
Cost Effective Troubleshooting of
NFV Infrastructure

Ran Ben Basat∗, Gil Einziger†, Maayan Goldstein‡, Liat Pele§, Itai Segall‡
∗Harvard University
ran@seas.harvard.edu

†Ben Gurion University of the Negev
gilein@bgu.ac.il
‡Nokia Bell Labs

{itai.segal,maayan.goldstein}@nokia-bell-labs.com
§Nokia

{liat.pele@nokia.com }@nokia.com

Fig. 1: An illustration of a single instance of our change
detection architecture. A lightweight change detection algo-
rithm monitors the generation rate of log files and triggers the
heavyweight method if it suspects a change. The heavyweight
method performs a deeper inspection, only retains the log files
if it detects concrete behavioral change.

evident. In principle, we can never know precisely how long
we should retain telemetry data.

Handling all the available telemetry data is also tricky since
there are diverse applications and diverse data streams. It
is unclear exactly how a fault is going to manifest in this
richness of data. While we have expert systems such as [15],
which are capable of analyzing some of the data streams, the
performance of such systems is insufficient for large scale
deployment. Thus, we require a system that can perform
preliminary analysis on telemetry data to reduce the volume
of stored data while missing as few faults as possible. Such a
system should be agnostic of the functionality of the monitored
application and the nature of the telemetry used.

Contribution: Our work is about reducing the volume of
storage required to retain telemetry information for extended
periods. That is, instead of storing all the telemetry data, we
automatically perform a preliminary analysis and only retain a
small portion (less than 1%) of the telemetry data. Our system
analyzes multiple streams in parallel, and with acceptable
CPU, memory, and network requirements.

In Figure 1, we explain how our method performs statistical
analysis on log-file streams. First, we perform a lightweight

Abstract—Fine-grained telemetry data enables troubleshooting 
teams to pinpoint the root cause of many faults in NFVI products. 
However, the volume of telemetry data rapidly accumulates, 
which makes it expensive to retain indefinitely. This work 
performs automatic analysis on the telemetry data, and only 
retains telemetry data if we suspect that it might contain a 
fault. Our evaluation uses 313 real application traces and shows 
that we can retain all faulty traces, and reduce the volume of 
stored data by over 99 %. We also show three case studies of 
real errors detected (and explained) by our system. Finally, we 
also deployed our system in a controlled testing environment 
and demonstrated its ability to detect microburst faults on a 
variety of network devices.

I. INTRODUCTION

Network Function Virtualization (NFV) is a promising 
paradigm that brings the advantages of cloud management to 
modern networks, such as scale-up and on-demand deploy-
ment of network components, as well as popular software 
engineering trends such as continuous delivery. That is, the 
transition to NFV allows for rapidly addressing bugs and secu-
rity vulnerabilities, as well as for the agile deployment of new 
features. However, network services are critical infrastructure 
whose clients expect a high degree of reliability, and thus each 
change in such networks requires extensive testing. Further, we 
need to pinpoint the root cause of emerging faults promptly.

Telemetry information such as per-application log files, 
virtual machines memory consumption, CPU consumption, 
network consumption, and other application-specific metrics is 
fundamental in pinpointing the root cause of faults. However, 
we may need to retain such information for extensive periods 
until faults become apparent. We face multiple problems in 
retaining telemetry information. First, the combined volume 
of such information accumulates quickly into tens of Giga-
bytes per day. Thus, we cannot retain telemetry for extended 
periods. For example, in our commercial cloud management 
infrastructure, telemetry information used to be kept only for a 
few days due to space complexity. Thus, we had no telemetry 
data to pinpoint their root cause by the time the faults became
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analysis on the log generation rate (without reading the actual
log entries). Such an analysis requires very little memory
and processing. For log-files, the lightweight method only
analyzes the log generation rate without reading the traces.
If the method detects a change in the log generation rate, it
triggers the heavyweight method that performs an extended
analysis on the logs. By focusing the heavyweight method only
on short time intervals where we suspect a change, we fully
automate the heavyweight method and drastically improve its
performance. Finally, we only retain telemetry data if the
heavyweight method detects a behavioral change.

