the hypervisor is unavailable because of a reboot after the
software upgrade, then the tenant cannot access the virtual
network function. Similarly, a cellular base station cannot be
upgraded while its associated switch is unavailable. While it
is theoretically possible for the same person to work on a
base station and a switch together, many times, these nodes
are managed by different organizations (including 3rd party
vendors), each with their own deployment plan constraints
and it is hard for them to coordinate their work. We referISBN ISBN 978-3-903176-39-3 © 2021 IFIP



to such nodes as dependent nodes. Therefore, it is a standard
operational practice to make sure that conflicting changes on
the dependent nodes are scheduled at different times.
Service impact. There are a number of service impact con-
straints associated with network change deployments related
to (a) capacity, (b) compatibility, and (c) post-deployment
risk. (a) Capacity – changes that require node reboot result
in a reduction of available network capacity, and thus have
to be carefully planned to minimize the disruption to service
quality. (b) Compatibility – underlying technology can place
constraints to execute the change activities close in time on de-
pendent nodes to ensure inter-operability. (c) Post-deployment
risk – if the change deployment results in an unexpected
impact to service quality [2], [3], [4], then one has to quickly
make a decision to halt the deployment or roll it back. Thus,
it is important to introduce changes in co-located parts of the
network at a time so that any adverse effects can be quickly
identified and mitigated.
Operational restrictions. Finally, there are a number of ad-
ditional operational constraints associated with change de-
ployments. There is a limit on how many change activities
a loader can execute in any maintenance window and there
should be some uniformity in the work assigned to a loader.
A maintenance window is a time-slot for implementing the
change activities. For example, as much as possible, they
should be working on the same hardware version within a
single maintenance window so that they are not forced to
deal with multiple MOPs and thus reduce the risk of mistakes
and mis-configurations. Loaders may also be unavailable on
certain times (vacation or sick) and have preferences or
restrictions regarding change activities that must be respected.
For example, an equipment needing hardware upgrade may
have to be scheduled during business hours when the facility
is accessible.

B. Operational State of the Art

The network operations teams today proactively create
change deployment plans for nodes and identify conflicts
across different work groups. This action is performed well
in advance of the actual change execution because it provides
enough time for the operations teams to resolve their con-
flicts by re-scheduling the change activities. Their experiences
have shown that proactive conflict discovery and resolution
is more effective than conducting this only at the execution
time due to the effective management of their time resources
and minimizing the risk of service disruption during change
execution. This is especially important when scheduling a
wide variety of changes ranging from software to hardware to
even construction work and 3rd party vendors, and involving
different operations teams responsible for different layers of
the network (core versus transport versus edge of the network)
and managing multiple services (e.g., VoIP, streaming video)
riding on top of these networks. Some of the operations teams
use project planning tools (e.g., Gantt charts [5]) in planning
their work deployments. However, these tools still require
them to manually perform the conflict discovery and resolution
and take a huge amount of time when dealing with a large
number of nodes.
Challenges: Change deployment planning is challenging due
to the following reasons:

1. Large scale: The large number of nodes (on the order
of hundreds of thousands in large service provider net-
works) and the large number of work groups deploying
change activities bring difficult challenges particularly in
discovering conflict-free change plans. The search space
is exponentially large and enumerating across them to find
the optimal change plan is non-trivial.

2. Complex service dependency: Identifying and modeling
the service dependency is important to accurately deter-
mine the change conflicts and potential service impact
risks. Some dependencies are cross-layer (e.g., physical
host to virtualized network functions) versus others are
service-layer (e.g., a top-of-rack switch serving multiple
application servers).

3. Diverse network configuration: Service providers have
diverse configurations across network, specifically in the
edge such as the cellular radio access. It is important
to account for such diversity when planning the change
deployment.

4. Multiple deployment constraints: The change deploy-
ment plan has to conform to multiple constraints that have
to be applied across different network configurations. Also,
different node types and services can require a different set
of constraints.

C. Our Approach and Contributions
We propose a new solution called Zapper for change

deployment planning by carefully modeling the deployment
constraints and conflicts a priori and using a suite of op-
timization algorithms to automatically generate conflict-free
change schedules. Such a schedule conforms to service impact
and operational constraints. Zapper significantly reduces the
human time and effort in discovering the change deployment
plans, achieves efficient and timely deployment of changes
across the network, and reduces the risk to service impact.
Zapper is automated (minimal human time and effort for
co-ordinating change deployment), scalable (accommodates
a very large number of nodes: 100K+), effective (conflict-
free, minimal service impact risk, and timely deployment
of changes), adaptive (discovers change plans across a wide
variety of deployment constraints and node configurations),
and proactive (advance planning enables better packing of
change plans and minimal completion times).
Key ideas:
1. Abstracting the heterogeneity of constraints. Each work

group and each type of equipment introduces its own set
of constraints. We provide a unified solution by abstracting
change activities as a set of attributes and then designing
“constraint templates” that can handle a large variety of
constraints from different domains uniformly.

2. Constrained model-driven optimization. Depending on
the constraints and objective function specified by the oper-
ations teams, we build on-the-fly sophisticated mathemati-
cal models. We then use mixed-integer linear programming
or constraint programming solvers and custom heuristics to
scale up to large number of nodes and constraints. Zapper
then packs changes to minimize the total deployment times
subject to constraints.

3. Two-level formulation. Zapper not only identifies the
best time-slot when the change should be deployed at



the node, but also the loader responsible for the change
execution (either executing manually, or watching the
automated execution).

