
A DRAM-friendly priority queue Internet packet
scheduler implementation and its effects on TCP.

Katsushi Kobayashi
The University of Tokyo

Tokyo, JAPAN
ikob@acm.org

Abstract—To meet various latency requirements for network
applications, latency aware packet schedulers that respect per-
packet deadlines requested by end systems, such as least slack-
time first (LSTF), have emerged. Even though latency aware
schedulers are beneficial, few issues remain. First, it is not
compatible with best-effort networks, such as the Internet,
because of infinite buffer delays by keeping every packet with-
out discarding even in congestion. Second, its implementation
is challenging with increasing network bandwidths due to
memory device restrictions, i.e., DRAM access latencies. For
the congestion issue, we presented earliest deadline first with
reneging (EDFR), which can be applied to best-effort services
by taking advantage of its packet drop feature.

This paper discusses EDFR scheduler implementations on
FPGA and its impact on TCP stack with real systems.
We designed and implemented skip-FIFO based EDFR onto
FPGA, which performed to take advantage of DRAM memory
bandwidth, such as 75% of the theoretical limit of High
Bandwidth Memory (HBM). The TCP behaviors on EDFR
were almost unchanged in terms of throughputs and losses,
even for coexisting flows requesting different latencies.

Index Terms—networking, internet, TCP

I. Introduction
Packet buffer delay of Internet routers is a significant

issue because it impacts user experience with applications.
Latency sensitive network applications, such as interactive
Voice/Video communication and online games, prefer
smaller buffer sizes to reduce network latency as low
as possible. In contrast, some other applications, which
transfer large data, prefer deep packet buffer sizes such as
bandwidth-delay product (BDP), well-known as the rule of
thumb that maximizes single flow TCP throughputs, even
increasing end-to-end latencies. On Internet routers, a
single FIFO packet buffer is shared among all applications’
flows, and its sizes follows the rule of thumb. Latency
tolerant applications’ packets produce a queue build-up
to maximize their own throughput, and they block all
other packets, including latency-sensitive ones. As a result,
latency-sensitive packets miss their deadline requirements,
and the application quality is degraded.

Several QoS frameworks, such as IntServ and Diff-
serv have been developed to meet various application
requirements, including latencies. However, such frame-
works have not taken a market share from simple best-
effort services because they rely on dedicated network

JSPS KAKENHI Grant Number 18K11256

resource provisioning for each QoS requirement. Dedicated
resource provisioning also requires an expensive economic
infrastructure in addition to network infrastructure. Thus
far, building such economic infrastructure has not been
a better investment than increasing the bandwidth of
best-effort services [1]. Therefore, when designing a future
Internet to satisfy latency requirements, it must work
without economic infrastructure, or in other words, within
a best-effort network service. In addition, Deterministic
Networking (DetNet) standardization is in progress, which
shares the same objectives with ours, such as bounded
latency. However, unlike our study, DetNet focuses on
networks under a small closed group control, not for large
groups like the Internet.

On a best-effort network service, link overload con-
ditions or congestions have to be considered. On the
Internet, congestion always occurs when the traffic is
concentrated on a specific network location, such as
popular Web services and distributed denial of service
(DDoS) attacks. As the time, location, and frequency of
such congestion cannot be predicted, dropping packets is
the only feasible solution. When an existing FIFO packet
scheduler receives a packet beyond its buffer capacity, it
either drops that packet or some other packet/packets in a
simple tail-drop or active queue management (AQM) man-
ner [2]. Further, when designing a new packet scheduler,
the endpoint transport behavior should also be discussed
because it copes with congestion using packet drop and/or
delay as a signal.

Priority queue packet schedulers, such as Earliest Dead-
line First (EDF) and Least Slack Time First (LSTF), can
support various latency requirements [3], [4]. However,
such priority queue approaches can increase the buffer
delay to infinity because they keep all buffered packets
even in case of congestion. To address congestion, we
proposed EDF with reneging (EDFR) packet scheduler
that avoids a significant buffer latency [5]. We also present
that the impact of EDFR on existing TCP transports is
insignificant by performing ns-2 simulations.