Finally, we also use our lightweight method to detect
”microbursts” of above second intervals (as opposed to mi-
crobursts in the literate that take sub-second intervals [6],
[16]). In principle, our method can also work in sub-second
intervals, but the overheads are currently considered imprac-
tical by our product teams. Interestingly, we still detect some
traffic anomalies even with the above second resolution. Our
method can be applied to a large variety of network devices
from different vendors as it only relies on standard interfaces.
In contrast, the existing micro-burst detection algorithms are
suitable for specific network devices. We deployed our system
as part of an extensive scale commercial NFVI system. Our
evaluation includes three case studies detailing three real faults
that were successfully detected by our approach. Finally, we
show additional examples of patterns that appear in the teleme-
try data of network products and are successfully detected by
our lightweight method.

II. SYSTEM DESCRIPTION

This section describes our system, which is composed
of multiple local change detection algorithm instances, each
monitoring a single stream in a resource-efficient manner. We
call these instances the lightweight method. Once such an
algorithm suspects a change in the monitored stream (as we
further explain in Section II-A), we escalate the process to a
heavyweight method. Here, we offer two implementations. The
basic method records telemetry data and then stores it for long-
term storage. The advanced method also analyzes this data by
automating the tool of [15] to detect behavioral changes. The
advanced method retains the data only if it discovers a change.
Thus, we further reduce the stored telemetry data. Section II-C
describes the basic method, while Section II-E describes the
advanced method.

A. Change Detection

We now introduce a new lightweight change detection
algorithm that monitors a continuous stream of numbers and
detects when this stream deviates from its ’normal’ behavior.
Such streams may represent telemetry data and such as CPU
utilization, memory usage, network usage, log file generation
rate, and messages sent. For generality, we treat all the data
sources as streams of numbers that arrive at fixed intervals.
We assume no prior knowledge of the functionality of the
network components. For example, we do not know how many

log entries are ’normally’ generated, or what is the ’normal’
packet rate distribution.

Since we do not know what is the normal behavior, we
use a large Lag window as a baseline behavior. Similarly,
we use a small Lead window to identify the current trends.
For example, the Lag window can be about 8 hours, while
the Lead can be 15 minutes.

Specifically we calculate the standard error on the Lead and
Lag (approximate windows). To do so, we monitor the total
sum (of all numbers) within windows (σ), and the sum of
squared numbers (σ2) . Whenever a new number arrives, we
add it to both the Lead and Lag windows. We then estimate
the standard deviation for both windows and denote it by
SLag and SLead . Our lightweight method looks at the ratios
between standard deviations on the Lead, and Lag windows.
Specifically, we define:

E1 =
SLag

SLead
, E2 =

SLead

SLag
.

E1, and E2 provide us a notion of how much the distribution
of numbers varies between the Lead and Lag windows. This
notion is not enough to decide that something changed, as we
do not know the ’normal’ values of E1, and E2. However,
E1, E2 provide us with informative values to monitor.

We monitor the maximum vales of E1 and E2 over the Lead
window (excluding the Lag window), and use these values to
determine reporting values for E1 and E2 that adjust to their
current behavior. We denote the maximum of E1, and of E2

to be M1,M2. We then set the reporting thresholds as:

T1 = γ ·M1, T2 = γ ·M2.

Notice that while E2 is the inverse of E1, we need both of
them as E1 is compared to M1, and E2 is compared to M2.

We trigger the heavyweight method if the current E1 ≥ T1
or if the current E2 ≥ T2. Parameter γ ≥ 1 is used to
avoid multiple triggers if the maximum (M1, and M2) is
insignificantly increased. We trigger the heavyweight method
less frequently as we increase γ, but if we set it too high, we
may fail to detect changes.

B. Efficient Implementation

Our work borrows ideas from the work of [7], to efficiently
maintain its various estimators (E1, E2, M1, and M2) on
sliding windows.

Instead of working with exact sliding windows, we work
with variable-sized slack windows. For example, instead of
maintaining the sum of all counters within a fixed 8 hours
window, we can maintain it on a window, which is at least
7.5 hours, and at most 8 hours. Doing so allows us to sum
together all the numbers within 30 minutes intervals, which
drastically reduces the required space. For example, if we get
a new number each second, then we read a total of 28,800
within an 8 hours window, and each of these numbers requires
a single counter since we update the window for each second.
However, by grouping numbers within 30 minutes intervals,
we reduce the number of counters within an 8 hours window to
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16. One per 30 minutes, we erase the oldest counter and begin
filling it again with new numbers. Thus the result is a window
size of 7.5-8 hours. This drastic reduction is at the key of
our change detection method as it allows us to scale to a vast
number of instances within adequate space. We further reduce
the computational overheads by implementing the lightweight
method with SIMD instructions to update multiple streams
with a single vectored instruction.

