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mechanism [5]. The compatibility of BBRv2 and Cubic CCs
has been demonstrated in [5] and analyzed in more detail
in [6]. However, we are unaware of any published results
when it comes to the compatibility of BBRv2 and DCTCP.
A harm-based threshold is introduced in [7] to quantify the
deployability of new CC algorithms in the Internet. However,
the practical applicability of this insight is still challenging.

With the introduction of 5G for mobile and Fiber To The
Home (FTTH) for fixed Internet access, the capacity of the
last mile has been significantly increased, resulting in much
higher load on the Access-Aggregation Network (AAN) than
before and thus moving bottlenecks to routers in the AAN
from the edge. In such a network, the CCs used by the flows
and the (propagation) round trip times (RTTs) are much more
heterogeneous than in data centers and other closed enterprise
networks where the whole infrastructure is controlled by a
single entity. To handle the increased load on AANs and serve
these high-speed bottlenecks, new router equipment is needed
where reasonable fairness among traffic aggregates (e.g., users,
TCP flows) is again an important factor in the design.

In this paper, we explore a heterogeneous environment
where different CC and AQM solutions coexist under various
network conditions (bottleneck capacity and RTTs). We also
examine the efficiency of recent AQMs and show potential
issues: DCTCP which is designed with Data Center conditions
in mind, has fairness issues when the RTTs are higher or
heterogeneous. BBRv2 has similar but less serious problems.
When mixing BBRv2 and DCTCP, even having equal RTTs
results in unfairness and with heterogeneous RTTs this prob-
lem escalates. We also show that a recent Core-Stateless AQM
proposal called CSAQM that applies resource sharing control
can solve these issues in general by harmonizing CC behavior,
but it requires assistance from both end-hosts and network
routers, resulting in strong constraints on the Internet-wide
deployment. Interestingly in some cases (e.g., large RTT) even
CSAQM cannot help to achieve good fairness. Another issue
we have found is that the recently introduced loss mode of
DCTCP makes buffer sizing for scalable flows harder.

We believe that while the idea of harm-based fairness [7]
is good, the expectation that a novel CC should never harm
existing CCs, unnecessarily slows down CC evolution. Instead,
we highlight that if the network can enforce fairness among
traffic aggregates, much faster CC innovation can be enabled.
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times. At the bottleneck, the ECN marking of two traditional 
AQMs (STEP and PI2) most commonly proposed for Scalable 
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I. INTRODUCTION

Deployment of new Congestion Control (CC) algorithms
has accelerated in the past few years, with the aim of allowing
users to exploit the benefits of high-speed links with acceptable
end-to-end delay. The scalable Data Center TCP (DCTCP) CC
was originally designed for Data Centers, but in recent years
it is considered to be used over the Internet [1]. Low Latency,
Low Loss, Scalable Throughput (L4S) Internet Service [2] also
aims to allow classic and scalable TCP flows to coexist over
the same Internet bottleneck. DCTCP was not designed for
the Internet, it assumes extremely low end-to-end latency and
thus fast feedback loop. To make its scalable CC mechanism
suitable for usage over the Internet, TCP Prague [3] has
recently been proposed.

Among the different new CC proposals, one of the most
prevalent is BBR (Bottleneck Bandwidth and Round-trip prop-
agation time) [4] that applies a complex congestion model
instead of simple packet losses. In contrast to its initial
version, BBRv2 also implements a “DCTCP-inspired ECN”
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II. CONGESTION CONTROL ALGORITHMS

In this paper, we aim to investigate the compatibility of
different Scalable CCs, selecting two such CC algorithms:
DCTCP is the de-facto standard scalable CC, while the recent
BBRv2 also supports scalable response to ECN signals.
DCTCP [8]. It was originally designed for data center net-
works. For practical consideration, it assumes ECN marking
with STEP AQM in the routers. [9] shows that the target delay
in STEP AQM shall be at K × RTT,K ≥ 0.17 to achieve
100% utilization, but the utilization remains higher than 94%
even for K as small as 0.01. During its design the maximum
buffer length was not studied or optimized.