From a practical viewpoint, the feasibility of a packet
scheduler algorithm depends on available device technolo-
gies, especially in memory. DRAM is the only practical
choice for packet buffers owing to its capacity advantages.
As the network link bandwidth grows, the required packet

713

Annex to ISBN 978-3-903176-28-7© 2020 IFIP

buffer size increases. For instance, when applying the rule
of thumb of buffer size to a router accommodating 24×100
Gbps ports with 100 ms RTT , a 30 GB buffer capacity,
is required. Such buffer sizes cannot be realized without
DRAM in the current technology [6]. In addition, even
though DRAM is the only choice, ordinary priority queue
algorithms, such as heap and skip-list, are inappropriate
for it because of their random access nature. Therefore,
a DRAM-friendly priority queue implementation is ex-
pected.

The primary objective of this study is to examine the
feasibility of the latency support mechanism realized by
EDFR scheduler. To this end, first, we present the EDFR
scheduler architecture and its FPGA implementations
that can take advantage of state-of-art memory technol-
ogy such as high bandwidth memory (HBM). Second,
we present that TCP transport behaviors are almost
unchanged except for latencies using real end systems,
to show not to require significant changes in transport
and applications. This paper is organized as follows: In
section II, the network architecture and EDFR scheduler
are outlined. In section III, the skip-FIFO approach and
its FPGA implementations are elucidated. In section IV,
the TCP behaviors are presented with our Skip-FIFO
implementations. Section V contains a review of related
research. Finally, we conclude our discussions in section
VI.

II. Network architecture and EDFR scheduler

This study proposes a latency aware network archi-
tecture that enables different latency requirements from
various applications without QoS provisioning. The archi-
tecture supports generic use cases to avoid excessive delay
of latency-sensitive applications packets, such not only as
VoIP, but also as an interactive Web, from a queue build-
up. Queue build-ups are caused not only by traditional
data transfer but also by emerging streaming video appli-
cations. For instance, streaming video applications send
as much data as possible at the start of playing the video
to reduce the time lag between choosing content and its
actual starting. This is because streaming applications do
not start a video until sufficient data is buffered to avoid
disruptions in playback. In short, one buffer size cannot
fit all applications.

On our latency aware network architecture, applications
specify their per-packet latency requirements, or deadlines,
into packet headers such as IP ToS or DSCP field. Sub-
sequently, routers forward the packets in an order based
on per-packet deadlines by a priority queue. This design
is similar to DiffServ in terms of the relation between
DSCP and PHB. However, DiffServ intends to provide
service discrimination on the Internet, but our architecture
to satisfy latency requirements without dividing network
resources, in other words, within a simple best-effort
service.

On best-effort packet networks, packet drop must be
accounted for because traffic overload can occur at any
time. While ordinary EDF keeps all incoming packets
without discard as FIFO having infinite capacity, EDFR
drops a drops packets when a packet misses its deadlines.
Such a drop policy might be reasonable for the existing
network applications and transports. For instance, on
VoIP, even if a packet is received after a playout deadline,
it is simply discarded by the receiver application. On TCP,
when a TCP sender does not receive an acknowledgment
until retransmission timeout (RTO), it regards the corre-
sponding packet as discarded and retransmits the packet.

Packet drop behavior on priority queues has been well
studied on EDFR. EDFR has two significant properties in
terms of drop rates. First, even though incoming packets’
deadlines on EDFR are distributed, the complete drop
rates depend only on the mean deadlines of incoming
packets. Specifically, the complete drop rates are approx-
imated by those of limited FIFO in which the buffer size
is the mean deadline. Second, in an EDFR system, the
drop rates of even different deadlines are equal or fair.
This is because packet drop decisions are made based on
the remaining deadlines at that time, not based on the
deadlines set at incoming. In addition, a limited FIFO
scheduler is a special case of EDFR in which all packets
have the same deadline corresponding to the buffer size
of limited FIFO.