Given the definition above, let us consider the following
example that would give a feeling about the resources required
to run our lightweight process. Say that we maintain the
Lag window to be 7.5-8 hours and the Lead window to
be 15-16 minutes. We thus require 32 counters to record
standard deviation in the Lead window 16 for maintaining the
sum on the window (σ) and 16 for maintaining the sum of
squares (σ2). Similarly, the Lag window requires 32 counters
for the same reasons. We need an additional 32 counters to
maintain E1, and E2 on the Lead window, and yet another
32 counters to record T1, and T2 totaling in 128 counters
for the lightweight method. The lightweight method requires
no additional memory. In contrast, an exact window would
require at least 28,800 counters. That is, the slack window
saves 99.5% of the memory required to maintain an accurate
window of all the numbers. For ease of reference, Table I
summarizes the notations used by the lightweight method.

Symbol Meaning

σLead, (σLag) Sum of numbers in Lead (Lag) window.

σ2
Lead (σ2

Lag) Sum of numbers’ squares in Lead (Lag) window.

SLead, (SLag) Standard deviation in Lead (Lag) window.

E1, (E2) E1 = SLead
SLag

,
(
E2 =

SLag

SLead

)
.

M1, (M2) Maximum value of E1 (E2) in the Lead minus Lag window.

γ Sensitivity parameter for lightweight method.

T1, (T2) Detection threshold T1 = γ ·M1,(T2 = γ ·M2).

Detection Rule Change is triggered when: E1 > T1 or E2 > T2.

TABLE I: A list of symbols and notations for the lightweight method.

C. Basic Heavyweight Method

When the lightweight detects a change, the basic re-
sponse is to move telemetry data from the Lag window
to long-term storage. Otherwise, telemetry data is only
retained for a short while.

D. Micro-burst Detection Method

The NFV products that host our system use the Zab-
bix [5] open source project to maintain telemetry data.
Zabbix periodically polls the virtual machines for telemetry
and stores the collected data. However, collecting telemetry
data at short intervals is expensive, and in practice, teleme-
try data is only collected in relatively large intervals that
are too sparse to detect microbursts. While increasing the
collection resolution is a feasible solution, the overheads
are unacceptable. Therefore, we selectively increase the col-
lection resolution for VMs, where the lightweight method

Fig. 2: An illustration of our deployment, the lightweight
method (in green), is deployed inside an OpenStack compute,
which it uses to store fine-grained telemetry at selected times.
The lightweight method probes the OVS (or any other network
device) and examines the log generation rate of the infrastruc-
ture’s components.

detects a change. Such a compromise allows for detecting
microbursts with minimal overheads.

1) Minimizing Overheads: We place the lightweight
method in the same compute node as the monitored VM,
which reduces the overheads of collecting and retaining fine-
grained telemetry.

When a change in one of the metrics is detected, we locally
retain the telemetry data on the compute node, and we only
read the stored data when trying to pinpoint the root cause of
problems. We chose to leave the fine-grained telemetry data
on the compute nodes to prevent additional overheads in times
when the system may be unstable (e.g., the bandwidth required
for sending telemetry data to a centralized location).

That is, our telemetry data includes central sparse mea-
surements, along with select periods of high-resolution mea-
surements. Figure 2 illustrates our deployment. We perform
microburst detection on multiple entities such as OVS [2]
virtual switches and physical switches.

E. Advanced Heavyweight Method

In addition to the basic method, when the metric in question
is a log file, we monitor the generation rate as it requires
considerably fewer resources than reading the log. Log files
are special as they have tools to structure and analyze them.
However, such tools are semi-manual in the sense that we
need to provide them with a suspected part of the log to
compare to a ’normal’ part of the log. Such separation is
typically manually done when searching for faults. Our goal
is to automate such capabilities to allow for quicker detection
of faults, and additional compression.

Our prototype utilizes the technique of [15] that performs
behavioral analysis on the log and identifies a deviation in
the behavior of the normal and suspected logs. Most notably,
it outputs graphical descriptions of the behavioral changes
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it detects which are human-readable, and allow an expert to
decide if there is a fault quickly.

