
Integrated Industrial Ethernet Networks:
Time-sensitive Networking over SDN Infrastructure

for mixed Applications
Mohamed Abdel Metaal1, Rene Guillaume2, Ralf Steinmetz1, and Amr Rizk1,3

1Technische Universität Darmstadt
2Corporate Research and Advanced Development, Robert Bosch GmbH

3Universität Ulm

A. Problem Outline

While TSN provides different mechanisms to handle various
Quality-of-Service (QoS) demands, the complexity of config-
uring the involved parameters in a holistic manner is a non-
trivial task. While Industrial Ethernet network applications
typically run by design on stand-alone networks, a challenge
arises in accommodating different Industrial Ethernet applica-
tions of various QoS requirements, as well as, best-effort traffic
over a shared network. Fig. 1 provides a sketch that shows this
challenge. The SDN controller of some TSN switch topology,
has to find appropriate schedules that satisfy the different
hard/soft QoS guarantees required by the applications running
on top. Further, given these QoS guarantees, an optimization
problem arises in adaptively selecting the appropriate TSN-
based scheduling algorithm. This is due to the varying proper-
ties of the scheduling algorithms, e.g., in terms of bandwidth
utilization and computation time.

SDN Controller

PC PC

Master n Slaves n

Master 1 Slaves 1

TSN Switch TSN Switch

Fig. 1: The target scenario: Integrating different applications of var-
ious QoS in a TSN-based Software-defined Network.

B. Approach & Contributions

TSN provides a viable approach to the aforementioned
challenges through its Time-aware Shaper (TAS) which is
capable of queuing the different application packets exhibiting
varying traffic patterns such that the corresponding hard RT
guarantees can be met in the presence of best-effort traffic.
A refinement to the problem is providing soft guarantees

Abstract—A unified network architecture, allowing for simulta-
neous transmission of multiple real-time (RT) and non-RT traffic
classes, is becoming increasingly important for the realization of
industrial IoT. There is yet no clear approach allowing multiple
state-of-the-art Industrial Ethernet applications, exhibiting dif-
ferent isochronous hard real-time traffic patterns, to share the
same network resources alongside best-effort traffic.

This paper presents an approach to integrating heterogeneous
Industrial Ethernet applications over Time-Sensitive Networks
(TSN). We deploy different real-time schedulers that are em-
bedded in a Software-defined Network (SDN) controller to allow
different applications with various traffic patterns and Quality-
of-Service (QoS) requirements to share the same network. This
integration is accomplished by providing an abstraction that
combines the requirements of the Industrial Ethernet application
and the TSN network capabilities and constraints.

Index Terms—Time Sensitive Networking (TSN), Software-
defined Networking (SDN), Quality of Service (QoS).

I. INTRODUCTION

Cyber-physical systems comprise highly time-sensitive ap-
plications, typically demanding zero packet loss and strict
real-time guarantees with bounded latency and jitter. These
systems depend on communication networks to deliver control
commands and sensor data, from the controllers to sensors and
actuators and back. Such systems are considered strictly time-
sensitive as network delays and jitter strongly impact their
functionality. A typical example are Motion Control Systems
(MCS) that require isochronous communication between its
controller (master) and its servo/motor drives (slaves).

While traditional field-bus networks comprise different lim-
itations including no support of high data rates, a lack of
scalability, and limited compatibility due to vendor specific
ecosystems, IEEE 802.3 Ethernet networks have the ability
to overcome these limitations. Although Real-Time Ethernet
(RTE) is an ongoing research domain [1, 2], current trends and
activities identified TSN as a promising and widely accepted
technology that may provide the capabilities to meet the
requirements of industrial real-time (RT) applications and may
become a platform for Industrial Ethernet [3].

Annex to ISBN 978-3-903176-28-7©c 2020 IFIP

803

to non-RT isochronous applications. Assuming the logically
centralized configuration as described by IEEE 802.1Qcc or
a network-wide view provided by SDN, QoS application
requirements and TSN device capabilities can be combined
into calculating and distributing such schedules.

