
Annex to ISBN 978-3-903176-28-7© 2020 IFIP

Optimum Rooted Trees for Failover in Switched Networks

Peter Willis1, Nirmala Shenoy2

Dept. of Information Sciences and Technologies,

Rochester Institute of Technology, Rochester, New York
1pjw7904@rit.edu, 2nxsvks@rit.edu

Abstract— Loop-avoidance is essential in switched networks to

avoid indefinite looping of broadcast traffic. Traditionally,

spanning trees or Dijkstra trees are constructed to provide logical

loop free forwarding paths on the physically meshed network to

overcome this problem. Spanning tree based protocols construct a

tree from a single root and incur high convergence latency on root

switch failure. Dijkstra tree based protocols construct a tree from

every switches and incur high operational overhead. Given the

probability of simultaneous multiple switch failures is very low, we

propose an approach that allows an administrator to predesignate

an optimum number of roots. The advantage of this approach - the

high convergence latency experienced with Spanning tree

protocols and the high operational overhead and complexity of

Dijkstra tree based protocols both are avoided. The new approach

based on Meshed Tree Bridging provides a novel loop-avoidance

system that reconverges networks quickly with very low downtime

in the event of root switch failure. This is demonstrated on the

Global Environment for Network Innovations (GENI) testbed

against Rapid Spanning Tree Protocol – an industry accepted

standard for loop-avoidance.

Keywords— Ethernet Switching, Meshed Trees, Optimal Roots

I. INTRODUCTION

Networks implementing IEEE 802.3 Ethernet [1] and
IEEE 802.1D [2] bridging require loop-avoidance protocols
to forward broadcast traffic without duplication and indefinite
forwarding of frames. To provide redundancy in the event of
interface or link failures, meshed networks with physical loops
are used in switched networks. This imposes the need for loop-
avoidance protocols to stop broadcast traffic from being flooded
indefinitely and causing a network crash.

To stop frames from looping in the network, loop-

avoidance protocols have historically utilized spanning trees

to create a logical broadcast forwarding path. The loop-free

nature of a tree graph in which all nodes are visited once led

to the development of the original Spanning Tree Protocol

(STP) [2]. Paths which are not part of the tree are disabled by

STP. Later Rapid Spanning Tree Protocol (RSTP)Error!

Reference source not found. enhanced STP for faster

convergence on topology changes and became the industry

standard. Networks running RSTP elect a root and then

construct the spanning tree from this root. Root election incurs

high delays and result in high network downtime on root

switch failure in RSTP. Hence protocols implementing link

state routing was introduced (for loop avoidance in switched

networks), where every switch is a root and a Dijkstra shortest

path tree is constructed from every switch. Link state routing

builds a database of all nodes and their connecting links to

construct Disjktra trees to every switch. IEEE 802.1aq

Shortest Path Bridging (SPB)[3] and the Internet Engineering

Task Force’s (IETF) TRILL (Transparent Interconnection of

Lots of Links) on Routing Bridges [5] both adopt the

Intermediate System to Intermediate System (IS-IS) link state

routing protocol to implement this functionality. Building,

maintaining, and pruning link state databases are

computationally expensive and the protocols are much more

complex than RSTP, and requires all IS-IS message to be

encapsulated in SPB or TRILL headers.

In the event of the root switch failure, RSTP requires a new

root to be elected and then a new spanning tree constructed

from this root. This incurs very high delays. With IS-IS based

protocols, on a switch failure, the associated link state changes

has to be disseminated to all switches. Switches then wait for

a database settling time before recomputing a Dijkstra tree to

every other switch – and this happens at all switches. During

this time, frame forwarding is not reliable. The overhead and

computational complexity is very high – given that Dijkstra

tree construction is by itself computation intensive[8].

 Meshed Tree Bridging (MTB), a proposed standard for

use in IEEE-compliant networks, provides broadcast frame

forwarding paths without the need to disable or modify port

roles in switches. MTB does not require network wide

information dissemination. It uses a novel meshed tree

algorithm (MTA), to pre-construct a number of paths between

a root and a non-root switch. On link or interface failures the

next path is ready to take over. Convergence latency is very

low[7]. To address root switch failure, Meshed Trees was

extended to Multi Meshed Trees (MMT) that allows

construction of meshed trees from a number of roots. Too

many roots would result in high operational overhead

(example IS-IS based solutions). One root does not offer

adequate redundancy (example RSTP). So, with MMT, we

offer the option of deciding the number of roots based on the

failure probability of switches and the uptime desired in the

network – i.e. the optimal number of roots. MTB provisions

redundancy in paths and roots with very low operational

overhead – attributed to a simple yet novel numbering scheme

via Virtual IDs (VID).