While the technique is known, we use the lightweight
method to automate it. We define the Lag window (minus the
Lead window) as the normal behavior and the Lead window as
the suspect behavior. This decision reduces complexity as we
only run the method of [15] when we suspect a change. Even
when we suspect a change, we run the tool on short traces.

For completeness, let us briefly summarize the workflow of
the technique of [15]. The technique has four steps:

• Log normalization, where we normalize the log data by
filtering out less important information, normalizing for-
mats (e.g., field separators), extraction of identifier fields.

• Behavioral model extraction for normal and abnormal
logs, collected during the Lead and Lag windows, respec-
tively. In this step, we build a model for each window.
Such a model is a finite state automaton that captures
the behavior witnessed in the log. We use existing spec-
mining techniques in this step, e.g., kTails [9].

• Computation of differences between the two models that
identify behavioral changes between the logs. Examples
of extracted differences are states encountered in one
model but not in the other, differences in frequencies
at which each behavior occurs, as well as significant
changes in the transition time between states.

• Visualization of the extracted differences and highlighting
of substantial artifacts.

In our system, once invoking the method of [15], it becomes
responsible for deciding if the log files should be stored long
term. That is, if the method detects a behavioral change, it
saves the files; otherwise, it discards them to prevent excessive
storage usage.

III. EVALUATION

This section evaluates the lightweight method and the
advanced heavyweight technique using 313 real commercial
systems traces. We ran the experiments on an HP EliteBook
laptop, with 16GB of RAM, i7-6600U 2.6GHz CPU, and a
64 bit Windows 10 OS. All of the experiments in this section
use existing logs collected in the past. Therefore, our system
expert already knows which errors appear in the logs and
their timing. We sent the results of our analysis to the experts
without knowing in advance where the errors are.

We set γ = 1.4 in all evaluations; the window sizes are
determined by the granularity of the data. Specifically, in log
analysis, we need to make sure that there are enough log lines
to generate a behavioral model for the Lead window. The Lag
window is set to be 8-48 times larger than the Lead (the system
seems indifferent to the exact sizing of the Lag window) e.g.,
30 minutes and 24 hours or 5 minutes and 200 minutes. The
exact details are provided for each experiment.

We start this section by evaluating the compression rate and
the false positive rate of our system (Section III-A), then we
continue with two case studies of real faults that were detected
by our system(Section III-B and Section III-C. Following, we
show interesting examples of patterns (and possibly faults) that

were detected by our system III-D but were unknown to our
system experts.

A. Data Reduction and False Positive Evaluation

We start by evaluating the impact our system has on the
storage requirements of telemetry data. We run our system
on 313 application traces containing a total of 30,392,300
log lines. Our lightweight method detected 3674 changes,
about one change per 80k log lines. Out of these changes,
two changes were real faults known to our system experts,
and the rest were either false positives or errors that went
unnoticed. That is, the false positive ratio is 99.95%. However,
our method is very successful as a compression tool as we
store less than 1% of the original logs and retain the telemetry
from the real faults.

We run the advanced heavyweight method on a subset of
these traces for two weeks of the MANO system’s log. In this
subset, there were 114 detected changes, and the heavyweight
method narrowed the number to 97 without configurations,
and to 41 when eliminating changes that appear more than
once. In essence, once the system expert reports that a change
is not a fault, we can dismiss that change if we re-encounter
it. Unfortunately, even with this optimization, we require the
system expert three times a day in a properly working system,
which is still unacceptable. That is, we conclude that our
system is still not efficient enough to detect faults in the
infrastructure proactively.

B. Authentication Failure in an NFVI system

The first system is an OpenStack aligned, NFV infrastruc-
ture that implements NFVI and VIM support. The infras-
tructure is composed of multiple OpenStack and proprietary
projects 1. One such project is Gnocchi [1], which performs
storage and indexing of time series data and resources at a
large scale. The Gnocchi subsystem maintains an extensive
log that we collected during the operation of the NFVI.

Figure 3 shows an example of analyzing Gnocchi logs.
Here, the Lead window is 5 minutes, and the Lag is 4 hours.

In this example, the lightweight method triggers the ad-
vanced heavyweight method at around 10 AM and 12 PM.
In this case, the heavyweight method dismisses the 10 AM
change, and only stores the logs of the 12 PM incident. We
used a system expert to verify that there is indeed no fault at 10
AM and that there is a real fault at 12 PM. At that time, there
were many connection failures to the authentication server.
The root cause of such failures was that the server was down,
and Gnocchi repeatedly tried to authenticate a tenant.