4. Problem segmentation using diverse network configu-
ration. To address the scale challenge, we segment the
problem into smaller instances based on network con-
figuration attributes. We identify the attributes that lead
to independent subsets of nodes which can be further
considered for optimization independently.

Contributions. We have designed and implemented Zap-
per (§III) in automatically discovering conflict-free network
change deployment plans with minimal risk to service impact.
We successfully evaluated Zapper (§IV) using data collected
from large operational networks and demonstrated its effec-
tiveness in reducing the change deployment times1 for zero
conflicts and minimal service impact risks. In cases of tighter
deployment time-lines (as specified by operations teams input),
Zapper is designed to minimize the conflicts and service
impacts. We have deployed Zapper at a large service provider
and it is being used regularly by the operations teams for more
than two years to schedule over 4.5 million change activities.
We share our operational experiences in §V. Zapper has
resulted in significant improvement in operational efficiencies
(85% human time savings averaged across multiple teams).

II. DATA SETS

Network inventory: The service provider collects inventory
of live instances in the production network. The configuration
snapshot from each node is collected via the Element Man-
agement System (EMS). The node-level configuration captures
information such as the software version, hardware version,
EMS it connects to, time-zone, and its manufacturer.
Network topology: The topological configuration captures
information about the neighbors (e.g., X2 links in LTE network
capture the logical neighbor), upstream and downstream nodes
(e.g., eNodeBs2 are downstream for MME3), or cross-layer
(e.g., virtual machine or Virtual Network Function (VNF)
hosted on a physical server). Configuration data plays a vital
role in deriving the topological relationships. We derive end-
to-end service path by stitching the pair-wise relationships.
We show an example service path for LTE data and control
planes in Fig. 1. This information is needed to check some of
the constraints. For example, we may not bring down adjacent
eNodeBs to avoid coverage holes, or schedule SIAD [6]4 and
its attached eNodeB in the same time slot.
Planned change logs: The operations teams use a scheduling
tool to create and track change requests in a central change
repository. The tool enables them to input information about
the planned start and end time for executing the change,
the node information, change identifier, summary about the
change, a MOP document to capture the change workflow,

1We define change deployment time as the total time taken to deploy the
change across all the nodes in the network, also commonly referred to as
makespan in the optimization community.

2An eNodeB is a LTE cellular base station in the radio access network. A
gNodeB is an equivalent base station in the 5G network.

3MME is a Mobility Management Entity in the cellular core network.
4SIAD is a Smart Integrated Access Device (or, switch) that connects the

eNodeB/gNodeB with the transport and the core network.

Fig. 1. Service path for LTE control and data planes.

Fig. 2. Change schedule planning in Zapper.

the requester/executor names, the business risk associated with
the change, and whether the execution is going to transiently
disrupt the service. Changes can take the form of software
upgrades, hardware changes, configuration changes, new fea-
ture activations, capacity improvements, or introduction of new
technologies such as 5G, virtualization, containerization, and
software defined networking. We analyzed network changes
using data collected over two and a half years and observed
that majority of the changes are executed in the edge of
the network. This is expected because of the large number
of nodes in the edge (∼100K+) as compared to transport
and core (∼1K+). We also observed that each of the change
activities is planned ahead with a typical advance time of 10
days. The advance planning enables operations teams to ensure
their change schedules are conflict-free. Before the scheduled
change is implemented, new conflicts can sometimes arise
due to unplanned urgent changes or the lack of accounting
of already planned changes. We compute the number of
conflicts across all the node types and before Zapper had
been deployed. We observe using our data that before Zapper,
the conflicts were a significant fraction of the total number
of change activities. A large number of conflicts implies the
need for communication across teams to resolve them because
if not resolved, it introduces a higher risk of service impact
and increased time in troubleshooting. This highlights the
importance of determining a conflict-free change schedule.

III. ZAPPER DESIGN & IMPLEMENTATION

In this section, we describe the design and implementation
of Zapper that accommodates a wide array of constraints,
and provides a common, automated, and scalable solution to
systematically create change deployment plans.

A. Solution Overview
Fig. 2 shows a flow diagram for network change schedule

planning using Zapper. A user typically provides (a) list of
nodes either in the form of instance IDs or selection criteria
based on attribute definitions (e.g., all LTE eNodeBs with spe-
cific hardware version in New York region), (b) time interval to
complete the change activity across those nodes, (c) expected



duration of the change activity for each node, and (d) list
of scheduling constraints, including loader related constraints.
Note that a loader can be an individual person or a team
responsible for the change. Based on this input, our Change
Management Schedule Optimization (CMSO) first queries the
policy engine to obtain the planning constraints related to the
input and then queries the topology and inventory service to
identify the list of nodes to be scheduled (NS) and dependent
nodes (ND). It then uses a central change repository to identify
the pre-planned changes in the input time interval for NS and
ND . These would be important either to de-conflict (i.e., avoid
the time-slots) or, satisfy the planning constraints (e.g., sched-
ule SIAD and its attached eNodeB on the same time-slot).
CMSO then determines the change deployment plan that best
conforms to the planning constraints. The constraints capture
the risk of service impact and are derived using operational
domain knowledge and experience. Some of the constraints
can be violated before the change execution due to higher
priority activities, alarms, unexpected node failures resulting
in network capacity reduction, or changes in the availability of
loaders. We execute a constraint verifier periodically as well
as triggered by external events to discover any violations and
then notify users accordingly and recommend re-scheduling.

B. Mathematical Formulation
In this section, we discuss the mathematical formulation

for the time-slot assignment problem. The loader assignment
problem is solved using a mixed-integer linear program.
that is analogous to a transshipment problem with additional
capacity constraints (see, e.g., Chapter 2 from [7]). We omit
the models for the loader assignment problem due to space
considerations.