Fig. 2 shows a sketch of the approach presented in this
paper that is based on the NETCONF protocol. NETCONF
(Network Configuration) protocol has been developed and
standardized by IETF to create a configuration management
protocol to overcome the limitations of existing network
configuration protocols. Newly deployed applications send the
application QoS requirements and network capabilities to the
SDN controller. The SDN controller, which is on the same
synchronization domain as the switches, runs the scheduler
software and communicates the calculated schedule variables
that are required to update the Gate Control List (GCL) of the
TSN switch which, in turn, controls the opening and closing
of the timed-gates at the egress packet queues of the switch.
Note that the schedules calculated by the SDN controller need
only to be recalculated if the application QoS requirements or
the network capabilities change. While we can assume that
the application requirements stay mostly unchanged this ap-
proach provides the ability to account for network monitoring
information, i.e., when the network capabilities change due to
planned or unexpected network events.

NETCONF
SERVER

NETCONF
CLIENT

SDN CONTROLLER

Database
Scheduler

TSN SWITCH

NETCONF
SERVER

NETCONF
CLIENT

Communicating the application
requirements and network

capabilties to the SDN controller

Communicating the output
schedule to the TSN switch to

update its GCL

Multiple
Real-time

Applications XMLGCL

Fig. 2: NetConf-based approach to allow for bidirectional communi-
cation between SDN controller and TSN switch.

In this work, we evaluate selected schedulers for different
scenarios with respect to metrics such as the bandwidth
utilization, scheduler efficiency and computation time. Based
on this, a decision maker is proposed for the SDN controller to
select the appropriate scheduler based on the desired scenario
or optimization objective. Conceptually, this corresponds to a
transition [4], i.e., an adaptive selection of the used scheduler
is possible upon modifications to the underlying topology.

C. Related Work

The approach presented in [5] aims to exploit the benefits
of SDN with RTE to achieve optimal routing and scheduling.
Integer Linear Program (ILP) formulations were used to
solve the combined problem of routing and coarse-grained
scheduling of time-triggered traffic where the schedules are
initialized only in end-hosts. In our approach, we rely on
underlying network elements to enforce the schedules, such as

the IEEE 802.1Qbv standard in TSN switches. We also assume
knowledge of routing information in the considered industrial
networks. The work in [6] exploits an SDN controller to
provide a joint routing and scheduling solution. There, the
cycle times and time-slot lengths are optimized per flow. This
is fundamentally different from the scenarios considered here
as the industrial Ethernet applications used are preconfigured
with fixed cycle times with the goal to provides guarantees to
all the present applications.

The approach in [7] investigates the computation of offline
schedules by IEEE 802.1Qbv TAS over multi-hop networks.
The offline schedule was calculated with respect to individual
flow requirements. However, this work did not investigate
the simultaneous communication of legacy devices such as
industrial Ethernet applications. Another relevant approach
published in [8] discusses the integration of a legacy Industrial
Ethernet application into TSN to allow a topological extension
and higher data rates. It only considers the accommodation
of a single Industrial Ethernet system without considering
simultaneous heterogeneous guarantees.

Overall, the mentioned related work does not investigate
the use of TSN and SDN in accommodating multiple hetero-
geneous Industrial Ethernet systems over the same network.
Our approach complements the previously mentioned papers
in order to integrate different traffic patterns and QoS classes
in an SDN-based TSN network architecture.

II. NETWORK AND TRAFFIC MODEL

Next, we consider the general hard RT isochronous traffic
model, i.e., frames must be completed before their deadline
while being equidistant, allowing only an ultra-low bounded
jitter that is less than 1 µs and practically around 40-60 ns. We
consider multi-hop layer 2 switched Ethernet networks over a
full-duplex multi-speed links.

A. Network Management Instance

The network management instance located in the SDN
controller configures the traffic behavior, e.g., routing and
reactive updating the forwarding tables (flow tables). The
SDN controller is configured with schedulers for calculating
and adapting the scheduling output variables that guarantee
the isochronous communication of the hard RT applications
alongside best-effort traffic applications. The computed output
schedule is used to update the TSN switches’ IEEE 802.1Qbv
time-aware shaper’s Gate Control List. Communication be-
tween the SDN controller and the TSN switches are conducted
through the southbound interfaces, e.g., using NETCONF.
Note that out-of-band communication is also possible as tested
later on in the evaluation section.