The next two graphs in Figure 3, demonstrate the internal
state of our lightweight method. Recall that the method
uses the ratio of standard deviations on the Lead and Lag
window, where E1 is the standard deviation of the Lead
window divided by that of the Lag, and E2 is the other
way around. Notice that the 10AM change is due to the
pair E1, T1, and that of 12PM is due to the pair E2, T2. At

1The system’s name is omitted to preserve authors’ anonymity.
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(a) Number of log entries per second in Gnocchi.

(b) Ration between standard deviations E1 and the
reporting threshold T1.

(c) Ration between standard deviations E2 and the
reporting threshold T2.

Fig. 3: Detected changes for Gnocchi logs.

Fig. 4: Diff model with emphasized outliers for Gnocchi logs.

around 10 AM, the log generation rate drops, which triggers
the advanced heavyweight method as E1 > T1. That is,
we run the method of [15] and automatically configure it
according to the Lead and Lag windows. Since we detect
no behavioral change, we dismiss the change and continue
as usual. At about 12 PM, the log generation rate spikes,
which causes a second triggering since E2 > T2. Again, we
trigger the (automatically configured) heavyweight method to
read the logs and search for behavioral changes. This time,
we discover a behavioral change, so we store the logs, and
(potentially) alert the user with a graphical explanation of
the change. The visualization is found in Figure 4. In this

(a) Number of log entries per minute in management system logs.

(b) Ration between standard deviations E1 and the reporting threshold T1.

(c) Ration between standard deviations E2 and the reporting threshold T2.

Fig. 5: Detected changes for management system logs.

visualization, the INITIAL and TERMINAL nodes are nodes
representing entrance and exit from the generated model. All
other nodes represent states with edges acting as transitions.
We automatically extracted the field names from the log
messages. Observe that there are three states (in double-lined
ovals) auth token Unable to validate token,
Bad response code while validating, and
Identity response: !DOCTYPE HTML PUBLIC that occur
during the Lead window, but not during the Lag window. Thus,
the fault manifests by a large number of these error messages
appearing in the log (which initially only affects the Lead win-
dow). It is not hard to deduce the real problem from this graph,
which is a failure of the authentication server. Specifically, our
system expert considers this visualization informative.

In summary, our system processed 53.4K Gnocchi log lines.
The lightweight method detected a change twice, and the
advanced heavyweight method dismissed one of these changes
(while the other contains a real fault). That is, out of all the
53.4K logs, we only store the logs of a single point in time.
All in all, we retain less than 1% of the Gnocchi logs.

C. A slowdown in a telecommunication operator’s system

The next system is a large telecommunication system that
manages networked services at scale. The system collects
log files from numerous services and devices. When a fault
becomes apparent, the troubleshooting team searches these
traces to pinpoint the error, and determine its cause. This
manual process may require a long time (measured in days
or even weeks) to resolve, and includes many work hours of
system experts to sift through numerous large volume logs.
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Fig. 6: Diff model with emphasized outliers for management
system logs.

(a) Log entries per second in a Web Server Gateway Interface.

(b) Ration between standard deviations E1 and the reporting
threshold T1.

(c) Ration between E2 T2.

Fig. 7: Results for Web Server Gateway Interface (WSGI).

Fig. 8: Alerts generated for logs of a Security Application.
The upper most graph shows a periodic pattern that does not
trigger an alert. The two graphs below show the E1 and E2

ratios, and their corresponding thresholds.

Fig. 9: Alerts generated for logs of a Mail application. The
uppermost graph shows a periodic pattern that does not
trigger an alert. The two graphs below show the E1 and E2

ratios, and their corresponding thresholds.
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Figure 5(a) shows the log generation rate, window sizes,
and detected changes. Here, the Lead window is 20 minutes,
and the Lag is 200 minutes. We determined these numbers
by the log generation rate as we need enough log lines in
the Lead window to generate a reliable behavioral model. As
can be observed, at around 10 PM, we detect two changes.
Figure 5(b), and Figure 5(c) shows the internal state of our
lightweight algorithm including the thresholds T1 and T2 and
the estimators E1 and E2. The first detected change is caused
by the pair E1, T1 as the log generation rate in the Lead
window is especially low, which reduces the standard deviation
of the Lead window. This in turn causes E1 to drastically raise
and cross T1 (See Subfigure (b)). Next, the log generation
rate steeply increases, and the standard deviation of the Lead
window is higher than that of the Lag window.