We now present a mathematical formalization of the prob-
lem constraints for the time-slot assignment problem. Given
a list of change activities on the list of nodes NS to be
scheduled, we wish to determine a discrete start time si for
each i ∈ NS that encodes the time-slot where change i
starts. The granularity of the schedule is defined by setting an
appropriate time-slot. Because Zapper must handle a variety
of devices and constraints, we have abstracted them to provide
generalized solutions. For example, eNodeBs have a constraint
that only a small number from any given region should
be scheduled together to avoid coverage hole. A seemingly
different constraint applies to servers where only a small
number from a given pool can be scheduled together to avoid
capacity hole. Instead of writing two different constraints, we
provide general constraint templates that can capture both of
them. For each i ∈ NS we associate a list of m attributes
a
(1)
i , a

(2)
i , . . . , a(m) encoding the properties of the change

schedule; e.g., a(1) may represent the region associated with
the network node for change i, its hardware/software type, or
its EMS. The two example constraints above can be abstracted
as a capacity bound on one of the attributes.

The network operations teams establish their desired gran-
ularity and select high-level constraint templates to impose
constraints based on the attributes of the changes in NS . In
Zapper, we automatically map the high-level constraints to
mathematical models. We use MiniZinc [8], an open-source
constraint modeling language to construct the mathematical
models for the following constraint types. Let pi be the number
of time-slots to perform change i.

General concurrency: A concurrency constraint [9], [10]
imposes an upper bound on the number of change activities
that can be performed per time-slot. Formally, let a(`)i be the
loader assigned to change i ∈ NS and define NS(L) :=

{i ∈ NS : a
(`)
i ∈ L} the changes with loader in set L. Then

CONCURRENCY(L, C) is formulated as:∑
i∈NS(L)

∑
i′∈NS(L)\{i}

I ([si, si + pi) ∩ [si′ , si′ + pi′) 6= ∅) ≤ C,

where I(C) is an indicator function that evaluates to 1 if the
condition C is true and 0 otherwise.

We note that often finer concurrency control may be re-
quested. For example, when upgrading eNodeBs, even though
a loader can execute up to 100 upgrades in one time-slot, we
may want to distribute them geographically so as not to create
coverage holes. One way to assure this is to state that, among
eNodeBs matching on attribute “city”, we want to execute
at most 30 in a time-slot. This is accomplished by defining
a more general version ATTRIBUTE CONCURRENCY(L, C,
j, v) where, among all changes assigned to loader L, at
most C changes can be performed with a(j) = v. The
constraint above is written analogous but replacing NS(L)
by NS(L, j, v) := {i ∈ NS : a

(`)
i ∈ L, a(j)i = v} for the

index sets. Another flavor is ATTRIBUTE DISTINCT(L, C, j)
that dictates that, among all changes assigned to loader L, we
have at most C distinct values on j-th attribute. E.g., on any
given time-slot, we want to touch at most 5 markets.

Consistency constraint: Certain change activities need to be
executed within a short time span between each other. For
example, VNFs on the same host talking to each other may
face software inconsistency if they are on different software
versions. CONSISTENCY(j,m) ensures that any nodes which
are within value m of each other on the j-th attribute should be
scheduled at the same time. In particular, if the j-th attribute
represents a location and m = 0, the constraint ensures that all
changes on co-located nodes are scheduled at the same time.
It is written as:

si = si′ , for all i, i′ ∈ NS s.t. |a(j)i − a
(j)
i′ | ≤ m, i 6= i′.

Uniformity constraint: Executing changes is a tedious work
that requires following a set of scripts. Thus, when loaders
are performing changes, it is desirable that there is some
uniformity in the work assigned to them. For example, it is
best for loaders if changes are from similar hardware types
or from the same time-zone. UNIFORMITY(j,m) states that
all changes assigned to a given loader on the same time-slot
should be within m of each other on the j-th attribute.

[si, si + pi) ∩ [si′ , si′ + pi′) 6= ∅ ⇒ |a(j)i − a
(j)
i′ | ≤ m, i 6= i′.

Load balancing constraint: While UNIFORMITY aspires to
schedule similar changes together, LOAD BALANCE spreads
them out. One example relates to time-zones. For any given
maintenance window, we prefer each loader to execute changes
from one time-zone but, in aggregate (across all loaders), we
do want to schedule changes that cover all possible time-zones
to fully utilize periods of low traffic in all time-zones.

Localize constraint: Often teams wish to restrict changes. For
instance, when upgrading to a new software release, teams



want to make sure that changes are introduced to geographic
regions one at a time so that they have a chance to evaluate
the outcomes of the updates and, if any problem occurs, they
can locate the issue quickly. LOCALIZE(j) ensures that among
nodes assigned to a given loader, we do not interleave changes
that differ on values of attribute j.

Finally, we note that the objective can be easily written
as a function of the variables si. For example, if the goal
is to minimize the time the schedule finishes, the objective
is min{maxi∈NS

(si + pi)}. If the goal is to minimize the
number of conflicts based on the dependent changes ND,
suppose sk, pk represents the (fixed) start time and duration,
respectively, of the dependent change k ∈ ND. The objective
is hence min

∑
i∈NS

∑
j∈ND

I([si, si+pi)∩[sj , sj+pj) 6= ∅).

