Crawling the IPFS Network

Sebastian Henningsen Sebastian Rust

Martin Florian Bjorn Scheuermann

Weizenbaum-Institute for the Networked Society
/ Humboldt-Universitit zu Berlin
Berlin, Germany

Abstract—IPFS is a distributed data storage service frequently
used by blockchain applications and for sharing content in
a censorship-resistant manner. Data is hosted by an open set
of peers, pointers to both are distributed using a Kademlia-
based distributed hash table (DHT). In this demo, we present
a crawler for the IPFS overlay network (ipfs_crawler) that can
be used to study and monitor the network’s structure. Therefore,
ipfs_crawler is an important building block when assessing
the state and health of the network, as the overlay network
significantly influences the robustness and performance of IPFS.
Specifically, ipfs_crawler systematically traverses the Kademlia
DHT of IPFS to enumerate peers in the network and a subset
of the connections between peers. Since network communication
in IPFS is carried out through the libp2p networking library,
ipfs_crawler can easily be adapted to crawl other libp2p-based
networks.

I. INTRODUCTION

The Interplanetary Filesystem [1] is a community-developed
peer-to-peer protocol and network providing public data stor-
age services. IPFS is often cited as a fitting data storage
solution for blockchain-based applications [2] and was previ-
ously used for mirroring censorship-threatened websites such
as Wikipedia'. IPFS’ design is reminiscent to classical peer-
to-peer systems such as filesharing networks [3]. Any Internet-
enabled device can participate as an IPFS node and nodes
are operated without explicit economic incentives. Each data
item is stored by a small set of nodes, that item’s providers,
who make the data item available to other peers. Data items
are addressed through immutable, cryptographically-generated
names which are resolved to their providers through a dis-
tributed hash table based on Kademlia [4].

In [2], we conduct a measurement study on the IPFS
network; contrasting white papers and documentation with the
actual code and performing extensive measurements regarding,
among others, the number of nodes, their geographic distribu-
tion and the graph properties of the resulting overlay.

In this demo, we shed more light on ipfs_crawlerz, the
crawler which lies at the heart of our evaluation in [2].
Although we specifically developed ipfs_crawler from scratch
to generate snapshots of the IPFS overlay network, its potential
applications transcend IPFS. IPFS’ network layer is imple-
mented in the libp2p networking library, which originated as

Thttps://github.com/ipfs/distributed-wikipedia-mirror

2The code of our ipfs_crawler and evaluation is maintained at https://github.
com/wiberlin/ipfs-crawler. We use ipfs_crawler to conduct and visualize

periodic measurements at https://trudi.weizenbaum.net.

Annex to ISBN 978-3-903176-28-7 (© 2020 IFIP

part of the IPFS project but was modularized into its own stan-
dalone library. Therefore, ipfs_crawler can easily be adapted to
crawl other libp2p-based networks. In the following, for easier
comprehension and in tune with [2], we focus on crawling the
IPES and will refer to the IPFS node software as a monolith
that implicitly contains all libp2p functionality.

We resorted to developing our own crawler instead of re-
using existing Kademlia crawlers [5] for two reasons: first,
IPFS’ protocol and handshake structure is highly complex and
best used with the provided API, which would be hard to
integrate in existing crawlers. Second, and more importantly,
although the crawling literature on Kademlia is vast, there are
virtually no open source implementations.

Therefore, we made our code public and are cooperating
with IPFS/libp2p developers to incorporate the crawler into
a periodic monitoring infrastructure, since ipfs_crawler is an
effective tool to assess the state and health of the network.
Additionally, the obtained data and insights from crawling
may be useful for engineers and further research on, e.g.,
performance and resilience.

II. THE INTERPLANETARY FILESYSTEM

IPES is an open, permissionless system, i.e., anybody can
participate, host data and download data from other peers. Data
items are stored and served by data providers which announce
the data they are serving to the network. These references
between data items and their respective providers are stored
in a global Kademlia-style DHT.

As in other Kademlia implementations, nodes maintain a
routing table of peers, with each peer entry containing a
mapping between peer ID and the addresses (e.g., IP ad-
dresses) under which the peer can be reached in the underlying
network. In contrast to classical Kademlia implementations,
DHT-communication in IPFS is carried out over TCP and
other connection-oriented transports like QUIC. Therefore, if
a node has another peer’s routing entry stored in its local
table, there exists an active overlay connection between them.
Notably, the inverse is not necessarily true as not every
established overlay connection is reflected in the DHT routing
table (cf. [2] for more details).