In the absence of ECN Congestion Encountered (CE) signal
DCTCP reuses the Additive Increase of Reno. When ECN CE
is experienced, the decrease of the congestion window (cwnd)
is proportional to the averaged fraction of marked received
packets (α), α = (1− g)×α+ g×F , where F is the fraction
of marked packets in the last RTT and g = 1/16 by default.
The reduced cwnd is calculated as cwnd = cwnd×(1−α/2).
Important to note that since Linux kernel 5.1 DCTCP also
reacts to real packet loss by halving the cwnd.
BBRv2 [5]. Rather than using events such as loss or buffer
occupancy, which are only weakly correlated with congestion,
BBR starts from Kleinrock’s formal model of congestion and
its associated optimal operating point [4]. That operation point
is reached when the link utilization is high while it avoids
creating (long) queues at the bottleneck. BBR version 1 does
not treat packet loss or ECN CE as a congestion signal and
it has known compatibility problems with Cubic [10]. BBR
version 2 aims to provide fair throughput sharing among
BBRv2 and Cubic connections; and it also implements a
Scalable “DCTCP-inspired ECN” mechanism [5].

Though it was never claimed that BBRv2 is DCTCP com-
patible, we are not aware of any publication investigating fair-
ness between BBR and DCTCP. BBR’s α is determined simi-
larly to that of DCTCP (using the same default g). However, its
effect on the cwnd is smaller, cwnd = cwnd×(1−fECN ·α),
where fECN = 1/3 by default. In addition, BBRv2 increases
the cwnd in a very different way from DCTCP. Considering
these differences, it is quite unlikely that DCTCP and BBRv2
would share a bottleneck fairly.

BBRv2 is likely not the final CC in the current CC evolu-
tion. Furthermore, with more and more user space CC imple-
mentations one can expect flows with highly heterogeneous
CCs present in the AAN.
Note on TCP Prague [3]. TCP Prague is a recent CC
proposal that extends DCTCP to be compatible with the
Internet. Though the implementation of TCP Prague is in an
experimental, early-stage and currently cannot be deployed
over the Internet, TCP Prague may solve several issues of
DCTCP, including the fairness problems among flows with
different RTTs and faster increase of congestion window.

III. AQM ALGORITHMS

Four queue management strategies are considered in this
paper: STEP, the one used during DCTCP design; PI2, which

was designed to be compatible with both classic and scalable
CCs (including DCTCP); a recent core-stateless AQM pro-
posal (CSAQM), whose in-network control of resource sharing
enables the co-existence of different CC approaches including
both scalable and classic CCs; and tail dropping as reference
in some scenarios (TailDrop). The first three AQMs are ECN
capable, and have a delay target parameter, which is set to
Dtarget = K ·RTT , where K is a parameter we change. We
translate it to queue length target by Ltarget = Dtarget · C,
where C is the capacity of the outgoing link.
STEP AQM marks all incoming packets when the queue
size is above Ltarget. It is the reference AQM considered
during the design of DCTCP [8]. STEP AQM behavior is
achieved by configuring the widely deployed RED (Random
Early Detection) AQM as proposed in [8].
PI2 (Proportional Integral improved with a square [11]) was
designed to support the coexistence of Classic and Scalable
CCs. It has been shown to work in environments with Scalable
CC flows only [11], though its response might be too slow to
achieve low latency in dynamic scenarios. It uses a PI con-
troller to determine a base probability (pbase) periodically to
maintain the target delay. This base probability is then applied
to derive the ECN-marking/dropping probabilities for scalable
(k · pbase) and classic (p2base) TCP sources. We set the update
period to 10 ms, otherwise, we use the default controller
parameters proposed in [12] (α = 0.16 and β = 3.2). We
repeated several tests with different update periods (including
16 ms as in [12]) α and β values, but the results did not change
significantly.
CSAQM (Core-Stateless AQM [13]) was developed to support
controlled resource sharing for flows with arbitrary CC. In
contrast to previous solutions, it requires two key mechanisms
inside the network: 1) packets are marked with a packet
value (PV) before the bottleneck (e.g. at the edge of the
network) where the value is derived from the per connection
resource sharing policy to be applied. We configured equal
resource sharing for all flows in our tests. 2) At the bottleneck
packet handling is solely based on the carried PV, connection
identification and policy knowledge is not needed. When
the queue length exceeds the delay target, packets with the
lowest PVs are ECN CE marked until the amount of non-CE
marked packets is less than the delay target. This behavior
is approximated by calculating a Congestion Threshold Value
(CTV) periodically (every 5 ms), and marking all outgoing
packets, which have PV < CTV (see details in [13]).
CSAQM by design does not mark packets from connections
with throughput below their fair share. Thus even if the
packet marking rate is high, none of those are affecting new
connections in slow start, see e.g. Figure 5 in [13].
TailDrop is used as reference in our analysis. TailDrop simply
drops the incoming packet once the queue is full. It is not ECN
capable.
Note on DualPI2 We do not evaluate DualQ AQMs [2],
because all the investigated CCs are scalable, thus all the traffic
would go to the low delay, scalable queue. DualPI2 [12] uses
STEP AQM in its scalable queue and PI2 as the coupled AQM.
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Consequently, the results with STEP AQM are more relevant
to understand the performance of DualPI2.