C. Optimization Solvers in Zapper
The mathematical formulation for the time-slot assignment

problem can be directly addressed by a constraint program-
ming solver (e.g., Gecode [11] or Google OR-Tools [12])
or, after an appropriate transformation, by a mixed-integer
linear programming solver (e.g., COIN-OR Cbc [13]). We use
the solvers available within MiniZinc to identify the change
schedules.5 Through experimentation, we observed that these
solvers can effectively tackle small-scale networks (on the
order of a few hundred nodes). This is typically the case for
the core networks (hundreds of core routers). However, the
edge networks of a large carrier typically has on the order of
hundreds of thousands of nodes. The solvers within MiniZinc
could not tackle the large scale of the edge network. So, we
designed custom algorithms to address the problem.
Achieving scalable optimization. We implement a decom-
position approach that partitions the problem into a loader
assignment and a time-slot assignment, which are solved in
sequence. Specifically, the loader assignment problem deter-
mines the maximum number of change activities at each time-
slot so as not to violate loader-assignment constraints. This
upper bound on the number of change activities per time-
slot becomes input to the time-slot assignment problem that
determines the exact start times of each change activity so
as not to violate scheduling constraints. This decomposition
greatly reduces the overall complexity of the problem and
enables different solution methodologies to address each more
efficiently. The time-slot assignment problem is further decom-
posed per attribute to create smaller instances of problems. Our
approach works in two steps:

1. Problem Segmentation: Since the general problem can be
difficult to handle, we create smaller instances based on
network configuration attributes. In particular, we look for
attributes that lead to independent subsets of nodes (in the
sense that these subsets can be optimized independently);
e.g., each EMS has independent capacity.

2. Constrained model-driven optimization: Based on the con-
straints and objective function specified by the network op-
erations team, we implement a local search procedure [14]
that evaluates permutations of NS specifying the sequence
of change activities to be performed in a deployment plan.
For example, suppose that a team specifies that no two
changes associated with distinct regions can be performed

5We provide an example MiniZinc model in Appendix §IX.

simultaneously (i.e., a localize constraint). This implies
that, when grouping changes by regions, these groups must
be performed in sequence. We search for distinct sequences
that reduce the number of conflicting nodes. We then
pack the changes as early as possible within the sequence
specified during the search.

We now present our custom algorithm for discovering
the schedules for SIAD. SIAD operations teams incorporate
(a) concurrency constraint at MTSO (A Mobile Telephone
Switching Office consists of multiple SIADs), and group level
(A SIAD group consists of multiple SIADs), (b) load balance
constraint for the time-zone attribute, and (c) conflict con-
straints on the same SIAD as well as the connected eNodeBs
and gNodeBs. Specifically, each MTSO consists of two groups
of SIADs that can be scheduled in parallel. Each time-slot
(typically, a maintenance window spanning hours), we are
allowed to schedule up to M distinct MTSOs and within each
scheduled MTSO, we can select up to G nodes from each of
its groups. So altogether, we can schedule up to 2 ×M × G
nodes on a given time-slot. We have to pick MTSOs carefully
because each of its groups may have different conflicts. If we
exhaust (say) all nodes from the first group of a MTSO, we
are losing some capacity because we can schedule at most G
nodes (instead of 2G nodes) from this MTSO on all subsequent
time-slots.

We propose a probabilistic greedy algorithm that makes
decision for one time-slot at a time. On the j-th time-slot,
we are trying to decide which MTSOs to schedule, and which
nodes within those MTSOs should be picked up. We start by
assigning a score to each unscheduled node with the idea that
a lower score makes this node more attractive to schedule
on the current time-slot. Score of node n on j-th time-slot is
equal to (number of conflict free time-slots for n on time-slots
j + 1, j + 2, . . .) + NumberOfTimeSlotsLeft× conflict(n, j).

The first term counts how many more opportunities we
have for scheduling this node in a conflict-free manner. A
node that has very few conflict-free time-slots remaining
should be scheduled with urgency. The second term adds an
additional weight equal to number of time-slots remaining in
the scheduling window if n has a conflict on j-th time-slot.
This additional weight serves two purpose (a) ensures that any
node without conflict has lower score than any conflicted node,
(b) the scores for conflicted node are higher early on because
we want to avoid scheduling a conflicted node in the hope that
we may be able to find a conflict-free time-slot later on. Then
for each group within a MTSO, we compute its score as the
sum of lowest score of G (or leftover) nodes belonging to this
group and the score of a MTSO as the sum of its two group
scores. Finally, we pick M MTSOs of lowest scores.

One challenge we encountered with this algorithm is that
it always picks G nodes from a group to be schedule, even
when many of them may have conflicts. This creates a very
tight schedule but may not provide the right trade-off in terms
of minimizing conflicts by stretching the schedule a time-slot
or two and by picking fewer than G nodes per group, we may
have a much better schedule. So after computing scores of
groups and MTSOs, we perform a probabilistic filtering by
removing each conflicted node with a small probability that
is proportional to the ratio of leftover scheduling capacity and
the number of unscheduled nodes. E.g. if we can schedule



100 nodes each day and we have 5 days remaining and 300
unscheduled nodes, then this ratio is 500/300 which suggests
that we can be aggressive in dropping nodes in the hope that
we can schedule them later.

IV. ZAPPER EVALUATION

In this section, we present evaluation of Zapper using real-
world data collected from a large cellular service provider.
We used the following node types: (i) 76K eNodeB and 4K
gNodeB (radio access network), (ii) 39K SIAD (transport), and
(iii) 60 MME (core network). For all the figures, we present
the normalized values for the deployment times.