According to ns-2 simulations, the TCP behaviors are
almost unchanged when an ordinary FIFO scheduler is
replaced with EDFR. In other words, existing network
applications, most of which are based on TCP, are able to
work on EDFR based networks as well as on FIFO based
existing networks on the Internet.

III. Skip-FIFO design and implementations

While DRAM is the only choice for the packet buffer
due to its capacity, recent DRAMs have been improved
not in terms of latencies, but also in terms of access
throughputs. For instance, on HBM, the throughputs on
random memory access are three times lower than those
on sequential memory access [7].

Ring buffer, an ordinary FIFO scheduler implementa-
tion, can take advantage of the exiting DRAM bandwidths
accelerated using burst and pipelined access. Although
emerging flexible packet scheduler frameworks, such as
PIFO and PIEO, are priority queue implementations, they
are not compatible with DRAM architecture because of
their per packet random access nature. In PIFO, the
memory locations where packets will be pushed in, or
written, are not predictable, and its access granularity
is very small. In the case of a 64-byte packet on a 10
Gbps link and 512-bit bus, both the enqueue and dequeue
actions must be finished within a 51 ns period. In short,
typical DRAM access latency of ∼100 ns or more is too
slow for such priority implementations.

714

Timestamp FIFO

Packet Buffer (Ring Buffer)

HeadTail

wr_ptr rd_ptr dequeue pkt.

enqueue pkt.

enqueue(wr_ptr, T_now + deadline)

at each skip_interval

dequeue(elapsed_ptr, T_deadline)

if elapsed_ptr > rd_ptr:

 rd_ptr = elapsed_ptr

Figure 1: skip-FIFO

Although an unlimited number of service classes can be
provided by generic priority queues, it is clearly infeasible
from the viewpoint of protocol design. Because the service
class identifier in the IP header has limited space, i.e., 8
bits for ToS and 6 bits for DSCP, such a small space
cannot provide high-number classes. For instance, in the
case of 1 ms granularity, which corresponds to the default
minimal CPU scheduler tick interval on Linux, 8-bit space
can represent up to 256 ms deadlines. Such deadlines are
adequate to cover worldwide communications.

Therefore, to maximize throughputs with DRAM, we
chose the naive FIFO priority queue. A FIFO priority
queue aggregates ordinary FIFO queues, such as ring
buffer, with a priority encoder. The number of FIFO
queues is equal to that of the supported deadlines. When
a packet is received, it is enqueued into a corresponding
queue with its deadline as metadata. When dequeuing,
the priority encoder takes packets from the queue having
the earliest deadline at its top.

FIFO priority queues can realize an EDFR packet
scheduler with its minor modification. That is, when a
dequeued packet has already elapsed its deadline, the
priority encoder drops it. However, such implementations
consume memory bandwidth with dropping packets. Such
bandwidth resource wastage is a critical hinderance for
high-speed networks in which the memory and network
performance limits are comparable.

To overcome these limitations, we designed the skip-
FIFO packet scheduler(Fig. 1). A skip-FIFO comprises of
two FIFOs: one is a ring buffer for accommodating packet
data, and another is a timestamp FIFO for recording
packet pointers and the corresponding deadlines. The ring
buffer FIFO is an ordinal one that consists of address
mapped memory and two address indices, i.e., the write-
and read-pointers, abbreviated as wr_ptr and rd_ptr,
respectively. When enqueuing data, a ring buffer writes
the data into mapped memory sequentially from wr_ptr,
and it advances the wr_ptr by the data size. When
dequeuing, a buffer reads data from the rd_ptr to the
wr_ptr, and it updates the rd_ptr.