IV. TESTBED DESCRIPTION

Our testbed consists of 3 servers, all of them being Xeon
E5-1660 v4@3.2GHz, 64Gb RAM with Intel XL710 40GbE
Ethernet NIC. They run Ubuntu Server 18.04 and are con-
nected in a chain topology. The two ends, the sender and the
receiver, use BBRv2 alpha kernel (5.4.0-rc6) including BBRv2
ECN support. We aim to keep Linux default settings, when
possible: Generic Segmentation Offload (GSO) and Generic
Receive Offload (GRO) was enabled and pacing for DCTCP
was disabled (BBR has internal pacing). We repeated several
tests with GRO and GSO disabled, but the results did not
change. The middle machine acts as a router and uses Linux
kernel 4.15 (Ubuntu 18.04 default) and it executes our DPDK-
based AQM and bottleneck emulator. We implemented the
AQM algorithms of Section III on the top of DPDK 19.11.
We use iperf2 to generate traffic, we modified it in a way
that each flow starts its transmission after a random delay
selected uniformly from 0 to 1 seconds. The propagation RTT
is emulated with Linux tc netem by delaying ACKs on the
receiver side (queue limit = 106 packets). We perform 3
minutes long experiments, and measure the total transmitted
bytes; the ECN marked bytes; and the dropped bytes per flow
in the AQM implementation. We also create a histogram of
the packet sojourn times (1 ms resolution), and measure the
bottleneck utilization there.

V. EXPERIMENTAL ANALYSIS

To analyze the behavior of DCTCP and BBRv2 with the dif-
ferent ECN-marking strategies of selected AQM methods, we
have carried out experiments with various network conditions
(bottleneck capacities: 1 Gbps and 10 Gbps; and (propagation)
RTTs: 5 and 50 ms). The delay target is defined as a delay
factor (K) times the base RTT where the examined K values
are 0.05, 0.1, 0.17, 0.25, 0.5, 1 and 2 (e.g., K = 0.5 means that
the delay target is half of the RTT). By default the buffer length
is set to 500 ms, mimicking almost infinite buffers to avoid
packet losses. In the small buffer cases the buffer length is set
to 1.33 times the delay target. The number of TCP connections
(N ) in different test cases are 2, 10, 20 and 100. With respect
to the applied CCs, we introduce two test cases: 1) mono-CC
tests where all the connections use the same CC and 2) multi-
CC tests in which half of the connections apply BBRv2 while
the other half uses DCTCP. In Multi-RTT setups connections
with different propagation RTTs (5 ms and 50 ms) are present
in the evaluation.

We analyze various metrics: relative throughput of the
connection classes; system utilization; average and maximum
queueing delays; ECN-marking and packet-drop ratios; and the
Jain’s fairness index (among all connections). A connection
class contains all TCP flows with the same CC and the same
base RTT. Relative throughput is defined as the ratio of the
average throughput within a connection class, and the ideal
per-connection fair-share (the bottleneck capacity per the total
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Figure 1. Mono-DCTCP utilization (1Gbps, 5ms).
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Figure 2. Mono-DCTCP fairness (1Gbps, 5ms).

number of TCP connections N ). For example, relative goodput
1.0 means that the connections of the given class experience
the fair-share of the total capacity in average. The average
delay presented in the figures is relative to the delay target
applied in the given scenario.

Due to space limitation we only present some selected
results, but all further cases are available at [14].