A. Impact of Advance Planning on Change Deployment Time
We compare the change deployment time achieved using the

advance planning in Zapper with the schedule discovery of
nodes primarily at run-time (similar to Statesman [15]). We
compute change deployment time as the difference between
the first and the last change schedule time.
Statesman overview and adaptation. Statesman primarily
considers conflict and capacity constraints, and not the other
technological and operational constraints that our network has.
In Statesman, each change request in run-time is executed
if constraints are met. If constraints are not met, the change
request is rejected and the request waits certain time before
trying again. We adapted Statesman to incorporate the con-
flict and operational constraints required in our context and
determined the total change deployment time if planning was
conducted at run-time. We model all change requests coming
at the same time, and the initial selection of nodes at run-
time is random among nodes satisfying all the constraints.
All subsequent selections conform to the set of constraints
specified by the operations teams and remember what has
been completed until previous iteration. Thus, think of this
as a single permutation of the change schedule plans, which
may or may not be optimal. In Zapper, we search over a
large solution space of change schedule plans and pick the
one that minimizes the utility (e.g., completion time). The
key distinction is run-time would not know what is to be
scheduled in the future, and thus cannot do a better packing
of schedule to achieve the objective. For example, consider
two work groups G1,G2 working on nodes A, B, and G1 has
precedence constraint A before B. Then with Zapper advance
planning, we can have G2 work on B, while G1 works on A
in the first slot, and then vice versa in second slot. The total
completion time is 2 slots. However, with run-time, if it picks
A for G2 in first slot, then G1 has to be idle in first slot to
avoid conflict on A. Thus, the total completion time would
be 3 slots. It is well-known that on-line algorithms almost
always deploy worse solutions than off-line algorithms. For
example, for simple scheduling problems such as job shop,
the competitive factor is 2, which means that even the best
known on-line algorithm can perform two times worse than
an off-line algorithm [16].
Results. Fig. 3 compares the total deployment time for Zap-
per using advance planning versus run-time only planning
(Statesman adaptation) across four node types. We observe that
Zapper discovers the change deployment plan with shorter
deployment time using advance planning. Moreover this dif-
ference gets more pronounced as the number of nodes or com-
plexity of constraints go up, which suggests that, as networks

Fig. 3. Normalized deployment time using advance v/s. run-time planning.

Fig. 4. Impact of advance planning on the normalized deployment time.

Fig. 5. Normalized deployment time increases as the conflicts reduce.

grow, simple schemes may not scale well and we will need
more careful planning. The difference is higher specifically
for eNodeB and SIAD that have many more instances than
gNodeB and MME. The benefits with advance planning come
from the early discovery of the change schedule and the higher
likelihood of finding a compact schedule without conflicts.

Next, we quantify advance planning by the number of days
in advance a network operations team member uses Zapper
to request the change deployment plan. We observed that
it was operational practice for teams responsible for major
software releases to plan the network-wide deployment in
advance, versus other teams handling configuration changes
and hardware work would plan on a smaller scale and not
much in advance. If these network changes are spread out,
then multiple teams benefits from advance planning. Fig. 4
shows that our results using Zapper match our expectation.
The total change deployment time decreases significantly for
eNodeB, gNodeB, and SIAD. This is due to their large scale
and frequent changes. However, for MME, the reduction is
small because of the smaller scale and less frequent changes.

B. Impact of Conflicts on Change Deployment Time

We first ran Zapper with the goal of zero conflicts and
identified the change deployment time. Next, we fixed different
change deployment times and ran Zapper with the goal of
minimizing conflicts. For each run, we identified the number of
conflicting change activities and calculated the percentage of
conflicts relative to the total number of planned changes. Fig. 5
shows the trade-off between deployment time and percentage
of resulting conflicts for advance planning in Zapper with
1 day versus 4 weeks. We observed (a) an increase in the
deployment time as the permissible conflicts decrease and (b)
a better packing of schedule with an advance planning. The



Fig. 6. Normalized deployment time increases with decrease in conflicts and
increase in constraints.

reason is that scheduling of each change activity is critically
dependent on scheduling of many other change activities. So
finding a group of nodes to schedule on first time-slot is
straight-forward, but gets increasingly harder towards the end.

C. Impact of Constraints on Change Deployment Time

Another aspect that we studied is how the number and types
of scheduling constraints impact the quality of the change
deployment plan. Usually, removing constraints makes it easier
to find a good solution if we are finding exact solutions.
Adding or removing constraints results in different problems,
which may have different properties to be explored by the
solver.

To illustrate this point, we consider the following (simpli-
fied) eNodeB scheduling problem: each eNodeB belongs to
a Tracking Area Code (TAC), which belongs to a market,
and multiple markets belong to a time-zone. We have the
following constraints: 1) a CONCURRENCY constraint on
how many eNodeBs can be scheduled within an EMS; 2) a
CONSISTENCY constraint that eNodeBs from a TAC must be
scheduled together; 3) a LOCALIZE constraint at the market
level; and 4) a UNIFORMITY constraint to make sure that only
eNodeB from adjacent time-zones can be scheduled together.
We chose to relax some of these constraints (except the
concurrency constraint), creating five different scenarios.
All-Ctrs is the regular optimization with all constraints

activated. In Tac-Split, we allow splitting eNodeBs from
a TAC (Tracking Area Code) on consecutive time-slots. In
Market-Free, we remove the market localize constraint
and allow to interleave eNodeBs from different markets.
In Timezone-Free, we remove the timezone constraints,
allowing eNodeBs from any timezone to be scheduled on the
same time-slot. Finally, in Market-Timezone-Free, we
remove all of TAC-Split, market, and timezone constraints,
allowing great flexibility to the solver during the search. For
most of our results, we have used the “deployment time”
metric, which is the number of time-slots between start of
schedule to when the last change gets scheduled. Sometimes,
it is more interesting to look at the average deployment time
where we measure the number of time-slots between start of
schedule to when a change gets scheduled and then take an
average over all change activities. Fig. 6 shows how average
deployment time varies across different constraints types and
for varying conflict tolerances. This result demonstrates the
trade-off between reducing the change deployment time versus
ensuring conformance to operational constraints and allowing
conflicts. It is interesting that even without caring for conflicts,
just the constraints put a lower bound on the deployment time
and certain constraints make the scheduling harder than others.

