
Coupling Source Routing with
Time-Sensitive Networking

Gagan Nandha Kumar∗, Kostas Katsalis∗, Panagiotis Papadimitriou†
∗Huawei Technologies Duesseldorf Gmbh, Munich, Germany

†Department of Applied Informatics, University of Macedonia, Greece

and evaluating a conjoint routing plus scheduling TSN system,
based on the source routing paradigm, able to provide latency
guarantees, while also improve network efficiency.

A source routing scheme for TSN is still compliant with a
control plane, such as 802.1Qcc. However, for the forwarding
decision no STP, MSTP, RSTP protocol is required, since the
forwarding decision is encoded in each packet, leading to a
nearly stateless TSN dataplane. In more detail, in our approach
(i) we exploit an advanced centralized SDN controller for
encoding path information on the edge switches; (ii) one-
time configuration of the path decoding process is required at
each TSN-aware switch; (iii) the path is encoded into Ethernet
frames, and, as such, no IP encapsulation is required. We
evaluate this TSN-aware source routing based fabric in small-
scale network topologies with varying workload characteristics
and strict delay requirements. Our implementation is based
on Mininet, OpenvSwitch (OVS), and Time Aware Priority
Shaper (TAPRIO) open-source solutions for realizing source
routing over TSN. TAPRIO is a Linux-based queuing disci-
pline implementation of the scheduling state machine defined
by IEEE 802.1Qbv, which allows configuration of a sequence
of gate states, where each gate state allows outgoing traffic for
a subset of traffic classes. Our contributions are as follows:

• We employ source routing for a TSN-aware nearly state-
less data plane.

• We provide an implementation of this source routing fab-
ric in a TSN-aware TAPRIO-based virtual environment.

• We study the performance of TAPRIO on physical and
virtual interfaces.

• We describe a header format that can be used to realize
source routing in pure Ethernet frames.

• We present evaluation results when applying concurrently
source routing and TSN reconfiguration in order to satisfy
strict latency requirements.

In Section II, we provide background information on TSN
and source routing. In Section III, we discuss our technical
approach, as well as implementation details of source routing
over virtual TSN. In Section IV, we present evaluation results.
In Section V, we summarize our findings and outline directions
for future work.

II. BACKGROUND INFORMATION

A. Background on TSN
IEEE 802.1 TSN family of standards is used to provide

deterministic performance by means of delay and jitter for

Abstract—We discuss source routing over time-sensitive net-
works (TSN) as means to create explicit forwarding paths. The
proposed source routing scheme over TSN can be used in multiple
scenarios and complex topologies, with the aim to satisfy strict
latency requirements of modern network applications. In this
respect, we present the implementation of this technique in
Mininet, exploiting the TAPRIO interface, together with SDN
control and routing header encoding. We discuss evaluation
results for scenarios, where source-routing and TSN scheduling
are concurrently applied to protect high-priority traffic.

Index Terms—IEEE TSN, deterministic networking, source
routing, QoS.

I. INTRODUCTION

The wide deployment of communication networks in many
diverse operational environments, spanning from mobile com-
puting and datacenter environments to automotive and indus-
trial networks, has radically increased divergence by means
of operational requirements. Different applications require
diverse performance and QoS guarantees, not only in terms
of throughput, but also in terms of predictable latency and
jitter, such as in the case of industrial networks.

IEEE 802.1 TSN family of standards aims at providing
an application-agnostic solid underpinning for performance
guarantees for all Ethernet-based communications. A number
of IEEE 802.1Q amendments, such as 802.1Qbv (scheduled
traffic) and 802.1Qbu (preemption), are enhancing traditional
802.1 forwarding plane operations, while others are enhancing
control plane aspects, such as 802.1Qcc and 802.1Qdd for the
centralized configuration model and for the fully distributed,
respectively. Although several research studies have proposed
and analyzed solutions for the TSN scheduling problem [1],
only recently TSN scheduling and routing have been consid-
ered under a common optimization framework [2], [3].