B. Scheduling Strategies

In the following, we consider established RT schedulers for
the isochronous traffic and discuss an additional scheduling
algorithm that takes advantage of the left-over unutilized link
bandwidth to squeeze in applications with soft guarantees.

804

In RT scheduling models, each task has a release time
(offset), a computation time (transmission duration) and a
deadline (cycle time). Our scheduling mechanism is based on
the fixed-priority scheme. In the case of RT tasks, each task has
its own cycle time which also acts as a deadline, therefore the
task’s computation time (or in our case transmission duration)
plus offset must not exceed its cycle time. We consider a static
offline scheduler, i.e. all scheduling decisions are made before
the execution of the system [9, 10, 11, 12]. Preemption is not
allowed for express data such as isochronous traffic.

The established Rate Monotonic (RM) scheduler is appeal-
ing due to its simplicity, although it is known not to achieve
full resource utilization. Since our RT industrial applications
sustain time harmonic cycle times (or periods), this limitation
was no longer valid [13]. In addition to RM, we also select
Satisfiability Modulo Theories (SMT)-based scheduling as it
showed dominance in the field of hard RT and isochronous
applications [14].

After scheduling the RT applications, there may still remain
unutilized link bandwidth which is offered to non-RT or best-
effort traffic. In order to provide a QoS evaluation, respectively
soft guarantees for that traffic class, we utilize a secondary
scheduler, known as the Service Curve-based Earliest Deadline
First (SCED) [15]. Similar schedulers as given, e.g., in [16]
could also be considered.

1) Rate Monotonic Scheduling: The input requirements for
RM scheduling consist of the following input parameters:
the cycle time of the application frames, frame transmission
duration, number of available queues and macrotick of the
network (assumed to be 1 µs). These input parameters are
provided to the RM algorithm for computing the following
output variables: frame offsets and frame priorities where the
assigned priorities are translated into their queue numbers
needed to update the GCL of the TSN switch(es).

2) SMT-based Scheduling: SMT-based scheduling repre-
sents a powerful tool, not only in scheduling, but in any
constraint-satisfaction problem. The method shows great flex-
ibility in configuration where we obtain a schedule based
on scheduling constraints that define guarantees for multiple
isochronous applications. An SMT problem is a constraint-
satisfaction problem, which decides whether a formula over
boolean variables, formed using logical connectives, can be
made true by choosing true/false values for its variables.
This means that a formula F is satisfiable if there exists
an interpretation that makes F true. When linear arithmetic
is required to capture the meaning of the formulas, solvers
for such formulations are called SMT solvers [17]. The SMT
solver provides a model, known as the solution model, for
the satisfiable context which represents one solution (out
of multiple feasible solutions) for the given problem. The
constraints used to populate our model in the SMT solver are
explained in detail in Section II-C.

The input to the SMT solver comprises: the maximum
allowed end-to-end latency, the period/cycle time of the frame,
the frame data size, the network precision which is used as
a reference for the macrotick of the network, the propagation

delay on the medium, the number of available queues in the
switch, the link speed and the frame transmission duration.
These constants, alongside the sought variables: frame offsets
and the queue number assigned to the frame, are provided as
part of the constraints. The SMT solver iterates the values of
the variables, which are the frame offsets and queue numbers,
until it finds a valid solution which satisfies all constraints
concurrently. Note that this only represents one solution out
of many possible solutions. The calculated frame offsets,
frame transmission durations and queue number assignments
translate to gate opening and closing events.

3) Service Curve-based Earliest Deadline First: To utilize
the remaining bandwidth that is leftover by the RT applications
we use an approach that is known as SCED [15]. An example
of applications that benefit from this unused bandwidth is
Controller-to-Controller (C2C) communication, which is non-
isochronous RT traffic. C2C traffic comprises small frames
that are sent between the controllers of the Industrial Ethernet
systems e.g. to exchange non-RT process parameters and data.
This traffic is considered to have much larger cycle times than
hard RT traffic. It may hence be prioritized over best-effort
traffic but not over the isochronous traffic.