D. Zapper Running Time
We compute the running time of Zapper from the time

an operations team member submits a request and gets back
change deployment plan that conforms to the input set of oper-
ational and conflict constraints. This time captures (i) inventory
and topology lookup, (ii) change ticket management database
lookup, and (iii) optimization time to discover the deployment
plan. We deploy Zapper on Intel®Xeon®CPU E7- 4850 @
2.00GHz with 40 cores and 512GB RAM. Since Zapper
leverages problem segmentation and constrained model-driven
optimization to scale up to a large number of nodes, we ex-
plored leveraging varying degrees of parallelism with multiple
threads working in parallel for independent sets of network
attributes. With x4 parallelism, Zapper was able to complete
within three minutes even for 76K nodes. This demonstrates
that Zapper is parallelizable and can discover change plans
for a very large number of nodes in a matter of minutes which
is orders of magnitude lower as compared to the total change
deployment times (days to weeks) or the human times needed
to discover the change plan without Zapper (days to weeks).

V. OPERATIONAL EXPERIENCES

We now describe our experiences in applying Zapper for
more than two years in operational cellular networks to sched-
ule over 4.5 million change activities. The network operations
teams use Zapper for planning change activities across the
network for LTE eNodeB, 5G gNodeB, SIAD switch, and
MME. We present results on operational efficiencies in terms
of human time savings and reduction in the number of re-
scheduling actions to co-ordinate the changes.
Human time savings. We interviewed the network operations
teams (approximately 30 work groups) and identified the
amount of time they had been spending on discovering the
network change plans prior to Zapper. Before Zapper, an
operations team member would manually identify a time slot
for a subset of nodes that do not have any conflict and conform
to constraints. We observed that different teams were spending
different times for change deployment planning based on
the complexity of the change activity, the number of nodes
involved, and the type of nodes. With Zapper, the operations
team member can now request the change plan across the
whole network in a single request. For example, for a network
size 100K, each group size (Si) 1K, the number of iterations
(N ) would be 100. Each request of approximately 1K nodes
without Zapper would take operations teams around an hour
looking at databases or co-ordinating with other groups over
chat windows to discover a schedule. With Zapper, they can
generate the schedule for all 100K nodes in a few minutes.
We used 24-months of Zapper usage to track Si. Larger Si

results in higher time savings! We calculate the average human
time savings as the percentage reduction in time as a result of
using Zapper and taking into account the sample node size
Si in each request i (i = 1..N ).

Time savings =

N∑
i=1

(
TwithoutZapper×Si−TZapper

TwithoutZapper×Si
)

N
(1)

Table I shows the average percentage human time savings
realized after network operations teams started using Zapper
across different types of change activities. Before Zapper, the



TABLE I
AVERAGE HUMAN TIME SAVED IN DISCOVERING CHANGE DEPLOYMENT

PLANS USING ZAPPER.

Time savings # requests (N ) # changes (
N∑
i=1

Si)

85.59% 13,940 4,574,736

operations teams would take on the order of days or weeks to
discover the change plan. This was reduced by several orders
of magnitude to a few minutes or hours because of Zapper.
Reduction in re-scheduling actions. Before Zapper, the
operations teams would manually discover the change conflicts
and resolve them by co-ordinating and re-scheduling the
conflicting change activities. With Zapper, they can discover
the change time-slot that is conflict free and eliminate the need
to manually discover and resolve the conflicts. We thus expect
the number of re-scheduling actions for conflict resolution to
decrease because of Zapper. We calculate the number of re-
scheduling actions based on the changes in planned times
recorded in the change ticket data for that change activity.
We compare 24 months of Zapper with 24 months without
Zapper by computing the percentage of change activities
that require re-scheduling as compared to the total change
scheduling requests. We observe that without Zapper, the
re-scheduling actions were higher (19.2%) compared to with
Zapper (13.83%). The re-scheduling actions did not go down
to zero because some re-scheduling cannot be prevented due
to emergency changes.

VI. PRACTICAL CONSIDERATIONS

Network dynamics. Network failures can reduce network
capacity, and some nodes need to be re-scheduled. The con-
straint verifier in Zapper (§III-A) continuously looks for such
changes in network that would result in constraint violations.
The operations teams conduct pre-checks to proactively iden-
tify nodes that are impacted. They then use Zapper to re-
schedule these nodes.
Roll-out co-ordination. At run-time, some changes can fail.
The operations teams refer to them as stragglers, and conduct
post-hoc analysis to understand their root-causes. Pre/post
service impact analysis is performed using a separate capa-
bility [2], [3], [4] and if any unexpected impact is observed
from changes, then the operations teams decide to halt the roll-
out, or even roll-back changes. Zapper is used to determine
the roll-back schedule.
Missing/delayed/incorrect data. Since we rely on configura-
tion to derive inventory and topology, any missing, delayed or
incorrect data can affect Zapper. We use a simple approach
to fill any gaps in the current snapshot using information from
previous snapshots as well as report any discrepancies to the
operations teams for resolving any inconsistencies.
What if Zapper returns no schedule? We observed this early
on in our Zapper deployment. We enhanced Zapper to relax
some of the constraints by either returning a schedule with
minimum conflicts (operations negotiate with other groups
to reschedule), or adjusting their own schedule by softening
some constraints (assign weights to different constraints). The
“softening” of constraints was never done on the service risk
related constraint.
A central repository for scheduled changes. This enables
effective co-ordination across work groups. Fall-outs can occur

if urgent schedule updates are not recorded and that can lead
to last-minute unpleasant conflicts and in some cases negative
service performance impacts. Zapper automatically populates
this repository with computed schedule.