A. Mono-CC experiments with equal RTT

We first consider DCTCP flows with base RTT of 5 ms and
1 Gbps bottleneck capacity. One can observe in Figure 1 and
2, that though the fairness among the connections are quite
good in most cases, the utilization is affected by the number
of DCTCP flows and the applied delay target. The worst
utilization can be seen for small target delays with limited
number of flows (2 and 10). K = 0.17 with STEP AQM
reflects the recommended ECN-marking setup for DCTCP,
resulting in utilization below 60% for two flows. Surprisingly,
the STEP AQM used during the DCTCP design provides the
smallest utilization. Figure 3 indicates that all the investigated
AQMs keep the queueing delay below the target value (1
in the figure) in most of the cases. STEP looks somewhat
conservative while PI2 cannot properly control the delay for 2
flows when the target value is small. Figure 4 shows that the
utilization in the small buffer case is even worse. We believe
this is due to the halving the cwnd in case of packet loss.
Strangely, the buffer size requirement for decent utilization is
larger for DCTCP than for Cubic (see [6]).

Note that we have also examined the case when the prop-
agation RTT is increased to 50 ms. Though the utilization
becomes higher, the fairness is significantly degraded, except
for CSAQM (see [14]).

Figure 5 shows the (1 Gbps, 5 ms) setup with BBR
CC. One can observe that the utilization is higher than for
DCTCP, even for small target delays and small number of TCP
connections. Note that we have got acceptable fairness for all
the investigated AQMs (see [14]). However, when the RTT is
increased to 50 ms, as depicted in Figure 6, STEP and PI2
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Figure 3. Mono-DCTCP avg. delay (1Gbps, 5ms).
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Figure 4. Mono-DCTCP utilization (1Gbps, 5ms, small buff.).

AQMs result in significant unfairness for some settings. With
STEP, Jain’s fairness index only starts reducing as the delay
target increases. With PI2, it is not so clear; when the number
of connections is small (2 and 10), the observed behavior is
similar to the one of STEP, but for 40 and 100 connections,
the obtained unfairness is significant and seems independent
of the target delay parameter. Note, the target delay is properly
kept by STEP and CSAQM, but PI2 exceeds delay targets for
small Ks and leads to underutilization in these cases.

B. Multi-CC experiments with equal RTT

Figures 7-9 depict Jain’s fairness index, relative throughput
and utilization for the multi-CC test in which multiple CCs
coexist in the same system with 1 Gbps bottleneck capacity
and 5 ms RTT settings. Similarly to the mono-BBR case, the
utilization is quite good for all the AQMs, significant deviation
from full utilization can only be seen for small number of con-
nections with small delay targets. Except CSAQM, significant
unfairness can be observed. Figure 8 shows that the different
ECN-marking strategies of STEP and PI2 lead to different
behavior; while STEP favors DCTCP flows in most cases, in
PI2 DCTCP flows are suppressed by the BBR traffic, esp. for
small number of flows. Increased target delay (K = 2) can
help PI2 to achieve an acceptable 1:3 DCTCP-BBR fairness
ratio. Through its in-network resource sharing mechanisms,
CSAQM can apply different empirical marking probabilities
for the dissonant flows, taking their specific behavior into
account and thus resulting in good fairness even among BBR
and DCTCP traffic. Figure 10 shows this phenomenon in
more detail. While PI2 and BBR result in the same ECN-
marking ratio for both BBR and DCTCP, CSAQM can find
the appropriate marking ratio for the different classes. One
can also observe that the marking ratios required for the two
CCs rely on both N and K, indicating fundamental differences
on how ECN-CE is handled by them.

Figures 11-13 depict similar multi-CC cases with different
bottleneck capacities (1 Gbps and 10 Gbps) and RTT values
(5 ms and 50 ms). One can observe that larger RTT helps
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Figure 5. Mono-BBR utilization (1Gbps, 5ms).
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Figure 6. Mono-BBR fairness (1Gbps, 50ms).

both STEP and PI2 in achieving slightly better fairness, but
at 10 Gbps the fairness among the two classes is generally
worse than at a 1 Gbps bottleneck. PI2 only shows some
improvements if delay target factor K is large. One can also
notice that drawing a general rule of thumb for appropriate
parameter settings seems hard or even impossible in case of
STEP and PI2. However, CSAQM can still reach good fairness
in most cases, and is less prone to its parameter settings. It
is not perfect, but reasonable even for 50 ms RTT and low
number of flows.

C. Heterogeneous RTTs

In contrast to previous sections where equal RTT has been
assumed, in this section we consider connections with multiple
propagation RTTs: either 5 ms or 50 ms. N is 4-16 (4 with
50 ms RTT and 16 with 5 ms) or 8-32, respectively. Note that
the target delay is set according to the smaller RTT (5 ms), and
we also investigate the K values of 5 and 10. Figures 14 and
15 depict the relative throughput with mono-CC tests using
either DCTCP or BBR CCs, respectively. One can observe
that in case of DCTCP CC, connections with 5 ms RTT reach
much higher throughput than with 50 ms as expected. Large
delay targets in STEP and PI2 can slightly improve the fairness
between the flow classes of different RTT. One can also see
that even CSAQM can only handle large differences in the
RTTs if the delay target is large (around the maximum RTT).