Simultaneously with the ring buffer operations, the
timestamp FIFO stores the wr_ptr of the ring-buffer
for the start index of the latest packet, and its deadline
timestamp as Tnow + deadline at every skip tick interval,

where Tnow is the current time. On the dequeue port, the
timestamp FIFO outputs data named as elapsed_ptr and
Tdeadline. If the elapsed_ptr is “newer” than the rd_ptr,
the rd_ptr is updated by it. As a result, the deadline
elapsed packets in the ring-buffer are skipped or discarded.
In addition, if Tdeadline is exceeded, or if the elapsed_ptr
is “older” than the rd_ptr, the timestamp FIFO can
be dequeued. In our implementations, the depth of the
timestamp FIFO was fixed at 14 bits, and the skip-tick
interval was 200ms/214, or 12µs.

Because skip-FIFO based EDFR is an approximation
of ideal EDFR, it has several system inaccuracies. In
particular, the accuracy of the timestamp FIFO depends
on the skip-interval. Skip interval on this study provides
more than a thousand times accuracy than modern AQM
such as PIE, CoDel which suggest 10-15 ms as the
update interval of the drop probability [8], [9]. Thus,
the inaccuracy on skip-FIFO caused by its timestamp is
expected insignificant. Furthermore, even if the inaccuracy
causes a significant impact, it can be improved by the pri-
ority encoder arbitrating skip-FIFO outputs. For example,
the priority encoder discards deadline elapsed packets in
addition to skip-FIFO, which can offset the inaccuracy
dealing with the bandwidth wastage by dequeuing packets.

We implemented an EDFR algorithm on top of Skip-
FIFO on two generations of FPGA families: one is 28 nm
FPGA (Xilinx Kintex7) on NetFPGA-CML composed of
512 MB DDR3 DRAM, and four Gigabit Ethernet (GbE)
interfaces; the other is 16 nm FPGA (Vertex Ultra+) on
AWS-F1 of 64 GB DDR4 DRAM, and on Xilinx Aveo
U280-ES of 8 GB HBM [10], [11], [7].

The two implementations were done with different
interests. On Kintex7, we conducted network transport
evaluations using the physical ethernet switch hardware.
On the other hand, on Vertex Ultra+, we evaluated
the potential of Skip-FIFO throughputs without physi-
cal interface; in other words, we used the platforms as
a testbench. We used a NetFPGA reference ethernet
switch as our RTL implementation basis by replacing
internal SRAM (BRAM) based FIFO scheduler with
DRAM=based EDFR.

The resource utilization of our implementations are
approximately 1700 LUTs and 10 BRAMs, or 20% more
in LUTSs and five times in BRAMs than those of ordi-
nary FIFO. Even though the observed BRAM resource
usage of the proposed architecture is in multiples of that
of ordinary FIFO, it is not critical for the skip-FIFO
architecture. This is because such multiplications were
attributed to small FIFO components accommodating
deadline timestamp and packet head indices. The BRAM
utilization depends on the interval of storing packet index
and deadline, not on bandwidth or the ring buffer capaci-
ties. Therefore, the BRAM utilization can be compromised
with the FPGA resource and the skip-interval.

Fig 2 shows the throughputs of the skip-FIFO scheduler
on the Vertex Ultra+ FPGA system, where the clock

715

SR
AM

64 SR
AM

51
2

SR
AM

40
96 DD
R4

64 DD
R4

51
2

DD
R4

40
96 HB
M

64 HB
M

51
2 HB
M

40
96

0

20

40

60

80

100

120
Th
ro
ug
hp
ut

 (G
b/

s)
Packet length(Bytes)

64
128
512
1514

(a) Single channel

DD
R4

64 DD
R4

51
2

DD
R4

40
96 HB
M

64 HB
M

51
2 HB
M

40
96

0

250

500

750

1000

1250

1500

1750

2000

Th
ro
ug
hp
ut
 (G
b/
s)

U280-ES1 HBM

AWS F1 DDR4 max. BW

(b) Entire system

Figure 2: Skip-FIFO bandwidth throughputs.(a) Single
channel throughputs. The edged bar areas eliminate meta-
data overhead.(b) Entire system throughputs aggregating
available memory channels. The dotted lines represent
theoretical memory bandwidth limits.