In this work, we focus on the joint TSN scheduling and
routing problem. In this respect, we leverage on the approaches
presented in [2], [3] and analyze the effects of using a
source routing scheme over TSN-aware network fabric in
order to define explicit forwarding paths. When the forwarding
decision is fixed (e.g., when operating over spanning trees or
variations), in the case of complex Talker-Listener relation-
ships and complicated traffic patterns, may not always be the
case that an optimal scheduling scheme exists to admit the
entire flow set. As a joint routing-scheduling scheme is able to
broaden the solution space, we aim at designing, implementing

Annex to ISBN 978-3-903176-28-7 c© 2020 IFIP

797

challenging applications, such as in the case of industrial and
in-vehicle networks. For example, 802.1Qbv is incorporating
the operation of transmission gates controlling precisely the
time packets from a queue that are allowed to be served;
802.1Qbu is introducing a preemption step in the forwarding
plane; 802.1Qci is used to apply per-stream filtering and
policing. A comprehensive study of the TSN can be found in
[1], whereas SMT based scheduling for TSN is presented in
[4]. Note that the actual end-to-end performance depends not
only on the scheduling principle in effect, but also on the path
selection decision. Authors in [2] explore how the routing of
time-triggered flows affects their schedulability. Authors in [3]
present various Integer Linear Program (ILP) formulations that
solve the combined problem of routing and scheduling time-
triggered traffic, while following the SDN-based paradigm.

From the standards perspective, IEEE 802.1aq specifies
the Shortest Path Bridging (SPB) principle. In 802.1Qcc
amendment, many path control protocols are supported, such
as STP, MSTP, RSTP (spanning tree variations), and SPB.
802.1Qca can be used for path control and reservation, while
it relies on IS-IS to carry control information. IEEE 802.1Qca
can be used to define Explicit Trees, an interesting feature
towards implementing joint scheduling and routing strategies.
This is achieved using a PCE element to find the optimal path;
however, the propagation of the control information is passed
with IS-IS TLVs in a distributed manner. For real deployments,
the operation of IS-IS introduces high overhead, especially in
the case of network failures or re-configuration, as the network
state has to be maintained at each hop. In contrast, source
routing operates over a nearly stateless data plane, as the path
information is encoded at each packet a priori at the source.

B. Source Based routing

Source routing comprises a viable approach to the reduction
of forwarding state [5], [6], [7]. This state reduction can
yield significant switch TCAM savings, allowing for cheaper
switching hardware. In principle, source routing encodes the
path into each packet header, enabling switches to forward
packets using a minimal number of (nearly static) flow-
independent forwarding entries. In particular, the path is
encoded as a set of labels, which correspond (or may even
match) to the sequence of switch ports that each packet needs
to traverse. As such, there is no need for the switches to
maintain L2 or L3 forwarding entries to all destinations within
the network, saving a significant amount of Ternary Content
Addressable Memory (TCAM) space.

One requirement, though, is to point each switch to the
encoded label that corresponds to the next output port in the
path. A straightforward way to implement such a pointer is
to allocate header space (e.g., a dedicated header field). This
pointer will need to be incremented, as the packet is forwarded
along the path. This requires an additional action on the packet
by each switch, before sending out each packet to the output
port. Alternatively, the pointer can be implemented using
the TTL field, obviating the need to perform an additional

1

2
1

1

2

2

1
2

3

3

4

1

2

4

3

Host
1

Host
2

Host
3

Host
4

CNC
SDN Controller

TSN instructions/802.1Qcc
YANG models 802.1Qcw

Path information
encoded in the src
MAC address

TSN aware bridges

TSN-1

OVS

TSN-2

TSN-3

TSN-5

TSN-4

OVS

Source routing
encoding

3

Fig. 1: Example of source routing over TSN.

pointer update; the next label can be identified by the deviation
between the initial and the current TTL value [7], [5].