In the BBR case, both STEP and PI2 show much better
fairness, the 50 ms RTT flows get somewhat higher share in
general and as the target delay increases it becomes even worst.
CSAQM can enforce good fairness as long as K < 1 (until
the delay-based congestion detection of BBR is not turned on).
Interestingly, BBR with CSAQM can reach very good fairness
even for extremely small delay targets.

One can also observe that while DCTCP flows with smaller
RTT suppresses the others with larger RTT, in BBR the oppo-
site behavior can be experienced, also reflecting fundamental
differences between these CCs.
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Figure 7. Multi-CC fairness (1Gbps, 5ms).
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Figure 8. Multi-CC relative throughput (1Gbps, 5ms).

Figures 16 and 17 show the results of multi-CC and multi-
RTT cases. N is 2-2-8-8, indicating the number of connections
in CC-RTT groups: BBR-50ms, DCTCP-50ms, BBR-5ms and
DCTCP-5ms, respectively. One can observe that fairness with
STEP and PI2 is quite bad in general. DCTCP-50ms gets
very small throughput and in some cases BBR-5ms flows are
also suppressed. CSAQM provides reasonable fairness for all
connection groups, except for DCTCP-50ms when the number
of flows is high (4-4-16-16). It is interesting to note that
PI2 gives the BBR-50ms class unfairly high share, while
STEP is free of this symptom. Figure 18 shows that the
fairness in the small physical buffer case is better than in
case of long buffers for STEP and PI2, while for CSAQM
it consistently remains reasonable. This suggests that the loss
mode of both DCTCP and BBRv2 CCs behaves more fairly
than their scalable reaction to ECN CE.

VI. SPECULATION: HOW TO SAVE THE INTERNET?

The utilization with DCTCP was much worse than expected,
according to [9]. In general, the Linux 5.4 DCTCP implemen-
tation seems a poor choice for Internet RTTs, even when a
separate buffer (e.g., DualQ) is available for Scalable CCs.

The Scalable mode of DCTCP and BBRv2 use different
congestion window decreasing and increasing algorithms and
parameters. It is not surprising that their compatibility is weak,
though we hoped to have a “Beautiful Friendship” in the title.
After analyzing the performance of DCTCP, we believe that it
was a right choice not to mimic DCTCP behavior in BBRv2.

TCP Prague [3] addresses several issues of DCTCP and
intends to be the “Internet DCTCP version”. As BBRv2 has
several tunable parameter, it might be possible to tune these
two scalable CCs to be compatible in specific scenarios. We
are skeptical though that this compatibility can be generic, for
several RTTs and traffic mixes.

Based on the results of this paper and [6], we believe that
the requirement that a new CC should be fair to existing
CCs is hard (if not impossible) to meet. Furthermore, the
harm-based approach of [7] is softer than full fairness, but
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Figure 9. Multi-CC utilization (1Gbps, 5ms).
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Figure 10. Multi-CC ECN marking ratio (1Gbps, 5ms).

even this softer requirement is similarly hard to meet in
practice. These requirements are obstacles blocking profound
CC evolution and could be relaxed if fairness is ensured
by other mechanisms (e.g., in-network control of resource
sharing).

There exist different scheduling algorithms (e.g., by Hi-
erarchical QoS or air interface scheduler) to ensure fairness
between subscribers, while other approaches such as fq-YFA
(fair queueing with Your Favorite AQM, e.g., fq-codel) can
do the same among flows of the same user. These approaches
have several drawbacks: 1) in some cases, it is not practical
to provide user-fairness by scheduling, e.g., in AAN or inter-
connect. 2) Flow fairness and, in general, equal sharing is not
optimal, not even for flows of the same user [15].

We believe that in-network approaches like CSAQM [13]
provide flexible and efficient framework to control resource
sharing, removing the burden of compatibility and fairness
constraints from future CC developments. Its deployment is
for future work, discussed in detail in [6].
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Figure 11. Multi-CC relative throughput (1Gbps, 50ms).