speed was 250 MHz. The scheduler latency with a 1514-
byte packet and 4096-byte AXI-MM burst size was ap-
proximately 190 clocks on DDR4, which is approximately
three times more than that on BRAM at 64 clocks.
Overall, the burst length impacts for the throughputs are
clear regardless of memory types such as HBM, DRAM,
and BRAM: the shorter the burst length was, the worse
the FIFO throughput was. Furthermore, the shorter the
packet length was, the worse the throughputs were; this
throughput degradation was caused by the data encoding
format as edged bars in Fig 2(a). In particular, in the case
of a 64-byte packet, such packets can be encoded into just
one clock cycle on 512-bit data width; however, the entire
data, including the 128-bit tuser bus and the 8-bit control
lines, required three clock cycles.

The best throughput, including metadata, was 115 Gbps
of BRAM, 60 Gbps of DDR4, and 39 Gbps of HBM. While
the throughput of DDR4 was better than that of HBM,
the entire HBM throughput will be 1.25 Tbps, or 156
GBytes/s by aggregating with 16 pseudo channels, which
overcomes the 220 Gbps with four-channel DDR4. Because
a scheduler throughput includes bidirectional memory
accesses, the entire HBM throughput achieved 76% of the
theoretical limit of 410 GBytes/s. In summary, the above
results show that skip-FIFO is a DRAM-friendly priority
queue that can take advantage of the DRAM bandwidth
throughputs regardless of packet sizes.

IV. TCP traffic behaviors with EDFR
In this section, the impact of the EDFR algorithm

on existing transports is discussed based on real-system
evaluations.

Two NetFPGA-CML ethernet switches that performed
the wire rates of GbE were used for evaluating the TCP
traffic. The switches were connected using one of the four
GbE interfaces. The rest of the interfaces, six in total, were
connected to dedicated Docker nodes on an Ubuntu 18.04
Linux server. Three EDFR schedulers aggregating skip-
FIFOs were implemented onto the connected interfaces;

T1

T2

T3

T4

T5

T5

S1

R1S2

S3

S4

R2 S5

S6
75ms

12ms

0ms

25ms

37ms

2ms

(a) Loss and throughput

R1 R2

T30msT1

T2 T4

37ms

(b) Ramp up

Figure 3: Simulation topologies. (a) A 6×6 dumbbell
topology that comprises two 3×3 flow groups, i.e.,
(T1. . .T6) for testing, and (R1. . .R6) for reference. All
links have a capacity of 1 Gbps. The dumbbell in (b) has
two pairs of nodes, (T1,T2) and (T2,T3).

thus, up to three deadline classes can be supported. For
comparison, we implemented ordinary FIFO tail drop
schedulers with a round-robin arbiter in which the buffer
sizes of each FIFO were set to the average RTT among
all flows on each experiment.

Flowgrind, which is used as the TCP traffic generator,
was running on each Docker node [12]. For emulating
link propagation delays, the Linux netem framework was
used [13]. As the delays propagated by netem were only
applied to the egress traffic, doubled delays were set at
physical GbE ports. Note that the software-based netem
emulator is less accurate than FPGA based one, but we
used netem because it can provide sufficient accuracy for
the link delays.

A. Latencies, losses, and throughputs with mixed RTT
flows

Fig. 3(a) shows the network topology for evaluating
TCP behaviors with different deadline flows on the EDFR
algorithm. In order to compare our ns-2 results, the
topology followed Latency specific experiments in the TCP
evaluation suite except for the delay of backbone [14].

Pairs of 3×3 TCP flow groups in which each group had
two different deadlines were generated. The deadline of
one flow group was varied from 30 to 120 ms, and that
of the other was fixed at 100 ms, which approximately
corresponds with the average RTT among the nine con-
nections. While real traffic traces are recommended by the
TCP evaluation suite, due to restrictions of measurement
tools, we used long-lived flows for overloaded conditions
and 3GPP HTTP model traffic for moderate traffic load
instead [15]. In order to close a steady-state, the data
from the first 100 s were omitted; then, data from the
subsequent 500 s were used. It should be noted that
because the traffic is unidirectional, the buffer delays could
be up to twice as long when the reverse traffic is accounted.

