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Abstract— Loop-avoidance is essential in switched networks to 

avoid indefinite looping of broadcast traffic. Traditionally, 

spanning trees or Dijkstra trees are constructed to provide logical 

loop free forwarding paths on the physically meshed network to 

overcome this problem. Spanning tree based protocols construct a 

tree from a single root and incur high convergence latency on root 

switch failure. Dijkstra tree based protocols construct a tree from 

every switches and incur high operational overhead. Given the 

probability of simultaneous multiple switch failures is very low, we 

propose an approach that allows an administrator to predesignate 

an optimum number of roots. The advantage of this approach - the 

high convergence latency experienced with Spanning tree 

protocols and the high operational overhead and complexity of 

Dijkstra tree based protocols both are avoided. The new approach 

based on Meshed Tree Bridging provides a novel loop-avoidance 

system that reconverges networks quickly with very low downtime 

in the event of root switch failure. This is demonstrated on the 

Global Environment for Network Innovations (GENI) testbed 

against Rapid Spanning Tree Protocol – an industry accepted 

standard for loop-avoidance.    
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I. INTRODUCTION 

Networks  implementing  IEEE  802.3  Ethernet [1]  and  
IEEE  802.1D  [2]  bridging  require loop-avoidance protocols 
to forward broadcast traffic without duplication and indefinite 
forwarding of frames. To provide redundancy in the event of 
interface or link failures, meshed networks with physical loops 
are used in switched networks. This imposes the need for loop-
avoidance protocols to stop broadcast traffic from being flooded 
indefinitely and causing a network crash. 

To stop frames from looping in the network, loop-

avoidance protocols have historically utilized spanning trees 

to create a logical broadcast forwarding path. The loop-free 

nature of a tree graph in which all nodes are visited once led 

to the development of the original Spanning Tree Protocol 

(STP) [2]. Paths which are not part of the tree are disabled by 

STP. Later Rapid Spanning Tree Protocol (RSTP)Error! 

Reference source not found. enhanced STP for faster 

convergence on topology changes and  became  the  industry 

standard. Networks running RSTP elect a root and then 

construct the spanning tree from this root. Root election incurs 

high delays and result in high network downtime on root 

switch failure in RSTP. Hence protocols implementing link 

state routing was introduced (for loop avoidance in switched 

networks), where every switch is a root and a Dijkstra shortest 

path tree is constructed from every switch. Link state routing 

builds a database of all nodes and their connecting links to 

construct Disjktra trees to every switch. IEEE 802.1aq 

Shortest Path Bridging (SPB)[3] and the Internet Engineering 

Task Force’s (IETF) TRILL (Transparent Interconnection of 

Lots of Links) on Routing Bridges [5] both adopt the 

Intermediate System to Intermediate System (IS-IS)  link state 

routing protocol to implement this functionality. Building, 

maintaining, and pruning link state databases are 

computationally expensive and the protocols are much more 

complex than RSTP, and requires all IS-IS message to be 

encapsulated in SPB or TRILL headers.  

In the event of the root switch failure, RSTP requires a new 

root to be elected and then a new spanning tree constructed 

from this root. This incurs very high delays. With IS-IS based 

protocols, on a switch failure, the associated link state changes 

has to be disseminated to all switches. Switches then wait for 

a database settling time before recomputing a Dijkstra tree to 

every other switch – and this happens at all switches. During 

this time, frame forwarding is not reliable. The overhead and 

computational complexity is very high – given that Dijkstra 

tree construction is by itself computation intensive[8]. 

  Meshed  Tree  Bridging  (MTB),  a  proposed  standard  for 

use  in  IEEE-compliant  networks,  provides broadcast  frame 

forwarding paths without  the need to disable or modify port 

roles in switches. MTB does not require network wide 

information dissemination. It uses a novel meshed tree 

algorithm (MTA), to pre-construct a number of paths between 

a root and a non-root switch. On link or interface failures the 

next path is ready to take over. Convergence latency is very 

low[7]. To address root switch failure, Meshed Trees was 

extended to Multi Meshed Trees (MMT) that allows 

construction of meshed trees from a number of roots. Too 

many roots would result in high operational overhead 

(example IS-IS based solutions). One root does not offer 

adequate redundancy (example RSTP). So, with MMT, we 

offer the option of deciding the number of roots based on the 

failure probability of switches and the uptime desired in the 

network – i.e. the optimal number of roots. MTB provisions 

redundancy in paths and roots with very low operational 

overhead – attributed to a simple yet novel numbering scheme 

via Virtual IDs (VID).  