The required set of labels can be encoded to header fields,
such as source/destination MAC address and IP(v6) address.
In the case of paths with a large number of hops, additional
header space can be utilized, such as VLAN and MPLS head-
ers, at the expense of extra transmission overhead (which is
more critical for smaller packets). Furthermore, source routing
requires the insertion of the set of labels into the packet header,
which will be handled by the switch fabric. The process
of source routing can be facilitated by the deployment of a
network controller (e.g., OpenFlow), which will be responsible
for the path computation and the population of path insertion
entries into the edge switches. An implementation of a source
routing scheme using OpenFlow is described in [7].

III. TECHNICAL APPROACH

In our approach, we exploit a SDN control plane support-
ing the relevant 802.1Qcc operations regarding, for example,
scheduling configuration actions, while also used to realize
the source routing paradigm. Using source routing over a
TSN enabled forwarding plane, we are able to design opti-
mal policies that are jointly considering the TSN scheduling
and routing problem by defining explicit paths. In contrast
to 802.1Qca, source routing obviates the need to keep the
network state at each network bridge, so both the configuration
and operational overhead is negligible. Since in source routing
the path information is encoded into each packet, the bridge at
each hop merely needs to perform the decoding action for each
packet in order to identify the next hop. Furthermore, there
is no need to perform tedious and awkward TCAM updates
based on a centralized (e.g., OpenFlow or NETCONF) or
distributed protocol (e.g., IS-IS). The restriction, in this case,
is that the path computation module (which determines the
path each packet will follow) needs to be aware of the entire
topology; nevertheless, this difficulty can be circumvented by
a SDN controller, which can easily retrieve this information
(e.g., through LLDP).

A. Source Routing Path Encoding

In source routing, the path selection decision for each packet
is decided a priori before transmission, while the path informa-
tion is encapsulated within each packet. New techniques, such

798

N port-id port-id port-id…

Nth hop(N-1)th hop

SourceRouting SRC-MAC 48bit

4 bit4 bit4 bit 4 bit

HopCount

Fig. 2: Source routing MAC header encoding format.

as segment routing, exploit the source routing paradigm and
encapsulate the path-segment information either over a MPLS
or IPv6 dataplane. In our approach, since we are interested
in pure layer 2 TSN operations, similarly to [7], we encode
the path information inside the MAC header. In particular, the
source MAC address is manipulated in order to encode the
sequence of bridge output ports, along the computed path. In
order to elaborate the concept, we use an exemplary system
architecture for a network of five TSN switches and four hosts,
as shown in Fig. 1. Host 1 (Talker) sends traffic to Host 3
(Listener), whereas Host 2 (Talker) sends traffic to both Hosts
3 and 4 (Listeners). Instead of using SPB, STP, or variations
such as MSTP, RSTP, we seek to steer the traffic as follows;
f13 follows the path 1 → 2 → 5, f23 traverses the path
1 → 3 → 4 → 5, while f24 follows the path 1 → 3 → 4. At
each switch TSN operations, such as 802.1Qbv gates control,
are enabled. At each hop in order to steer the packet in a
specific direction, we specify the forwarding action based on
which egress port to use. For example, if after TSN-1 the next
hop is TSN-2, then port 3 needs to be used as the egress
at TSN-1. A path encoding module is used to encode the
entire path within each packet. We specifically encode the path
within the source MAC address; Fig. 2 illustrates the encoding
format. Each egress port is encoded using 4 bits (Nth hop bits
0 to 3, (N-1)th hop bits 4 to 7, padding for the unused, etc.),
while the 4 most significant bits are used to encode the hop
count. Fig. 3 depicts an encoding example for steering traffic
over the path: 1 → 2 → 5 (topology in Fig. 1).

