FORCH: An Orchestrator for
Fog Computing service deployment

Gianluca Davoli, Davide Borsatti, Daniele Tarchi, Walter Cerroni
University of Bologna, Italy
Email: {gianluca.davoli, davide.borsatti, daniele.tarchi, walter.cerroni} @unibo.it

Abstract—In scenarios where resource locality is the Kkey,
Fog Computing helps in bringing the potentialities of Everything-
as-a-Service (XaaS) closer to the end user, reducing both service
time and load on the Cloud infrastructure. We designed and
developed FORCH, a service model-aware Fog Computing or-
chestrator to dynamically allocate services and manage resources
available on Fog nodes, in order to provide for different needs
of the end users. An experimental test bed to validate FORCH
architecture has been implemented and will be the subject of
our live demonstration, showing the feasibility of the proposed
approach running on different Fog node types and with different
service models.

I. INTRODUCTION

The evolution towards 5G and new generation networks
in general has highlighted more stringent needs in terms of
network and computing performances [1]. Many applications
could benefit from the presence of edge devices for remote
processing, computation offloading, resource relocation, and
service deployment with a reduced latency and improved
scalability. In this scenario, the Fog Computing paradigm has
emerged as a possible intermediate layer between the end
user and the Cloud infrastructure [2], aiming at providing
services similar to those offered by its larger counterpart (i.e.,
Cloud Computing) but focusing in particular on the needs of
microservices and modular applications [3].

Dynamicity is inherently a fundamental characteristic of the
Fog philosophy, due to the heterogeneity of Fog nodes not only
in terms of quantity and capacity, but also in terms of offered
services. Therefore, a viable approach toward a flexible and
dynamic service deployment in a Fog Computing environment
is to adopt the “Everything-as-a-Service” (XaaS) model [2].
In order to handle such a variety in terms of resources and
services, a suitable Fog Computing orchestration component
is needed [4], [5]. Such orchestrator should be able to discover
how many and which Fog nodes are available, keep track
of the resources and service models they offer, monitor their
utilization, listen to service requests from the end users, and
decide which node must be allocated to which service request
according to which XaaS model. Then it should proceed to
instructing both the end user and the infrastructure on said
allocation, allowing the end user to access to the allocated
resources and obtain the requested service.

This kind of service model-aware orchestration system has
not been proposed yet. For instance, the Fog orchestrator
presented in [6] is focused specifically on IoT applications and
their requirements, and it does not consider multiple service

Annex to ISBN 978-3-903176-28-7© 2020 IFIP

FORCH

- -[Broker]\\
T I

Service
Allocation

USEI:AP|] [Res/Serv database]
T ¥

] i
) Res/Serv monitoring
¥

Fog ué;de
R/S monitor

Fog ode
R/S monitor

PaaS]

Fog hode
R/S monitor

Fig. 1. FORCH reference architecture.

models. Other approaches can be found too, but they are either
limited to a single service model [7], or do not include test
bed implementations at all [4], [5].

We designed and developed FORCH, a modular or-
chestration system for Fog Computing infrastructures,
which is aware of different service models according
to the Software/Platform/Infrastructure-as-a-Service (SaaS/-
PaaS/IaaS) classification. FORCH is conceived as a resource
and service management layer placed between the end user and
the infrastructure itself, composed by a variety of Fog nodes.
We devised and implemented a suitable test bed for proof-of-
concept (PoC) experimental validation, involving both virtual
and physical Fog nodes, which will be the subject of our live
demonstration.

II. SYSTEM ARCHITECTURE

Figure 1 shows the architecture of the Fog system, high-
lighting its logical components. The supervising entity is the
modular orchestrator we called FORCH (Fog ORCHestrator).
It coordinates the activities in the Fog system, interacting
with the users by providing them information on the available
services offered by the Fog infrastructure, and receiving their
requests for new service allocations. FORCH also interacts
with the Fog nodes to manage services deployed and monitor
resources available on them, as well as with repositories in
the Cloud, to gather information on the available platforms
and software tools. FORCH has multiple components, each
developed as an independent module:

o User API (UA): the point of contact for users to interact

with FORCH;

677

o Broker (BR): acts as mediator between users and resource
management modules, routing requests and responses,
and managing allocation decisions in the process;

¢ Resource and Service Database (RD): stores information
on Fog resources and on their current state, including data
on availability, residual capacity and allocated services;

¢ Resource and Service Monitoring (RM): acts as collector
for the monitoring data sent over from the agent modules
in the Fog nodes;

o laaS Management (IM): manages resources allocation
and service deployment on laaS Fog nodes, leverag-
ing multiple lightweight virtualization technologies (e.g.,
containers, Unikernels) and interacting with related im-
age repositories and management/orchestration platforms
(e.g., Docker, Kubernetes, Eclipse fog05).