Service curves [18] were first introduced to provide a broad
abstraction for the characterization of the service provided
by network elements. This enabled the calculation of QoS
guarantees, such as backlog and delay, for data flows given
a characterization of their respective traffic burstiness and
the elements’ service curves [19]. SCED was proposed as
it achieved the largest possible schedulability when provided
with a set of requirements on the delay and a set of specifi-
cations describing the burstiness of the data flow [15]. In the
considered scenario this is obtained from characterizing the
C2C communication.

To allocate resources given some delay and throughput
requirements, conditions have to be met to allow a network
node to simultaneously guarantee all the service curves for
all connections. Basically such a condition is known as the
feasibility test for service curve allocations which states that
in order to satisfy all constraints, the sum of the calculated
service curves of these connections has to be less than or
equal to the capacity curve (cumulative capacity per time-slot
of the system). The capacity curve, in our case, is shaped
according to the RT schedule we compute beforehand. Upon
satisfying the feasibility test we implement the SCED policy
to the given service curves that represent different C2C data
flows. SCED states that each packet is assigned a deadline and
packets are served in an earliest deadline first fashion. The
developed SDN controller architecture is depicted in Fig. 3
showing the interaction of the different controller modules.

C. SMT Scheduling Constraints

In the case of SMT-based schedules we require scheduling
constraints in order to guarantee the isochronous traffic pat-
terns. These constraints comprise the frame offset variables
and flow queue variables per application. This is required to
compute a schedule for the timed gates of the TSN switch(es).

805

We build on the constraints from [7], modify them according
to our needs and add additional constraints to fit our model and
approach. Note that we took into consideration each individual
frame such that we can apply changes to the frames separately
within each application flow. This is a major difference to the
approach in [7] as they only considered the first frame of each
application. The formulas are not provided here due to space
restriction.

1) Frame Constraint: The frame offset of any frame sched-
uled in the network has to be greater than or equal to the
start of the frame period (or cycle time). This ensures that
the frame offset cannot take either a negative number or lie
within a period of another precedence frame. Additionally, the
entire transmission window (offset plus frame duration) has to
fit within the frame period to ensure that the frame would not
miss its hard deadline.

2) Link Constraint: A crucial constraint in TSN is to ensure
that no two frames can overlap in the time domain. We achieve
this by comparing all the frames individually between each
two applications.

3) Jitter Constraint: The jitter constraint allows the shifting
of consecutive frames of the same application by a maximum
jitter value to allow flexibility in assigning schedules. This
means that the consecutive frames of the same application
could possess some jitter to find satisfiable schedules when no
satisfiable schedules can be computed with strictly equidistant
frames. Regarding the hard real-time applications used, we
need the jitter of the applications to be within the 1 µs window.

4) Flow Transmission and End-to-End Constraint: The
flow transmission constraint states that the propagation of a
flow must follow the sequential order along the routed path
of the flow. The constraint specifies the maximum end-to-end
latency between the arrival time of a frame of a flow and the
sending time of that frame at the source.

5) Queue Constraint: This ensures that each RT applica-
tion is placed in a separate queue to guarantee isochronous
communication for all the applications simultaneously.

SDN CONTROLLER

TSN SWITCH

Application
Requirements Network Capabilities

Decision
maker

Rate Monotonic
Scheduler

SMT
SchedulerOR

Real-time traffic
schedule

SCED Scheduler

Best-effort trafficController-to-Controller traffic

GCL

Queues
Timed
gates

Fig. 3: SDN controller architecture including TSN components.

III. EVALUATION ENVIRONMENT

We conduct experiments to benchmark and compare the
scheduler performance where we used a linear topology of
two TSN switches before validating our results in a simula-
tion environment. Note that the schedules are calculated and
applied for each switch individually.

A. Experiment and Simulation Settings

We use the OpenDaylight Controller which possesses a
model-driven SDN controller that utilizes YANG models and
XML-based files to support its features [20].We use the Z3
v4.4.1 solver [21], as SMT solver, which contains algorithms
for solving linear optimization objectives in addition to the
usual SMT functionalities. The scheduling problem constraints
are defined and populated using the notations of the Z3 solver.
The generated output of the scheduling algorithms, given in
an XML-format file, is communicated to the TSN switch
to update its GCL. Simulations of the performance scaling
with an increasing path length of the linear topology were
performed using the discrete event-based network simulator
OMNEST which is the commercial version of OMNeT++.
There we use a framework [22] for including the functions
of TSN, especially IEEE 802.1Qbv Time-Aware Shapers.