PATH (1,2,5): 1 (3) 2 (2) 5 (4)

010000100011

(port)

00000011

30:00:00:...:00:00:03:24Encoded MAC:

3rd hop2nd hop

…

1st hopHop counter

(port)(port)Host1 host 3
through

Fig. 3: Source routing MAC header encoding example.

As such, we are in position to encode paths with a maximum
of 11 hops, with 16 ports in each bridge, which is deemed
sufficient for pure layer-2 operations and controlled environ-
ments. In the case of applications requiring a higher number
of hops as in the case of industrial automation, this limitation
on the hop count can be overcome by resetting the source
MAC in each domain by the edge routers of multi-domain
TSN. This approach is similar to the one presented in [7].
However, therein the path position is identified based on the
TTL value, which requires inspection of the IP header. In our
approach, all required operations are applied solely on pure
Ethernet frames, ensuring compliance with TSN.

Fig. 4: Example of flow table for path encoding.

To realize the proposed scheme, between the Talker hosts
and the edge TSN switches we add OpenvSwitch (OVS)
instances [8] for path encoding. Fig. 4 shows the flow entry
used for the source MAC address encoding example depicted
in Fig. 3. The dl dst field in the first entry of the flow
table is used to perform matching of the packets based on
the destination MAC address. The action list applied on the
packets that match this entry consists of: (i) replacing the
source MAC address with the source routing encoded address,
and (ii) forwarding the packets through the indicated output
port. The second and third entries in the flow table, shown in
Fig. 4, apply the default action taken by the edge switches.

B. Software TSN aware switches

We implement software TSN switch fabric using Time
Aware Priority Shaper (TAPRIO) interface inside a virtual-
ized environment. TAPRIO is a Linux QDisc based queuing
discipline, which implements 802.1Qbv time-aware shaper.
TAPRIO allows the configuration of a sequence of gate states,
where each gate state allows outgoing traffic for a subset
(potentially empty) of traffic classes based on the notion of
time slice. Furthermore, we integrate TAPRIO into Mininet
emulator for the implementation of a TSN-aware network [9].
The required set of changes are applied into Mininet version
2.2 running on Linux kernel version 5.4. Fig. 5 shows the
bird’s eye view on the implementation of TSN switches in
Mininet, indicating the following modifications:

• Multi-queued NIC interfaces. TAPRIO is supported only
on multi-queued network interface. Hence, in order to
configure TAPRIO inside Mininet, we need to create multi-
queued network interfaces or Virtual Ethernet pairs inside
Mininet instead of single-queue network interfaces.

• TSN schedules on virtual network interfaces. Configura-
tion of Linux TAPRIO queuing discipline is carried out via
the traffic control tool (TC) [10].

• Traffic class to VLAN priority mapping. TAPRIO uses
the priority field of the socket buffer used by the net-
working stack of the Linux kernel (skb→priority) to clas-
sify the packets to a particular traffic class. As such, the
skb→priority field needs to be modified based on the VLAN
priority field to map the traffic classes of the TAPRIO
based on VLAN priority. In order to set this kernel data
structure from userspace, we rely on ingress and egress port
mapping provided by the VLAN ports. Each OVS datapath
is connected to the VLAN interfaces of the virtual Ethernet
pairs.

799

ovs

taprio

VM

qdiscs

v
i
r
t
u
a
l
-
i
f

taprio

qdiscs

ovs

host 2 host 3

mininet

host 1

ovs

host …

host n

virtual-if

Fig. 5: TAPRIO in Mininet.

C. Path Decoding

For the forwarding decision at each switch, a local software
component needs to be instructed (only once) on the way to
decode the path information encapsulated at each packet. The
switch extracts the correct port number from the sequence
of ports encoded into the source MAC address of the packet
header field. In order to perform the decoding operation, we
rely on OpenFlow version 1.3 (similarly to the encoding).

Fig. 6: Example of flow table for path decoding.