III. CRAWL PROCEDURE

ipfs_crawler starts by connecting to the IPFS bootstrap
nodes, collecting their routing table content and successively
trying to connect to every peer it has not tried before. IPFS

679

crawler crawled node v, id:1101

Fi

s, 1d=()
‘w’ ‘ 0% ‘ 10%* ‘ 1]1*‘ 1101 ‘
‘ ni, N2, N3 ‘ Mg ‘ ns ‘ - ‘
‘y

Fi

e, ld:l
‘w’ ‘ 0F ‘10*‘ 111*‘ 1101 ‘
[ningng [ng | ns | - |
%

Figure 1: Sequence diagram of the crawl.

employs a variant of Kademlia, hence, nodes organize their
routing table entries in so-called buckets based on the leading
zeroes of the xor between their own node ID and the other
nodes’ IDs. As an example, consider Fig. 1 which depicts
the crawling process for one node and said nodes’ bucket
organization. The receiver’s ID is 1101. The first bucket
contains only peers whose ID xor 1101 starts with no leading
zeroes, hence, node IDs starting with 0. Similarly, for an ID
to be stored in the second bucket, the xor has to start with one
leading zero, yielding IDs starting with 10, and so on.
ipfs_crawler sends a Kademlia FindNode-request with a
target ID, to which the receiver will answer with the & =
20 routing table entries that are closest to the target. These
nodes are exactly the ones in the bucket of the target ID (and
surrounding buckets, if the target bucket is not full).

I'V. FEATURES

The most important aspect of every crawler is its speed, as
it directly influences the accuracy of obtained snapshots [6].
Since the overlay is changing during crawls due to peer churn,
the longer a crawl takes, the higher the risk of unwanted
artifacts in the snapshots [7]. Therefore, our ipfs_crawler is
optimized for small crawl times and is able to crawl 50000
nodes in roughly 4 min, on average. Figure 2 depicts a boxplot
summarizing the distribution of crawling times for the data
in [2]. The box corresponds to the 25 % and 75 % quartiles,
respectively, with the median shown as the solid line. It can
be seen that 75 % of crawls took less than 5 min to complete
and only 2.71 % of crawls took longer than 10 min.

Furthermore, if configured, ipfs_crawler will cache the
nodes it has seen. The next crawl will then not only start at the
bootstrap nodes but also add all previously reachable nodes to
the crawl queue. This caching additionally increases the crawl
speed, since it overcomes the bottleneck of finding peers to
connect to in the beginning of each crawl. For every peer it
encounters, ipfs_crawler saves the following information:

o the peer ID, i.e., the (multi-)hash of a public key,

« all available addresses (e. g., [Pv4, IPv6, relay, ...) of the
peer and

« whether a connection could be established.

50 e
40 °
30 .
201]

Crawl duration [minute]
)

Figure 2: Boxplot of crawl durations for [2]

If a connection attempt was successful, it also includes

« the agent version and
« the content of the routing table entries as an edge list.

Taking the example in Fig. 1, the edge list obtained from
crawling node v would be (v,n4), (v,n3),..., (v, n5).

ipfs_crawler enumerates the nodes in the network, but
without ground truth it is hard to assess the quality and
completeness of a crawl. Therefore, it might be desirable to
perform a sanity check whether some pre-defined IPFS-nodes
are found through crawling. These can be well-known nodes,
such as the ipfs.io-gateway, or self-run nodes, specifically
started for the purpose of sanity checking the results. If
provided, ipfs_crawler checks if it found the respective nodes
and notifies the user in case it was not successful.

V. CONCLUSION

In this demo we present ipfs_crawler, a crawler for the
overlay network of IPFS which lies at the heart of our journey
towards mapping the IPFS [2]. In particular, ipfs_crawler
obtains snapshots of the Kademlia DHT of IPFS, which
is implemented in the libp2p networking library. Hence,
ipfs_crawler is not limited to IPFS. but could easily be used
to crawl other libp2p-based networks.

Towards future work, we are cooperating with IPFS/libp2p
developers to integrate ipfs_crawler into a periodic monitoring
framework for assessing IPFS’ network state and health.

REFERENCES

[1] J. Benet, “IPFS - content addressed, versioned, P2P file system,” CoRR,
vol. abs/1407.3561, 2014.

[2] S. A. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping
the interplanetary filesystem,” in Proc. of IFIP Networking, IFIP, 2020.

[3] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips, “The
bittorrent P2P file-sharing system: Measurements and analysis,” in Proc.
of IPTPS, Springer, 2005.

[4] P. Maymounkov and D. Maziéres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in Proc. of IPTPS, Springer,
2002.

[5] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of kad,”
in Proc. of SIGCOMM, ACM, 2007.

[6] D. Stutzbach and R. Rejaie, “Capturing accurate snapshots of the
gnutella network,” in Proc. of INFOCOM, 1EEE, 2006.

, “Evaluating the accuracy of captured snapshots by peer-to-peer

crawlers,” in Proc. of PAM, Springer, 2005.

(71

680