VII. RELATED WORK

Network change scheduling. Statesman [15] focuses on run-
time conflict avoidance and network-wide safety and perfor-
mance variants for network applications. Frenetic [17] and
Pyretic [18] support modular composition and conflict reso-
lution over specific OpenFlow rules. Athens [19] uses voting
and non-rule based methods to resolve resource conflicts
among SDN and cloud controller modules. Dionysus [20]
uses node dependencies to automatically discover the schedule
for network updates. Liu et al. [21] present linear program-
ming based algorithm to discover the schedule for multi-
flow updates in SDN networks. Concord [22] focuses on
co-ordinating software upgrade roll-outs in cellular networks
and aims to strike a balance between deployment time and
service impact during the upgrade. Janus [23] is a change
planner focusing on minimizing the service risk in data center
networks. CloudCanary [24] focuses on real-time auditing
to prevent correlated failures due to service updates and
generating improved change plans. Zapper tackles a wide
variety of constraints, uses a model-driven approach, and
leverages advance time planning to do a better packing of
change schedule as compared to run-time only planning.

Operations research. The optimization problem for loader
and time-slot assignment is an extension of a classical schedul-
ing problem [9]. Specifically, change activities and loaders can
be perceived as tasks and machines, respectively. The schedule
optimizer must hence assign tasks to machines within certain
time periods to ensure operational restrictions are satisfied.
Because a machine has a discrete limit on the number of
simultaneous tasks (e.g., the general concurrency constraint),
the problem is typically classified as a cumulative scheduling
problem [10]. There are several optimization papers [25], [26],
[27] to tackle constraint-based time-tabling. We differ from
these works in applying optimization algorithms in Zapper for
network change deployment planning by leveraging network
configuration attributes and a wide variety of constraints.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new solution Zapper for net-
work change deployment planning that minimizes the service
disruption and avoids conflicts across multiple work groups
arising due to cross-layer and service-layer dependencies.
We thoroughly evaluated Zapper using real-world network
data collected from a large tier-1 service provider. We have
deployed Zapper in a large service provider network and it is
resulting in significant improvement in operational efficiency
and change deployments. While our custom algorithms work
well to address the large scale nature of the optimization,
it currently assumes a fixed set of constraints. It remains to
be a very interesting open research problem on making the
constraint programming approach more dynamic so that we
can automatically compose the set of constraints on the fly
and more versatile so that we can apply our approach across
a large number of network element types.



REFERENCES

[1] D. Zhuo, Q. Zhang, X. Yang, and V. Liu, “Canaries in the network,” in
ACM HotNets, 2016, p. 36–42.

[2] A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang,
and J. Emmons, “Detecting the performance impact of upgrades in large
operational networks,” in ACM SIGCOMM, 2010.

[3] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons, B. Hunt-
ley, and M. Stockert, “Rapid detection of maintenance induced changes
in service performance,” in ACM CoNEXT, 2011.

[4] A. Mahimkar, Z. Ge, J. Yates, C. Hristov, V. Cordaro, S. Smith, J. Xu,
and M. Stockert, “Robust assessment of changes in cellular networks,”
in ACM CoNEXT, 2013.

[5] H. Maylor, “Beyond the gantt chart:: Project management moving on,”
European Management Journal, vol. 19, no. 1, pp. 92–100, 2001.

[6] Wikipedia, “Siad - smart integrated access device,”
https://en.wikipedia.org/wiki/Integrated access device.

[7] M. Conforti, G. Cornuejols, and G. Zambelli, Integer Programming.
Springer Publishing Company, Incorporated, 2014.

[8] MiniZinc, “MiniZinc - a free and open constraint modeling
language,” 2020, accessed on 2019-09-16. [Online]. Available:
https://www.minizinc.org

[9] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer Publishing Company, Incorporated, 2008.

[10] P. Baptiste, C. L. Pape, and W. Nuijten, Constraint-Based Scheduling.
Norwell, MA, USA: Kluwer Academic Publishers, 2001.

[11] C. Schulte, G. Tack, and M. Z. Lagerkvist, “Modeling and programming
with gecode,” 2019. [Online]. Available: https://www.gecode.org/

[12] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization

[13] COIN-OR, “Cbc: COIN-OR branch and cut,” 2021. [Online]. Available:
https://github.com/coin-or/Cbc

[14] F. Xhafa and A. Abraham, Metaheuristics for Scheduling in Industrial
and Manufacturing Applications, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[15] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin, “A
network-state management service,” in ACM SIGCOMM, 2014.

[16] R. M. Karp, “Online algorithms versus off-line algorithms: How
much is it worth to know the future?” 1992. [Online]. Available:
http://www.icsi.berkeley.edu/pubs/techreports/TR-92-044.pdf

[17] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN ICFP, 2011.

[18] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” in USENIX NSDI. Berkeley, CA,
USA: USENIX Association, 2013, pp. 1–14.

[19] A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang,
and J. C. Mogul, “Democratic resolution of resource conflicts between
sdn control programs,” in ACM CoNEXT, 2014, pp. 391–402.

[20] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in ACM SIGCOMM, 2014, pp. 539–550.

