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II. FRAMEWORK DESCRIPTION

The computer vision system generates a video feed towards
the computer to which the radio devices, universal software
radio peripherals (USRPs) Ettus B210, are connected (see
Figure 1). The test-bed comprises 3 USRPs that act as AP,
user device and rogue device, respectively. The connected
USRP sends a pilot-based frame with a BPSK modulation
using an orthogonal frequency-division multiplexing (OFDM)
transmission at 1 GHz.

Figure 1: Setup

The visual detection is done by fine-tuning a Mask region-
based convolutional neural network (R-CNN) model available
in the Detectron2 framework [10] to recognize a USRP and
output a bounding box (BBOX). Figure 2 shows USRPs and
their BBOXs used to fine-tune the model.

(a) Example 1. (b) Example 2. (c) Example 3.

Figure 2: Examples of annotated images with bounding boxes
used for training the model.

The computer vision system produces a list of BBOXs
identifying UEs in the video feed. The AP receives from the
connected UE radio frames and computes the channel impulse
response (CIR). We design a ML system that gets as input a
list of "B" BBOXs produced by the CV system and channel
estimations for a targeted UE attached to the AP. The ML’s
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Abstract—In the context of 5G networks, the possibility to 
fusion "radio vision" with "computer vision" is a must-have 
asset, enabler of building the extensive navigation maps through 
the so-called MirrorWorld. This demo will showcase an essential 
building block for merging the two environments: matching 
a user equipment’s identity in video stream and in radio 
measurements.

We demonstrate the integration of a computer vision system 
with a radio access network and showcase the identification of 
the true radio transmitter between two equipment existing in a 
video feed.

I. INTRODUCTION

Within the broad spectrum of application and scenarios of 
the fifth generation (5G), the Digital Twin [1] stands out a 
novel application with tough requirements driven by the harsh 
demands of ultra-reliable and low latency (URLLC) users, yet 
with a enlarged variety of possibilities to explore in setups 
with high flexibility and increased sensing capabilities like 
the industrial private networks. In this context, achieving a 
MirrorWorld [2] becomes foreseeable through combining the 
reliability of radio systems and the advanced perception of the 
space of industrial sensors, all enabled through the intelligence 
of machine learning.

Projects like ARENA2036 [3] or Nokia-Omron [4] part-
nership are already trying to bring Industry 4.0 [5] setups 
to reality in a speedy fashion. One of the direct targets of 
this merging is user positioning and tracking. While user 
positioning through exploiting radio capabilities has been done 
with quite resource demanding algorithms and methods [6],
[7], video recognition provides a broad perspective with 
advanced capabilities of tracking and computing. Some recent 
works have looked into bringing intelligence from computer 
vision systems to the radio networks [8], [9] yet the question 
of matching the identity of an equipment in technologies that 
sense the space in a fundamentally different manner stays 
opened.

In this sense, our demonstration is as following. We 
showcase a test-bed that comprises a computer vision (CV) 
system and three radio devices. One of the devices acts as an 
access point (AP), one as a connected user equipment (UE) 
and one as a rogue user equipment, not transmitting and not 
connected to the AP. By exploiting information from video 
feed and the radio signature produced by the devices and by 
means of machine learning (ML), the system associates the 
identity of a user in the radio domain to a transmitting device 
identified in the video domain.
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objective is to output which one of the spotted UEs in the
video feed is the one transmitting.

The first step is data acquisition, illustrated in Figure 3.

{timestamp, channel impulse response}

{timestamp, bounding box 1}

{timestamp, bounding box 2}

Figure 3: Data acquisition.

As the goal is to identify which of two UEs is transmitting,
we collect video feed containing two UEs, therefore two
BBOXs, and radio frames from a singular transmitting UE. For
both UEs, the positions are varied through space. As data from
the vision and radio domains are acquired concurrently yet
with a considerable different periodicity, we use timestamps as
unique identifiers to match the video and radio measurements
and generate an unified structure with CIRs and BBOXs.

Next procedure is the feature extraction, as depicted in
Figure 4.

CIR BBOX1 BBOX2
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Figure 4: Illustration of the classification pipeline.

The features extracted from the radio domain are all CIR
related: the CIR magnitude, phase, the value and index of the
CIR magnitude peak in the radio frame, the mean value and
standard deviation of the CIR magnitude vector. The features
from the visual domain are the BBOXs acquired with the
fine-tuned model from Detectron2. To train the classification
model, the complete set of features are fed to the classifier.

We use a Random Forest classifier (RFC), which is an
ensemble learning algorithm that uses # classification trees
to make a decision [11]. Each tree process a subset of
the available set of features and states a prediction, the #

predictions are used to establish the RFC prediction.
Figure 5 shows the input to the RFC, along with the label.

Each input instance has its own label as - ∈ X = {0, 1, 2},

where - = 0 represents for no UE is transmitting, - = 1 means
that the UE from BBOX 1 is the transmitting and - = 2 for
UE from BBOX 2 is transmitting.

CIR CIR related BBOX 1 BBOX 2

Features Label

X

Figure 5: Classifier’s input instance.

The model training is carried out combining an exhaustive
search over RFC parameters values, for the best number of
trees and the best maximum depth of the trees. The training
data represents 80% of total amount of the data and the
validation 20%. The training uses 10-fold cross-validation
procedure and two different metrics are used for evaluation
in each iteration, the logarithmic loss and the �1 score. The
best model is selected and used for validation, where we
compute the confusion matrix, precision, recall, �1 score and
classification accuracy.

Figure 6 shows intuitively the setup of our demo.

Figure 6: Demo idea
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