We verified with the system’s experts that there indeed is a
real error around the detection time (our system pinpointed the
beginning of the error). The error is a slowdown of the system,
which explains the first change. However, the heavyweight
method does not yet find a behavioral change since the log
lines that describe the error were not yet written. Luckily, a
change is also detected shortly after due to a spike in the
log generation rate. This spike is due to numerous timeout
messages, which allows our heavyweight method to discover
a behavioral change. Figure 6 shows the visual explanation
of the behavioral change. As illustrated, two states occur only
in the Lead window, significantLoss and ignoreSyncRequest.
This alarm captures the root cause of a real error, which
was verified by the system’s expert. The failure is due to the
system trying to get a response from some devices that are
not responding correctly. The failure triggers a synchronization
message. When the synchronization fails, it records a failure
message and repeats this process. This excessive repetition
creates a loop between these two states, and that loop enabled
our lightweight method to trigger a change in the first place.

The visualization emphasizes significant changes, whereas
the threshold to determine if a change is significant is:
abs(freqLag−freqLead )

freqLag+freqLead
> 30%. Here, freqLag and freqLead are

frequencies of a certain transition in the logs of the Lead and
Lag windows.

The time it took us to execute the behavioral analysis was
less than 2 seconds. In contrast, the authors of [15] report
running the analysis tool for 3 hours on the entire trace (2.5M
loglines). That is, we optimize the behavioral analysis tool by
running it on short traces.

D. Exploring the lightweight system

Next, we evaluate our lightweight method on other ap-
plications where we have no access to system experts. We
use this evaluation to see what kind of periodic behaviors
are captured by the lightweight method. Figure 7 shows the
result of running the lightweight method for analyzing the log
generation rate of a Web Server Gateway Interface (WSGI)
application, which is a part of OpenStack [4]. We select the
Lead window’s size to half an hour and the Lag’s window size
to one day. We chose these window sizes due to the expected

day/night cycle of such services. Note that despite the noisy
behavior of the log generation rate, the lightweight method
does not trigger the heavyweight method. The triggering at
the end is because the log generation rate drops to 0, likely
due to a crash.

In Figure 8, we monitor the entry logs of a security applica-
tion. We cannot provide many details on this application due
to confidentiality requirements specified by the customer. We
configured the Lead window to be half an hour, and the Lag
window to be 5 hours. The reason for such configuration is
the generation rate, which requires half an hour to accumulate
enough log entries for the log analysis tool. We set the Lag
window to be ten times the Lead as a rule of thumb.

Notice that the generation rate shows a periodic behavior
with a non-trivial pattern that resembles fingers. The detected
change is because the pattern changes at the end of the mea-
surement. We do not know if there is a fault in this example
but note the ability to cope with such patterns gracefully.

The last example in Figure 9 shows the log generation
rate of a mailing service that has a clear and straightforward
periodic pattern. Here, the Lead window is half an hour, and
the Lag window is one day. These values are not optimized for
this trace, and we repeated the values we selected for Figure 7.
As can be observed, the mail log does not write the log at the
expected interval (likely due to a crush), and our lightweight
method identifies this case.

IV. LIVE DEPLOYMENT

In this section, we show experiments with the basic heavy-
weight method that is running alongside a cloud Management
And Orchestration system (MANO). This system utilizes
OpenStack and other open-source projects.

Here, there is a desire to save fine-grained telemetry data
from a large number of virtual machines, but doing so slows
down network services, which is unacceptable by our users.
The compromise is to use Zabbix for telemetry in one-minute
intervals. Such intervals are too coarse to detect microbursts,
which lead us to implement a single instance of our lightweight
method for each OpenStack compute node. Such a location
allows for fine-grained monitoring without external communi-
cation, which reduces the overheads to acceptable levels.

Our lightweight method monitors numerous metrics, but the
most useful which we present here is the Packets Per Second
(PPS). Specifically, faults in our products are typically due to
microbursts, which are invisible to sparse telemetry but may
cause unexpected behavior. For example, losing some packets
due to a burst may imply that we lose heartbeat packets, which
may cause our clients to restart their services automatically.
In such cases, it is essential to understand if the problem
is part of the service (which means that the client should
solve it), or if it is part of the infrastructure (which means
that our troubleshooting team should explain it). That is, the
detection of microbursts allows us to take responsibility for
some problems and benefit our clients.