[21] Y. Liu, Y. Li, Y. Wang, and J. Yuan, “Optimal scheduling for
multi-flow update in software-defined networks,” J. Netw. Comput.
Appl., vol. 54, no. C, pp. 11–19, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2015.04.009

[22] M. A. Qureshi, A. Mahimkar, L. Qiu, Z. Ge, M. Zhang, and I. Broustis,
“Coordinating rolling software upgrades for cellular networks,” in IEEE
ICNP 2017, 2017, pp. 1–10.

[23] O. Alipourfard, J. Gao, J. Koenig, C. Harshaw, A. Vahdat, and M. Yu,
“Risk based planning of network changes in evolving data centers,” in
ACM SOSP. Association for Computing Machinery, 2019, pp. 414–429.

[24] E. Zhai, A. Chen, R. Piskac, M. Balakrishnan, B. Tian, B. Song, and
H. Zhang, “Check before you change: Preventing correlated failures in
service updates,” in USENIX NSDI, 2020.

[25] E. Demirovic and P. J. Stuckey, “Constraint programming for high school
timetabling: A scheduling-based model with hot starts,” in CPAIOR,
2018.

[26] S. Kristiansen, M. Sorensen, and T. R. Stidsen, “Integer programming
for the generalized high school timetabling problem,” in Journal of
Scheduling, 2014.

[27] M. Banbara, K. Inoue, B. Kaufmann, T. Okimoto, T. Schaub, T. Soh,
N. Tamura, and P. Wanko, “teaspoon: solving the curriculum-based
course timetabling problems with answer set programming,” in Annals
of Operations Research, 2019.

IX. MINIZINC MODEL FOR MME CHANGE SCHEDULE
DISCOVERY

We present the MiniZinc code for conducting our model-
driven constrained optimization for MMEs. Note that, although
we format this model to better reading, it is indeed generated
automatically on-the-fly by Zapper.

1 %%%%%%%%% Parameters %%%%%%%%%%%%%%
2 int: NM; % number of MMEs.
3 int: NP; % number of MME pools.
4
5 % For each MME, indicates the pool ID for that MME.
6 array[1..NM] of 1..NP: pool_id;
7
8 % Index of last possible time-slot for scheduling.
9 % 1st time-slot is counted as 1; 2nd as 2 and so.

10 int: maxT;
11
12 % True/1, if i-th MME does NOT have a conflict on j-th time-slot.
13 array[1..NM, 1..maxT] of 0..1: noConflict;
14
15 % Maximum number of MMEs that can be scheduled on j-th time-slot.
16 array[1..maxT] of 1..NM: mmeSlotCapacity;
17
18 % maximum number of MMEs that can be scheduled from i-th pool on
19 % j-th time-slot. We must allow 0 (zero), to block that time-slot.
20 array[1..NP, 1..maxT] of 0..NM: poolSlotCapacity;
21
22 % Maximum number of different pools that can be scheduled on
23 % j-th time-slot. We must allow 0 (zero), to block that time-slot.
24 array[1..maxT] of 0..NM: poolSlotDistinct;
25
26 %%%%%%%%% Decision variables %%%%%%%%%%%%%%
27 % TRUE/1, if i-th MME gets scheduled on j-th time-slot.
28 array[1..NM, 1..maxT] of var 0..1: SCHEDULED;
29
30 %%%%%%%%% Constraints %%%%%%%%%%%%%%
31 constraint % Schedule only on noConflict time-slots.
32 forall(i in 1..NM, j in 1..maxT) (
33 SCHEDULED[i,j] <= noConflict[i,j]
34 );
35
36 constraint % Schedule each MME exactly one time-slot (or none).
37 forall(i in 1..NM) (
38 sum(j in 1..maxT) (SCHEDULED[i,j]) <= 1
39 );
40
41 constraint % Satisfy MME time-slot capacity.
42 forall(j in 1..maxT) (
43 sum(i in 1..NM) (SCHEDULED[i,j]) <= mmeSlotCapacity[j]
44 );
45
46 constraint % Satisfy MME pool capacity.
47 forall(j in 1..maxT, k in 1..NP) (
48 sum(i in 1..NM where pool_id[i] == k) (SCHEDULED[i,j])
49 <= poolSlotCapacity[k,j]
50 );
51
52 constraint % Satisfy MME distinct pool bound.
53 forall(j in 1..maxT) (
54 sum(k in 1..NP) (
55 bool2int(sum(i in 1..NM where
56 pool_id[i] == k) (SCHEDULED[i,j]) >= 1)
57 ) <= poolSlotDistinct[j]
58 );
59
60 %%%%%%%%% Objective function %%%%%%%%%%%%%%
61 % The time-slot in which the MME is scheduled.
62 array[1..NM] of var 0..maxT: SLOTS_SCHEDULED =
63 [sum(j in 1..maxT) (j * SCHEDULED[i,j]) | i in 1..NM];
64
65 % Number of scheduled MMEs.
66 var int: NUM_SCHEDULED = sum(i in 1..NM)
67 (bool2int(SLOTS_SCHEDULED[i] > 0));
68
69 % Sum of all completion times, used as proxy for the
70 % schedule length. In optimization, it is
71 % mathematically equivalent to the average.
72 var int: TOTAL_COMPLETION_TIME =
73 sum(i in 1..NM) (SLOTS_SCHEDULED[i]);
74
75 % Bi-objective function such that we first try to
76 % schedule as many MMEs as possible,
77 % then minimize the total completion time.
78 solve maximize
79 (maxT * NM * NUM_SCHEDULED) - TOTAL_COMPLETION_TIME;