Fig. 4 shows the CDF of buffering delay obtained as
sRTT−RTTlink among TCP flows on every second, where
sRTT is smoothed RTT measured by TCP stack, and
RTTlink is the cumulative link propagation delay for each
flow. In order to focus on the buffering delay, long-lived
TCP flows were generated to create heavily congested
conditions. On all deadline combinations, all buffer delays
clearly fell within the requested delay ranges. This reveals

716

0 50 100 150 200

SRTT−RTTlink
0.0

0.2

0.4

0.6

0.8

1.0
100ms
30ms

(a) 30-100ms

0 50 100 150 200

SRTT−RTTlink
0.0

0.2

0.4

0.6

0.8

1.0
100ms
50ms

(b) 50-100ms

0 50 100 150 200

SRTT−RTTlink
0.0

0.2

0.4

0.6

0.8

1.0
100ms
100ms

(c) 100-100ms
0 50 100 150 200

SRTT−RTTlink
0.0

0.2

0.4

0.6

0.8

1.0
100ms
120ms

(d) 100-120ms

0 50 100 150 200

SRTT−RTTlink
0.0

0.2

0.4

0.6

0.8

1.0
Group A
Group B

(e) Dedicated FIFOs

0 50 100 150 200

SRTT−RTTlink
0.0

0.2

0.4

0.6

0.8

1.0
Group A
Group B

(f) Shared FIFO

Figure 4: EDFR scheduler delay distributions with differ-
ent deadline flow combinations on CUBIC.

that per-packet deadlines were realized by the EDFR
algorithms.

Fig. 4(e),(f), show the delays for ordinary FIFO: (e)
shows two dedicated FIFOs assigned to different ToS
classes, and (f) shows one FIFO shared by the traffic. As
seen in (e), because two FIFO queues blocked each other,
the delay increased to 200 ms. However, while 100-100 (c)
was provided with two dedicated EDFR schedulers, its
CDF was similar to that of shared FIFO (f) but dissimilar
to that of the dedicated FIFOs (e). Such similarity reveals
that even if an entire EDFR scheduler comprises two or
more skip-FIFOs, it works like a single FIFO for each
deadline flow.

Fig. 5 shows the entire throughputs (a) and packet loss
rates (b) with 3GPP HTTP model traffic [15]. In order to
compare with the simulation results with the real-traffic
trace, the 3GPP model was used because it is more similar
to real-traffic than long-lived TCP flows [5]. With regard
to throughputs (Fig.5(a)), 80-90% bottleneck bandwidth
capacities were consumed, and significant throughput
differences were not found for all deadline combinations.
Furthermore, with regard to packet loss rates (Fig. 5(b)),
lower loss rates were observed for the shorter deadline
flows, e.g., 50 in 50-100, than the longer ones. These loss
rate differences disagreed with those of the ns-2 simulation
results and an EDFR nature for which the same rates were
observed even when incoming deadlines are distributed.
However, the differences were not significant because the
throughputs remained at the same levels.
B. FCT on competitive flows

Fig. 3(b) depicts the topology for evaluating the Flow
Completion Time (FCT) on two competitive deadline
flows. The topology followed the Ramp up time in TCP
evaluation suite specification [14]. While the original spec-
ification recommends the addition of background traffic
using 3×3 TCP connections, no background traffic was
generated owing to the insufficient number of switch
interfaces. We generated two long-lived TCP flows having

30
-1
00

50
-1
00

80
-1
00

10
0-
10

0
12

0-
10

0
De

dic
at
ed

FIF
O Sh
ar
ed

FIF
O

Deadline combination (ms)