II. MESHED TREE BRIDGING

We first explain a one-root meshed tree construction with 
Meshed Tree Bridging Protocol (MTBP). The MTBP 
implementation starts with a root node selected manually to 
provide  administrators  the  freedom  of  matching  the  design 
of  the  network  and the root switch capacity; this also avoids 
root election delays. The root node is given a single digit Virtual 
Identifier (VID). A VID, structured as a collection of decimal-
delimited integers, describes the path from the root to a given 
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interface on another switch. The numbers are a collection of the 
egress interface values at each switch in the path thus far. VIDs 
are disseminated through the advertisement issued by MTBP 
running in the switches. For  example, in Fig. 1, S1 is given a 
VID of 1.1 from the root, which  appends  the  egress  interface 
number  of  1 to its base VID ‘1’. Every VID received is then 
forwarded to all other neighbors with an appended egress port. 
These VIDs not only provide a record of each path taken to get 
to a given interface on a switch, but also provide a cost (hop 
count) for the path. The lowest-cost VID is declared the primary 
VID (PVID). The PVIDs and their ports of acquisition form the 
broadcast tree defining the non-looping paths. Through a 
substring check of VIDs received against what is already stored, 
loops can be detected to avoid such VIDs [7] 

Fig. 1. Meshed Tree Construction with Virtual IDs 

Multi Meshed Trees: In MTBP explained above what if the 
root switch fails? To avoid root election delays, we predesignate 
a secondary, and if needed a tertiary and a fourth root. And we 
pre-construct meshed trees from each of the predesignated roots. 
To cut down on the construction and maintenance of the 
multiple meshed trees but at the same time to provide adequate 
root redundancy it is necessary to decide on an optimal number 
of roots as explained earlier. MMT will construct meshed trees 
from the multiple pre-selected roots. In this demo we present a 
two-root MMT implementation.  

Fig. 2. Multi Meshed Trees with 2 Roots  

Similar to the meshed tree construction from one root (Fig. 
1), in Fig. 2 we show a 4-switch network, where another meshed 
tree is constructed from another Root2 (green tree), assigned a 
VID 2. (For simplicity we do not show meshing within each 
tree). The roots are assigned a preference. Under normal 
operations the meshed tree from Root1(red tree) is used; on its 
failure the meshed tree from Root2 takes over. MTBP 
implementation details using a single root is available in [7]. 
MTBP with 2 roots is implemented along the same lines. 
Included in this implementation is Root2’s detection of Root1 
failure and how the meshed tree from Root2 takes over 
broadcast frame forwarding. For the demo, we select a neighbor 

of Root1, as Root2. This will speed up the failover to the 
secondary meshed tree.  

III. PROTOTYPE DEMONSTRATION

To  understand impact of a root switch failure on networks 
running  MTP and RSTP,  an  implementation  will be  executed  
on  topologies  designed  on the GENI testbed [7].  Resulting 
data collected from the two implementations will be presented 
and compared. By looking at how the protocols respond to the 

root switch failure, one can observe the resiliency to root 
switch failures and the impact on broadcast traffic during the 
recovery. Using  the  GENI  testbed,  custom  machines  reserved 
from universities across the United  States will be used for the 
demo. Three topologies, with 5, 10, and 17 switches (see Fig 3), 
were designed to study the protocol performance as the network 
size (diameter) and the connectivity increases. Clients connected 
to the switches (not shown in Figure) will generate broadcast 
traffic. We will present 

 Convergence time on Root1 failure

 Control traffic generated for convergence to assess and

explain complexity of the protocol recovery process

 Broadcast traffic lost, duplicated and delivered out of

sequence during convergence

Fig. 3. Topologies for Demo (Clients are not shown) 
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