Fig. 6 shows the flow table entry of each switch serving as
the actual packet forwarding node. In our case, the switches
extract the corresponding output port from that position in
the source MAC address, based on the value in the Most
Significant Nibble (MSN) of the MAC address. For example,
if the value in the MSN of the source MAC address is 3,
the corresponding output port is extracted from the 3rd nibble
of the source MAC address, whereas the MSN of the MAC
address is decremented by 1.

D. TARPIO Configuration

According to 802.1Qcc, the configuration of the TSN func-
tionality (e.g., GateControlList for scheduled traffic according
to 802.1Qbv) can be conducted using a management protocol,
such as NETCONF (with respect to the 802.1Qcw YANG
models). In this regard, any SDN control platform supporting
a NETCONF client can be employed (e.g., OpenDaylight).
Since 802.1Qcw YANG models are not yet finalized and a
NETCONF API is currently not available for TAPRIO, the
TAPRIO configuration is applied using the traffic control tool1.
The development of a NETCONF interface for TAPRIO is part
of our future work.

IV. PERFORMANCE EVALUATION

The main goal of our experiments is to illustrate the impact
of source routing and TSN schedules on the performance of

1See https://www.frank-durr.de/?p=376 for example configurations,

High priority Talkers

Low priority Talkers

Edge Switch
(Path Encoding Module)

S3 High priority Listeners

Low priority Listeners

SDN Controller

S1

S3

S4

S2

Primary path
Secondary path
Control path

Fig. 7: Experimental network topology

the time-critical network applications. For our experiments,
we use a simple network topology, consisting of two paths
(i.e.,, primary and secondary) between the source and the
destination pairs, as shown in Fig. 7. The network under test
is emulated using TAPRIO enabled Mininet, as explained in
Section III. Regarding traffic generation and measurements
collection, we rely on Distributed Internet Traffic Generator
(D-ITG) [11]. In the following, we present results from three
different experiments, showing the performance of TARPIO on
a virtual interface (Section IV-A), the scalability of TARPIO
while increasing the number of flows (Section IV-B), as well
as the combined effect of source routing and TSN on latency
(Section IV-C).

A. TAPRIO in Physical and Virtual Interfaces

This experiment aims at measuring the overhead introduced
by TAPRIO, when enabled in virtual network interfaces. The
corresponding experimental setup is shown in Fig. 8, where
the source and destination ports are connected to an external
machine, at which the D-ITG traffic generator is deployed.
The network traffic generated is tagged ICMP (priority - 7)
with a packet size of 100 Bytes at a rate of 2000 packets per
second.

tap tap

PHY-if-1

vif-1 vif-2

br br

Traffic Generator

taprio

qdiscs

PHY-if-2

OVS

VM

HOST

PHY-if-1

Traffic Generator

taprio

qdiscs

PHY-if-2

br

HOST

TAPRIO in virtual InterfaceTAPRIO in physical Interface

Fig. 8: Experimental setup with physical and virtual TAPRIO.

Fig. 9 illustrates the average latency for different TSN
schedules (GCL) with physical and virtual TAPRIO implemen-
tations and 1ms cycle time. The plot depicts the performance
for high priority traffic, where for following notation X:Y, X
corresponds to the duration in µs for which gate for priority 7
traffic is open and Y refers to the duration for which gate for
best effort traffic is opened after closing the gate for priority 7

800

Fig. 9: Average Latency for high priority traffic, compari-
son between physical and virtual TAPRIO. Notation 800:200
means a GCL entry with 800us for high priority, followed
by 200us of best effort traffic for a cycle of 1ms. Normal
operation refers to the case where TAPRIO is disabled.

traffic. As expected, the average latency for high-priority traffic
decreases monotonously, while increasing the percentage from
the overall cycle allocated. Second, the average latency of
the virtual TSN switch always exceeds that of its physical
counterpart, due to the additional overhead incurred by the
transmission of packets through both virtual and physical
queuing layer.