0

100

200

300

400

500

Th
ro
ug

hp
ut
 (M

bp
s)

cubic

(a) Throughputs

30
-1

00
50

-1
00

80
-1

00
10

0-
10

0
12

0-
10

0
De

dic
at

ed
FIF

O Sh
ar

ed
FIF

O

Deadline combination (ms)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Lo
ss

 ra
te

cubic

(b) Loss rates

Figure 5: Average CUBIC throughputs and loss rates in
different deadline flow combinations on EDFR with the
3GPP HTTP traffic model. Each pair of bars represents
the deadline combinations labeled by the x-axis, and the
left dark bars represent the shorter deadlines of each pair.
For example, in the case of labeled 30-100, the deadlines
are 30ms for the left and 100ms for the right bar. Error
bars show 95% confidence intervals.

30-80 60-80 80-100 80-80
Deadline combination (ms)

0

20

40

60

80

100

FC
T

(s
)

reno

(a) NewReno

30-80 60-80 80-100 80-80
Deadline combination (ms)

0

20

40

60

80

100

FC
T

(s
)

cubic

(b) CUBIC

Figure 6: Average flow Completion Time (FCT) at 1.5GB
when competing two long-lived TCP flows requesting
different deadlines. The bars represent the FCTs of the
2nd flows that start 100s after the 1st one. Each pair
of bars represents the deadline combinations labeled by
the x-axis, and the left dark bars represent the shorter
deadlines of each pair. Error bars show 95% confidence
intervals.

different deadlines that can be represented as a pair of
deadlines, such as 30-80. In all experiments, the flows of
the second deadline were started 100 sec. after that of the
first. We conducted FCT experiments 20 times for each
deadline combination.

Fig. 6 shows the FCTs of 1.5 GB flow sizes in various
deadline combinations. While the FCT results are scat-
tered, overall, the FCTs are almost equal in all deadline
combinations. Fig. 7 shows the typical FCT growth plots
on EDFR and FIFO schedulers. Although all FCTs of 2nd
flows (dotted lines) were worse than those of 1st (solid),
all FCTs grew in steady as well as FIFO. In addition, the
above FCT results agreed with those of corresponding ns-
2 simulations [5]. In short, if existing flows consume link
capacities, new TCP flows can get appropriate bandwidth
on EDFR scheduler as well as FIFO.

717

106 107 108 109 1010

FCT (Bytes)

100

101

102

Ti
m

e
(s

)
1st flow of (60-80)
2nd flow of (60-80)
1st flow of (80-60)
2nd flow of (80-60)

(a) EDFR

106 107 108 109 1010

FCT (Bytes)

100

101

102

Ti
m

e
(s

)

1st flow of (80-fifo)
2nd flow of (80-fifo)

(b) FIFO

Figure 7: Flow Completion Time(FCT) plots with two
TCP CUBIC flows competing (a) 60-80 ms deadline pair
on EDFR, and (b) on FIFO.

As discussed in this section, the above experimental
results show that the exiting TCP stacks will work well if
ordinary FIFO schedulers are replaced with EDFR. Due
to space limitation, we mainly show the TCP CUBIC
results; however, most properties were fully retained with
TCP Reno.

V. Related Work
Modern AQM algorithms, such as CoDeL and PIE,

aim to reduce buffer delays to avoid queue build-up [8],
[9]. In terms of focusing on best-effort networks, these
goals are similar to those of this study. However, such an
AQM cannot satisfy different latency requirements, unlike
EDFR, because all flows share one FIFO scheduler. Fur-
thermore, such AQM allows transient increasing latencies
to compromise for the slow start of the TCP.

Least slack time first (LSTF) packet scheduler, which
supports end-to-end latency, is another priority queue
sharing the same goal, while this study focuses on per-
hop latency supports. In contrast to other end-to-end
latency support frameworks such as IntServ, it eliminates
the propagation delay in prioritization on its scheduler.
As a result, it is resilient against the changes in the
propagation delay, such as on network path changes. The
TCP behavior properties found in this study, i.e., loss
and throughput, are fair to latency differences, which
could also be applied to LSTF. This is because such TCP
fairnesses are kept on multi-hop configurations according
ns-2 simulation. Therefore, LSTF might be used in best-
effort services such as the existing Internet.