B. Industrial Applications and Scenarios

We consider RT applications that represent different setups
of two Industrial Ethernet technologies (Sercos III and Ether-
CAT) where the cycle times are ultra-low, i.e. ≤ 500 µs. A list
of these RT applications is shown in Table I spanning digi-
tal and analog (I/O) applications, Servo-axes and distributed
image processing. The considered C2C communication is non-
isochronous RT traffic, having higher cycle times (1-10 ms)
and 100 bytes of data per cycle. Best-effort traffic is considered
as a non-deterministic traffic which can be preempted.

For the evaluation we define scenarios based on a combi-
nation of the applications from Table I. In the first scenario
(packing problem) we iterate over all mentioned hard RT
applications until no more applications can be added with-
out violating the QoS guarantees. The second scenario is a
validation problem, where we validate the different schedulers
(SMT, RM and SCED) against different sets of applications.

IV. EVALUATION RESULTS

One objective of our evaluation is to identify which sched-
uler is more suited to use in which networking scenario. The
main evaluation metrics used are the utilized bandwidth and
the computation time of the schedulers. The scheduler effi-
ciency is measured as the number of satisfied RT applications
supported by a common schedule. Note that an RT schedule is
considered unsatisfiable in SMT when the solver cannot reach
a solution model for the specified applications. However, for
RM, an RT schedule is considered unsatisfiable when either
preemption of frames occur or deadlines are missed. The data
rate used for sending frames between TSN switches on the
linear topology is 1 Gbps for the following experiment.

806

0 21 42 63 84 105 126 147 168

Number of Frames

0

0.2

0.4

0.6

0.8

1

B
a
n
d
w

id
th

 (
%

)

SMT

RM

Fig. 4: Bandwidth utilization varying over frames (of applications)
added, using SMT and RM schedulers. The blue dot shows
the last reading before the RM scheduler was preempted and
the red dot shows the last reading before the SMT scheduler
showed an unsatisfiable schedule.

1) Packing Problem: For our first case, we test the SMT-
based and RM scheduling by increasing the number of ap-
plications until the scheduling algorithms no longer find a
satisfiable schedule. We iterate sequentially over all the hard
RT applications with cycle times ≤ 500 µs.

Figure 4 shows the achieved bandwidth utilization per
scheduler before not being able to provide a satisfiable sched-
ule. We can observe that the SMT scheduling algorithm can
allocate many more frames, corresponding to RT applications,
before having an unsatisfiable schedule, as compared to the
RM scheduling algorithm. The reason behind the RM sched-
uler poor application allocation performance is that frames are
preempted at an early stage and are scheduled consecutively.
Since the smallest cycle time application is always scheduled
first, the sum of all the frame transmission duration of all the
consecutive RT applications has to be less than or equal to the
difference between the cycle time and the frame transmission
duration of the smallest cycle time application. The SMT
scheduler has the flexibility in assigning frames to time-slots
as long as the specified constraints are all met. Hence, in the
case of SMT, the frame transmission duration of all the frames
has to individually be less than or equal to the difference
between the cycle time and the frame transmission duration
of the smallest cycle time application.

In a second experiment we measure the computation time
needed by each scheduler when adding up to 168 new frames
(Figure not shown for space constraints). We run our scheduler
for 20 iterations for every additional application and calculate
the average computation time alongside corresponding confi-
dence intervals. We observe that the RM scheduler sustains a
steady and low computation time (∼ 60 ms), regardless of the
number of applications/frames added to the scheduler. While
the SMT computation time is comparable to RM for a low
number of frames (60ms for ∼ 10 frames) it increases later
by roughly three orders of magnitude (≥ 30 sec for ∼ 168
frames). The reason behind the RM scheduler behaviour is that
it always iterates over the same hyper period, regardless of the

number of applications. The SMT scheduler requires however
longer computation times because additional replicas of the
constraints populate the SMT solver per added application.