0.
0

0.
5

1.
0

1.
5

2.
0

Re
la

tiv
e 

Th
 o

ug
hp

ut

0.
05

⋅⋅
⋅

0.
17

⋅⋅
⋅

0.
5

⋅⋅
⋅

2.
0

⋅⋅
⋅

0.
1

⋅⋅
⋅

0.
25

⋅⋅
⋅

1.
0

⋅⋅
⋅

0.
05

⋅⋅
⋅

0.
17

⋅⋅
⋅

0.
5

⋅⋅
⋅

2.
0

⋅⋅
⋅

0.
1

⋅⋅
⋅

0.
25

⋅⋅
⋅

1.
0

⋅⋅
⋅

0.
05

⋅⋅
⋅

0.
17

⋅⋅
⋅

0.
5

⋅⋅
⋅

2.
0

⋅⋅
⋅

0.
1

⋅⋅
⋅

0.
25

⋅⋅
⋅

1.
0

⋅⋅
⋅

0.
05

⋅⋅
⋅

0.
17

⋅⋅
⋅

0.
5

⋅⋅
⋅

2.
0

⋅⋅
⋅

0.
1

⋅⋅
⋅

0.
25

⋅⋅
⋅

1.
0

⋅⋅
⋅

0.
05

⋅⋅
⋅

0.
17

⋅⋅
⋅

0.
5

⋅⋅
⋅

2.
0

⋅⋅
⋅

0.
1

⋅⋅
⋅

0.
25

⋅⋅
⋅

1.
0

⋅⋅
⋅

0.
05

⋅⋅
⋅

0.
17

⋅⋅
⋅

0.
5

⋅⋅
⋅

2.
0

⋅⋅
⋅

0.
1

⋅⋅
⋅

0.
25

⋅⋅
⋅

1.
0

⋅⋅
⋅K

2 10 40 100 2 10 40 100 2 10 40 100N
STEP PI2 CSAQMAQM

bb -5
dctcp-5

Figure 12. Multi-CC relative throughput (10Gbps, 5ms).
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Figure 13. Multi-CC relative throughput (10Gbps, 50ms).
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Figure 14. DCTCP relative throughput (1Gbps, 5&50ms).

0
1

2
3

4
Re

la
tiv
e 
Th
ro
ug
hp
ut

0.
05

0.
1

0.
17

0.
25

0.
5

1.
0

2.
0

5.
0

10
.0

0.
05

0.
1

0.
17

0.
25

0.
5

1.
0

2.
0

5.
0

10
.0

0.
05

0.
1

0.
17

0.
25

0.
5

1.
0

2.
0

5.
0

10
.0

0.
05

0.
1

0.
17

0.
25

0.
5

1.
0

2.
0

5.
0

10
.0

0.
05

0.
1

0.
17

0.
25

0.
5

1.
0

2.
0

5.
0

10
.0

0.
05

0.
1

0.
17

0.
25

0.
5

1.
0

2.
0

5.
0

10
.0

K
4-16 8-32 4-16 8-32 4-16 8-32N

STEP PI2 CSAQMAQM

bbr-50
bbr-5

Figure 15. BBR relative throughput (1Gbps, 5&50ms).
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Figure 16. Multi-CC, multi-RTT rel. throughput (1Gbps).
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Figure 17. Multi-CC, multi-RTT fairness (1Gbps).
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Figure 18. Multi-CC, multi-RTT fairness (1Gbps, small buff.).

VII. SUMMARY

We have demonstrated that the two AQMs most commonly
proposed for flows with Scalable Congestion Control can-
not provide good fairness for scenarios where multiple CCs
coexist. They perform poorly in both multi-CC equal-RTT;
and mono-CC multi-RTT scenarios. For the most heteroge-
neous case (multi-CC multi-RTT), we experienced significant
unfairness between the different flow groups. The design
choice of BBRv2 was to implement a “DCTCP-inspired ECN”
mechanism, and we believe it was never intended to be fair
to DCTCP. At the same time, the performance of BBRv2
is generally superior to that of DCTCP, especially for small
buffers. Based on this performance improvement, we argue
that the developers of BBRv2 made the right choice. We
also highlight that as long as the end-to-end CC controls
resource sharing, it is extremely hard to create new, evolved
CCs that are fair to legacy CCs. While providing a good
resource sharing control out-of-CC is not a solved problem,
we highlight the Core-Stateless AQM family as a possible
solution worth further discussion and evaluation.
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