II. MESHED TREE BRIDGING

We first explain a one-root meshed tree construction with
Meshed Tree Bridging Protocol (MTBP). The MTBP
implementation starts with a root node selected manually to
provide administrators the freedom of matching the design
of the network and the root switch capacity; this also avoids
root election delays. The root node is given a single digit Virtual
Identifier (VID). A VID, structured as a collection of decimal-
delimited integers, describes the path from the root to a given

681

2

interface on another switch. The numbers are a collection of the
egress interface values at each switch in the path thus far. VIDs
are disseminated through the advertisement issued by MTBP
running in the switches. For example, in Fig. 1, S1 is given a
VID of 1.1 from the root, which appends the egress interface
number of 1 to its base VID ‘1’. Every VID received is then
forwarded to all other neighbors with an appended egress port.
These VIDs not only provide a record of each path taken to get
to a given interface on a switch, but also provide a cost (hop
count) for the path. The lowest-cost VID is declared the primary
VID (PVID). The PVIDs and their ports of acquisition form the
broadcast tree defining the non-looping paths. Through a
substring check of VIDs received against what is already stored,
loops can be detected to avoid such VIDs [7]

Fig. 1. Meshed Tree Construction with Virtual IDs

Multi Meshed Trees: In MTBP explained above what if the
root switch fails? To avoid root election delays, we predesignate
a secondary, and if needed a tertiary and a fourth root. And we
pre-construct meshed trees from each of the predesignated roots.
To cut down on the construction and maintenance of the
multiple meshed trees but at the same time to provide adequate
root redundancy it is necessary to decide on an optimal number
of roots as explained earlier. MMT will construct meshed trees
from the multiple pre-selected roots. In this demo we present a
two-root MMT implementation.

Fig. 2. Multi Meshed Trees with 2 Roots

Similar to the meshed tree construction from one root (Fig.
1), in Fig. 2 we show a 4-switch network, where another meshed
tree is constructed from another Root2 (green tree), assigned a
VID 2. (For simplicity we do not show meshing within each
tree). The roots are assigned a preference. Under normal
operations the meshed tree from Root1(red tree) is used; on its
failure the meshed tree from Root2 takes over. MTBP
implementation details using a single root is available in [7].
MTBP with 2 roots is implemented along the same lines.
Included in this implementation is Root2’s detection of Root1
failure and how the meshed tree from Root2 takes over
broadcast frame forwarding. For the demo, we select a neighbor

of Root1, as Root2. This will speed up the failover to the
secondary meshed tree.

III. PROTOTYPE DEMONSTRATION

To understand impact of a root switch failure on networks
running MTP and RSTP, an implementation will be executed
on topologies designed on the GENI testbed [7]. Resulting
data collected from the two implementations will be presented
and compared. By looking at how the protocols respond to the

root switch failure, one can observe the resiliency to root
switch failures and the impact on broadcast traffic during the
recovery. Using the GENI testbed, custom machines reserved
from universities across the United States will be used for the
demo. Three topologies, with 5, 10, and 17 switches (see Fig 3),
were designed to study the protocol performance as the network
size (diameter) and the connectivity increases. Clients connected
to the switches (not shown in Figure) will generate broadcast
traffic. We will present

 Convergence time on Root1 failure

 Control traffic generated for convergence to assess and

explain complexity of the protocol recovery process

 Broadcast traffic lost, duplicated and delivered out of

sequence during convergence

Fig. 3. Topologies for Demo (Clients are not shown)

REFERENCES

[1] “IEEE Standard for Ethernet,” IEEE Std 802.3-2018 (Revision of IEEE
Std 802.3-2015), 2018.

[2] “IEEE Standard for Local and metropolitan area networks: Media
Access Control (MAC) Bridges,” IEEE Std 802.1D-2004 (Revision
of IEEE Std 802.1D-1998), 2004.

[3] IEEE 802.1w - Rapid Reconfiguration of Spanning Tree, supplement to
ISO/IEC 15802-3:1998 (IEEE Std 802.1D-1998)

[4] 802.1aq-2012 - IEEE Standard for Local and metropolitan area networks-
-Media Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks--Amendment 20: Shortest Path Bridging , Retrieved 4th Nov
2014

[5] R. Perlman, D. Eastlake, D. Dutt, S. Gai, and A. Ghanwani, “Routing
bridges (rbridges): Base protocol specification,” RFC 6325, RFC Editor,
July 2011.

[6] www.geni.net

[7] P. Willis and N. Shenoy, “A meshed tree protocol for loop avoidance
in switched networks,” in 2019 International Conference on Computing,
Networking and Communications (ICNC), pp. 303–307, Feb 2019.

[8] http://mathworld.wolfram.com/DijkstrasAlgorithm.html, Retrieved 4th
Nov 2014

682