B. Scalabilty of TAPRIO

In this experiment, we investigated TARPIO performance
while increasing the number of talkers (i.e., sending hosts)
and consecutively the number of flows. The experiment is
performed on the topology shown in Fig. 7. In particular, we
use two different types of traffic generated internally within
Mininet: (i) high-priority (Priority 7) tagged ICMP traffic with
packet size of 1400 Bytes generated using D-ITG at the rate

A
ve

ra
g

e
La

te
nc

y
(s

)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

Number of Hosts
0 2 4 6 8 10 12

TAPRIO - 900:100
TAPRIO - 800:200
TAPRIO - 700:300
Normal - BE and P7

Fig. 10: Average latency performance of high priority traffic,
while increasing the number of hosts/flows (X:Y notation
similarly to the one used in Fig 9).

A
ve

ra
g

e
La

te
nc

y
(s

)

0.0002

0.0004

0.0006

0.0008

0.001

Time (s)
0 50 100 150 200

Fig. 11: Impact of best-effort traffic re-routing and reschedul-
ing on the delay of high-priority traffic.

of 5000 packets per second for all talker-listener pairs (with a
range of 1 to 10); (ii) best-effort traffic generated using Iperf.

Fig. 10 shows the average latency of high-priority traffic,
while increasing the number of hosts for different GCL
configurations. The TSN schedules in this plot follow the
same convention as before. In general, the average latency
of the flows increases monotonously with the number of
hosts, whereas the variation in latency is more pronounced
as well, due to the increased in-class contention on the high-
priority queue, while reaching its saturation point. The normal
case (i.e., without TAPRIO) yields lower average latency
compared to TAPRIO, due to the strict priority scheduling
algorithm running by default on the network interfaces. Note
that scheduled traffic is typically not used to obtain better
average latencies, but deterministic latencies. Nevertheless,
TAPRIO offers the flexibility to tune the schedules based on
the application’s latency requirements. In the case of TAPRIO
queue disc, the average latency is increasing with lower values
of duty cycle (i.e., the percentage allocated) for high-priority
traffic.

C. Impact of Source Routing and TSN Schedules on Latency

This experiment studies the impact of source routing and
TSN schedules of best effort traffic on the average latency
experienced by high-priority traffic. The experiment is per-
formed using two different types of traffic generated internally
within Mininet: (i) high-priority (Priority 7) ICMP traffic with
packet size of 1400 Bytes generated using D-ITG at the rate
of 10000 packets per second (with constant inter-departure
time), flowing through the first talker–listener pair; (ii) ten
parallel flows of best-effort interfering traffic with packet
size of 1400 Bytes at the rate of 5000 packets per second
per flow, generated by a traffic generator application flowing
through the second talker–listener pair. The experiment is
conducted over a duration of 180 seconds with both the high-
priority and best-effort traffic flowing through the network,
whereas the initial TSN schedule configuration is set to 50%

801

A

ve
ra

g
e

La
te

nc
y

(s
)

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

Time (s)
0 20 40 60 80 100 120

Fig. 12: Impact of re-routing (without rescheduling) on the
delay of high-priority traffic.

duty cycle for high-priority traffic. Initially, both best-effort
and high-priority traffic are routed along the primary path.
After approximately 100 seconds, the SDN controller (i.e.,
Ryu) re-routes the best-effort traffic to the secondary path
and also triggers a scheduling update in the TSN bridges
allocating 90% duty cycle for high-priority traffic. Fig. 11
shows the average latency of the high-priority traffic. The
average latency experienced by high-priority traffic decreases,
due to the combined effect of re-routing of best-effort traffic
on the secondary path and increasing the duty cycle for high-
priority traffic. We note, however, that source routing alone
does not affect the average latency of the high-priority traffic,
since this depends on the GCL, cycle and percentage of the
cycles allocated.