VI. Conclusion
In this study, EDFR was implemented using skip-

FIFO, which is a DRAM-friendly latency aware packet
scheduler. The skip-FIFO based EDFR scheduler takes
advantage of the DRAM bandwidth by using its sequential
access characteristic. It also showed no significant impact
on existing TCP traffic. This suggests that the EDFR
algorithm has the potential to replace existing FIFO
schedulers in routers.

To deploy the latency supports, updates are required for
both applications and network routers, but these efforts

and costs are not expensive due to the followings reasons.
Applications can be adapted without major modification,
since existing network socket API already have QoS
interface that sets ToS or DSCP field. For routers, our
latency aware architecture can contribute its cost by
reducing buffer size. If a preferred buffer size is declared
by every application, its aggradation is expected to be
smaller than BDP. As a result, a packet buffer size can be
reduced by fully satisfying the application requirements.

It should be noted that UDP-based transport, such
as QUIC, is emerging for latency-sensitive applications,
while we discussed on TCP behaviors [16]. Such emerging
transport can utilize the knowledge brought from our TCP
experiments since they mimic the congestion control of
existing TCP.

References
[1] S. Floyd and M. Allman, “Comments on the Usefulness of

Simple Best-Effort Traffic,” RFC 5290, Internet Engineering
Task Force, Jul. 2008. [Online]. Available: http://www.ietf.
org/rfc/rfc5290.txt

[2] F. Baker, “Rfc1812: Requirements for ip version 4 routers,”
1995.

[3] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker,
“Universal packet scheduling,” in Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XIV. New
York, NY, USA: ACM, 2015, pp. 24:1–24:7. [Online]. Available:
http://doi.acm.org/10.1145/2834050.2834085

[4] V. Sivaraman, F. M. Chiussi, and M. Gerla, “Traffic shaping
for end-to-end delay guarantees with edf scheduling,” in 2000
Eighth International Workshop on Quality of Service. IWQoS
2000 (Cat. No. 00EX400). IEEE, 2000, pp. 10–18.

[5] K. Kobayashi, “Lawin: A latency-aware internet architecture for
latency support on best-effort networks,” in 2015 IEEE 16th
International Conference on High Performance Switching and
Routing (HPSR). IEEE, 2015, pp. 1–8.

[6] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach. Morgan Kaufmann 8. Textbook, 2018.

[7] Alveo U280 Data Center Accelerator Card User Guide, Xilinx,
2019.

[8] K. Nichols and V. Jacobson, “Controlling queue delay,” Com-
munications of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[9] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian,
F. Baker, and B. V. Steeg, “PIE: A Lightweight Control Scheme
To Address the Bufferbloat Problem,” Working Draft, Internet-
Draft draft-pan-tsvwg-pie-00.txt, Dec. 2012.

[10] “NetFPGA-CML,” http://netfpga.org.
[11] Intel, “Official repository of the AWS EC2 FPGA Hard-

ware and Software Development Kit,” https://github.com/aws/
aws-fpga/.

[12] A. Zimmermann, A. Hannemann, and T. Kosse, “Flowgrind-
a new performance measurement tool,” in 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010. IEEE,
2010, pp. 1–6.

[13] S. Hemminger et al., “Network emulation with netem,” in Linux
conf au, 2005, pp. 18–23.

[14] L. Andrew, S. Floyd, and G. Wang, “Common TCP Evalua-
tion Suite,” Working Draft, Internet-Draft draft-irtf-tmrg-tests-
02.txt, 2009.

[15] “cdma2000 evaluation methodology revision a.”
[16] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,

D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The
quic transport protocol: Design and internet-scale deployment,”
in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017, pp. 183–196.

718