Users connect to FORCH through a Fog Access Point (AP),
and they are only allowed to directly interact with the UA
module, through its REST API. All other modules of FORCH
expose REST endpoints as well, but those are for internal use
only, although they are triggered by user requests.

Fog nodes, regardless of their capabilities, host a module
acting as an agent of the RM collector module of FORCH.
Through this agent module, the RM can acquire information
regarding the services the Fog node can offer along with its
residual resources, and monitor its activities once a service is
deployed on it. As a particular subset of Fog nodes, IaaS nodes
are able to interact directly with the software and platform
repository of choice in order to download the software or
image needed to provide the service that FORCH wants to
deploy on them.

We distinguish three types of entities FORCH can allocate
Fog nodes to: Applications (APPs) in the SaaS case, Software
Development Platforms (SDPs) in the PaaS case, and Fog
Virtualization Engines (FVEs) in the laaS case. All of them
being software entities, they address mutually distinct sets
of end user needs with different levels of flexibility. APPs
take values as input and return results based on those input
values (e.g., a block of a computationally-intensive series of
operations), or listen for incoming requests and serve them
(e.g., a Web-based application). Diversely, SDPs are meant
to accept blocks of code written in a predetermined language
and/or using specific development libraries, execute them, and
return the output to the end user. (e.g., Remote Java or Python
Interpreters). Lastly, FVEs allow a Fog node to host virtualized
appliances, enabling the user to deploy its own virtualized
system, achieving maximum flexibility.

III. DEMONSTRATOR DESCRIPTION

The FORCH live demonstration runs on a test bed that is
logically coherent with the architecture depicted in Figure 1. A
Virtual Machine (VM) with 2 cores and 4 GB of RAM hosts
all FORCH software components, which were developed as
separate Python programs meant to be run independently and
communicating with each other via REST APIs. A number of
Fog nodes are deployed on different hardware platforms. Two
nodes are emulated by two separate VMs, each with 1 core

e NUC1

CPU utilization [%]
[=)]
o

\
01234567 8910111213
Time [min]

@ — s s
= =)

Fig. 2. Example of service allocation based on Fog node CPU utilization.

and 2 GB of RAM (VM1 and VM?2). Two additional nodes are
implemented by an Intel NUC MiniPC equipped with a 4-core
8th-gen Intel i7 processor and 16 GB of RAM (NUCI1), and
a RaspberryPi Single Board Computer, model 3B+, equipped
with a 4-core ARMvS8 processor and 1 GB of RAM (RP1),
respectively. We use Docker as our FVE of choice and Zabbix
as the monitoring system used between RM and Fog nodes.

The live demonstration will showcase how FORCH is able
to deploy services on different Fog nodes using different XaaS
service models, based on resources and capabilities available
on the underlying infrastructure. The different phases of Fog
node discovery, resource monitoring, and SaaS/PaaS/laaS ser-
vice deployment will be presented. Figure 2 reports how the
system behaves in the situation where a sequence of homo-
geneous requests and allocations increasingly saturates the
computation resources of the available Fog nodes. Instances of
the requested service are allocated to the NUC1 node as long
as its CPUs are not fully loaded (at ¢ = 8 min in the example
of Fig. 2), then the other nodes are selected for the service
requests that follow, until the whole infrastructure is fully
utilized (at ¢ = 17 min in the example of Fig. 2). In case no
additional service request is received, the nodes start to free the
resources when each service is completed (from ¢ = 18 min
to t = 21 min in the example of Fig. 2). We remark that this
example is intended as a basic PoC, as FORCH is predisposed
to handle heterogeneous service requests, monitoring a variety
of usage metrics.

REFERENCES

[11 Y. Ku et al., “5G radio access network design with the fog paradigm:
Confluence of communications and computing,” IEEE Commun. Mag.,
vol. 55, no. 4, pp. 46-52, Apr. 2017.

[2] M. lorga et al., “Fog computing conceptual model,” The National
Institute of Standards and Technology, SP 500-325, Mar. 2018. [Online].
Available: https://doi.org/10.6028/NIST.SP.500-325

[3] C. Mouradian et al., “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416464, First Quarter 2018.

[4] Z. Wen et al., “Fog orchestration for Internet of Things services,” IEEE
Internet Comput., vol. 21, no. 2, pp. 16-24, Mar. 2017.

[5] Y.lJiang et al., “Challenges and solutions in fog computing orchestration,”
IEEE Netw., vol. 32, no. 3, pp. 122-129, May 2018.

[6] B. Donassolo et al., “Fog based framework for IoT service provision-

ing,” in 2019 16th IEEE Annual Consumer Communications Networking

Conference (CCNC), 2019, pp. 1-6.

S. Tuli et al., “FogBus: A blockchain-based lightweight framework for

edge and fog computing,” Journal of Systems and Software, vol. 154, pp.

22-36, 2019.

[7

—

678