In the following experiment, we investigate the effect of
re-routing the high-priority interfering traffic. The experiment
is performed by replacing ten flows of best-effort interfering
traffic with high-priority traffic on the second talker–listener
pair. The TSN bridges are configured with 70% duty cycle
for high-priority traffic. The duration of the experiment is 180
seconds. Initially, there is only a single high-priority flow from
a single talker to a single listener. After 30 seconds, interfering
background traffic is injected in the network, while ten addi-
tional high-priority flows are routed along the primary path.
After approximately 60 seconds, Ryu re-routes the additional
interfering high-priority traffic to the secondary path.

Fig. 12 shows the average latency of the high-priority traffic
flowing through first talker–listener pair. The increase in the
average latency at approximately 30 seconds is due to the
addition of the high-priority interfering traffic flowing through
the primary path (i.e., in-class interference). At approximately
60 seconds, the average latency decreases, due to the re-routing
of interfering traffic to the secondary path, which reduces the
interference on the primary path. Nevertheless, the average
latency is higher than the one measured over the first 30
seconds, due to the in-class interference, since the bridges 1
and 4 are used by both primary and secondary paths.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we coupled source routing with TSN in order
to create explicit paths, facilitate re-routing, and reduce the
forwarding state in switches. We presented an implementation
in Mininet exploiting the TAPRIO interface, together with
SDN control and Ethernet frame header encoding. In our
experimentation, we quantified the gains of re-routing interfer-
ing (best-effort) traffic on the latency of high-priority traffic.
We further investigated the effect of combined re-routing and
rescheduling (i.e., increase of duty cycle), harnessing both
source routing and TSN. In essence, the conjoint use of
source routing and TSN schedules comprises an enabler for the
development of optimal scheduling policies in order to satisfy
the strict requirements of network services at low cost. Note
that the simple encoding/decoding mechanism proposed can
be easily integrated in devices with TSN compliant hardware,
as long as there is SDN (e.g., Openflow) support.

In our future work, we will conduct a thorough investigation
of the system and statistical parameters that affect the joint
source-routing and TSN scheduling performance, while also
seek to develop a relevant joint optimization framework. We
note that typically scheduled traffic is not used to obtain
better average but deterministic latency. We further plan to
present a statistical analysis of delay and jitter, while also
study the effects of our approach on throughput performance.
In addition, we will investigate techniques that overcome the
11-hops limitation in the proposed encoding, meeting the
requirements of networks with a large diameter.

REFERENCES

[1] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The
ieee tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 88–145, 2019.

[2] N. G. Nayak, F. Duerr, and K. Rothermel, “Routing algorithms for
ieee802.1qbv networks,” ACM SIGBED Review, vol. 15, no. 3, pp. 13–
18, 2018.

[3] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (tssdn) for real-time applications,” in Proceedings of
the 24th International Conference on Real-Time Networks and Systems,
2016, pp. 193–202.

[4] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in ieee 802.1qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, ser. RTNS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 183–192. [Online].
Available: https://doi.org/10.1145/2997465.2997470

[5] S. A. Jyothi, M. Dong, and P. B. Godfrey, “Towards a flexible data
center fabric with source routing,” in ACM SIGCOMM, 2015, pp. 1–8.

[6] C. Papagianni, P. Papadimitriou, and J. S. Baras, “Towards reduced-state
service chaining with source routing,” in IEEE/ACM CNSM, Nov 2018,
pp. 438–443.

[7] K. Papadopoulos and P. Papadimitriou, “Leveraging on source routing
for scalability and robustness in datacenters,” in IEEE 5GWF, 2019, pp.
148–153.

[8] B. Pfaff and B. Davie, “The open vswitch database management
protocol,” IETF RFC 7047, 2013.

[9] MIninet. [Online]. Available: http://mininet.org
[10] B. Hubert et al., “Linux advanced routing & traffic control howto,”

Netherlabs BV, vol. 1, 2002.
[11] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation

of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

802