2) Scheduler Validation: Next, we consider the SMT
scheduler change in efficiency under non-isochronous and
isochronous hard RT traffic. We iterate over a number of
RT applications, first subject to the jitter constraint, which
guarantees isochronous traffic, and then after removing this
constraint to observe how many more RT applications of the
same type can be satisfied when they exhibit non-isochronous
traffic patterns. We iterate over the applications until no
satisfiable schedule can be computed. In Fig. 5 we observe a
steep increase in bandwidth utilization in the number of frames
that are added over a SMT solver configured without the
jitter/isochronous constraint (∼ 90% utilization) in comparison
to the one configured with the jitter constraint (∼ 15% utiliza-
tion). This is because dropping the jitter constraint increases
the flexibility of the SMT solver substantially as it can assign
the frames in any time-slot inside its corresponding cycle time.

0 100 200 300 400 500

Number of Frames

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a
n
d
w

id
th

 (
%

)

SMT without Jitter Constraint

SMT with Jitter Constraint

Fig. 5: Bandwidth utilization as function of the number of frames that
are added over a SMT solver configured with and without
the jitter/isochronous constraint. The blue dot and the red
dot show the last value before the SMT scheduler returns
an unsatisfiable schedule.

3) Linear Topology Evaluation: Next, we briefly report
evaluation results when increasing the number of hops in a
line topology under RM scheduling where all links possess a
bandwidth of 1Gbps. We observe an increase in the round-
trip time which for three fresh applications with cycle times
{250, 125, 62.5}µs and data sizes {1488, 600, 228} Bytes,
respectively. The frames observe queueing delays of the sched-
ules at each hop in addition to store and forward delays on the
forward and backward paths. We note that the delay increase
is not necessarily linear in the number of hops as it includes
store and forward delays of frames of different sizes at each
hop. This may be particularly harmful for applications with
strict jitter constraints.

4) SCED Validation: Finally, we investigate the effect of
increasing the number of RT applications on the maximum
number of non-real time C2C communication applications that
can be supported. Note that we do not compare the perfor-

807

TABLE I: Application profiles: EtherCAT (ET) and Sercos III (SIII).

Application
Label

Application
Description

Cycle Time
(µs)

Data Size
(bytes)

A ET 31.25 125

B ET 125 512

C ET 500 1500

D ET 62.5 400

E ET 250 1500

F SIII 62.5 325

G SIII 31.25 248

H SIII 500 3000

I SIII 2000 5000

J SIII 1000 6000

K SIII 2000 12000

mance of the RT schedulers (SMT and RM) here but rather
validate the use of the SCED scheduler which is built on top
of the computed RT schedule. We iterate over the applications
mentioned in Table I in the following order: applications I,
J, K, C and H, until we can no longer compute a satisfiable
schedule. Given the RT schedule, we find feasible service-
curve allocations by computing the maximum number of C2C
connections that can be supported over this RT schedule.
We observe how the maximum number of supported C2C
connections diminishes as more RT applications are added to
our schedule (Fig. not shown for space reasons).

V. CONCLUSION AND OUTLOOK

In this work we addressed the need for a unified network
supporting multiple legacy devices, such as current Indus-
trial Ethernet systems, alongside other traffic classes, such
as controller-to-controller traffic and best-effort traffic. This
proved to be a vital issue for the realization of integrated
industrial IoT, where heterogeneous cyber-physical systems
communicate control and data information over a shared net-
work. We have made this possible by utilizing TSN using its
enhanced scheduling standard IEEE 802.1Qbv, to calculate and
implement schedules using a Software-defined Networking
controller to simultaneously provide real-time guarantees to
all considered traffic classes.

We evaluated real-time schedulers in different network-
ing scenarios and discussed the design of a decision maker
functionality in the SDN controller that ensures the selection
of the better scheduling mechanism per given scenario. We
further considered scheduling a mixture of traffic of different
requirements, such as non-isochronous real-time traffic with
controller-to-controller traffic that requires a soft real-time
guarantee. This allowed a realization in the SDN controller
comprising multiple levels of scheduling mechanisms per traf-
fic class for efficient bandwidth utilization. In future we aim to
analyze more Industrial Ethernet systems, such as PROFINET,
POWERLINK, EtherNet/IP, etc, taking into consideration their
different traffic patterns.

REFERENCES

[1] R. Schlesinger, A. Springer, and T. Sauter, “Automatic packing mech-
anism for simplification of the scheduling in profinet irt,” IEEE Trans-
actions on Industrial Informatics, vol. 12, no. 5, pp. 1822–1831, Oct
2016.

[2] M. Knezic, B. Dokic, and Z. Ivanovic, “Theoretical and experimental
evaluation of ethernet powerlink pollresponse chaining mechanism,”
IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 923–
933, April 2017.

[3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, March 2017.

[4] B. Alt et. al., “Transitions: A Protocol-Independent View of the Future
Internet,” Proceedings of the IEEE, vol. 107, no. 4, pp. 835–846, 2019.

[5] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined networks for real-time applications,” Technical Report Computer
Science 2016/03, University of Stuttgart, Germany, Tech. Rep., 2016.

[6] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,
“Application-aware industrial ethernet based on an SDN-supported
TDMA approach,” in Proceedings of IEEE World Conference on Factory
Communication Systems (WFCS), May 2016, pp. 1–8.

[7] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
Real-Time Communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in Proceedings of ACM International Conference on Real-Time
Networks and Systems, ser. RTNS, 2016, pp. 183–192.

[8] S. Nsaibi, L. Leurs, and H. D. Schotten, “Formal and simulation-
based timing analysis of Industrial-Ethernet sercos III over TSN,” in
Proceedings of IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), Oct. 2017, pp. 1–8.

[9] A. Burns, “Scheduling hard real-time systems: a review,” Software
Engineering Journal, vol. 6, pp. 116–128(12), May 1991.

[10] L. Sha, K.-E. Abdelzaher, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time scheduling theory:
A historical perspective,” Real-Time Syst., vol. 28, no. 2-3, pp. 101–155,
Nov. 2004.

[11] S.-H. Oh and S.-M. Yang, “A modified least-laxity-first scheduling algo-
rithm for real-time tasks,” in Proceedings Fifth International Conference
on Real-Time Computing Systems and Applications, 1998, pp. 31–36.

[12] Y.-S. Yen, W. Chen, J.-C. Zhhuang, and H.-C. Chao, “Sliding weighted
fair queueing scheme for real-time applications,” IEE Proceedings -
Communications, vol. 152, pp. 320–326(6), June 2005.

[13] V. Shinde and S. C. Biday, “Comparison of real time task scheduling
algorithms,” International Journal of Computer Applications, vol. 158,
no. 6, pp. 37–41, 2017.

[14] W. Steiner, “An Evaluation of SMT-Based Schedule Synthesis for Time-
Triggered Multi-hop Networks,” in Proceedings of IEEE Real-Time
Systems Symposium (RTSS), 11 2010, pp. 375–384.

[15] H. Sariowan, R. L. Cruz, and G. C. Polyzos, “SCED: A general-
ized scheduling policy for guaranteeing quality-of-service,” IEEE/ACM
Transactions on Networking, vol. 7, no. 5, pp. 669–684, Oct 1999.

[16] L. Zhao, P. Pop, Z. Zheng, and Q. Li, “Timing analysis of avb traffic in
tsn networks using network calculus,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2018, pp. 25–36.

[17] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduc-
tion and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, Sep.
2011.

[18] R. L. Cruz, “Quality of service guarantees in virtual circuit switched
networks,” IEEE Journal on Selected Areas in Communications, vol. 13,
no. 6, pp. 1048–1056, Aug 1995.

[19] H. Sariowan, R. L. Cruz, and G. C. Polyzos, “Scheduling for quality of
service guarantees via service curves,” in Proceedings of International
Conference on Computer Communications and Networks - IC3N’95,
Sep. 1995, pp. 512–520.

[20] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven sdn controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014, June 2014, pp. 1–6.

[21] B. N. de Moura L., Z3: An Efficient SMT Solver, ser. Lecture Notes in
Computer Science. Springer, 2008, vol. 4963.

[22] NeSTiNg - Network Simulator for Time-sensitive Networking, University
of Stuttgart, last Updated: July 2018. [Online]. Available:
https://gitlab.com/ipvs/nesting

808