Since performance is crucial when we leverage Single
Instruction Multiple Data (SIMID) [3] instructions when im-
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Fig. 10: Our lightweight method (blue), in comparison to
the existing coarse grain telemetry through Zabbix, when we
artificially increase the packet rate for a short amount of time.

plementing the lightweight method, such instructions allow us
to update multiple instances at once. Here, the lightweight
method saves fine-grained telemetry data when it detects a
change in PPS, compared to the baseline. Doing so allows
us to figure out what caused the microbursts, especially when
they are the root cause of problems.

A. Synthetic example

Our first experiment is a demonstration of the capability to
detect a rise in traffic accurately. Figure 10 shows results when
we artificially increase the traffic. The green line is the default
Zabbix coarse-grained sampling, while the blue line shows that
our method accurately identifies the increases in packet rate.
The reported starting and ending times of the increased rate
are almost identical to the real times.

1) Overheads: Our lightweight methods maintains a win-
dow of 500 seconds and records a single measurement per
second (60 times faster than Zabbix). The overheads for all
the instances of the lightweight method are an increase of
0.5% in one of the CPUs, which we consider acceptable. In
contrast, sampling at fine granularity all the time increases
these overheads by a factor of x10. The memory overheads of
our solutions are fixed, and negligible compared to the amount
of RAM in the servers. Specifically, the entire overheads
including containers are measured in tens of megabytes.

B. Detecting microbursts at an End-to-End 5G lab

The 5G lab is the final and most realistic testing that the
MANO system undergoes before being released into produc-
tion. Thus, experimenting in this lab allows us to test our
system within a very realistic deployment. In Figure 11, we
show results for a three days period where the QA teams tested
the product while our system was active. The bottom part
of the figure shows the one-minute interval of Zabbix data,
which is collected regardless of our system. The upper part
of the figure is the fine-grained measurement data, which we
collected at the point marked with a line. As can be observed,
the default one-minute measurement fails, while our system

Fig. 11: Microbursts missed by Zabbix’s coarse grained mon-
itoring (in green), but are detected and stored by our system
(in blue). The microbursts were detected at the point marked
grey in the bottom graph.

detects a series of microbursts where the traffic momentarily
increases by x10 to x1000 of the average.

V. RELATED WORK

Detecting faults in network components is a well-studied
issue. Specifically, the work of [11] attempts to identify SDN
switches that were compromised by an attacker. Alternatively,
the work of [14] attempts to detect attack patterns in the traffic.
In comparison, our work may identify the behavioral changes
of a compromised switch, but it is more general and more
modest. It monitors a variety of network components, and its
primary goal is to retain enough information to detect faults.

The work of [22] processes a metric over a time series and
indicates how normal it currently is. This approach compares
its past patterns on two identically sized time frames called
Lead and Lag windows. Their work lacks a mechanism to
determine when to trigger an alarm, and they offer no action
to do once a change is detected. Further, they require some
meta-knowledge of the problem by determining the length of
the monitored words.

Alternatively, in [19], machine learning models are trained
to try and predict the next metrics value, and the anomaly
score is determined by how accurately these models predict
future value. The assumption is that in normal operation, the
predictions would be relatively accurate, but once an anomaly
occurs, they’ll be inaccurate. However, this approach behaves
poorly if the behavior gradually changes over time.

Analyzing logs to understand service behavior and to find
anomalies in that behavior is also a well-researched field [13],
[23], [20], [18], [12], [21], [17]. Some [21], [12], [20] focused
on developing statistical approaches to visualize logs and
detect outliers. These approaches monitor frequencies of fixed
length patterns, and the most infrequent patterns are consid-
ered anomalies. Others [18], [23] adapted machine learning
algorithms to achieve a similar goal.

Finally, microbursts are a known pain-point for networked
systems. They often cause increased delays and packet loss
in the link level [24], and one can remedy the impact of
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microbursts by using larger buffers, or by dropping the packets
of the largest flows to limit the impact to as few flows as
possible [10]. It is challenging to measure microbursts in
traditional methods due to their short duration [6], [8], which
is often less than a second (e.g., 100 microseconds) [10], [24].

The existing approaches for handling microbursts assume
unrestricted access to the internal data of network devices [10],
[24], [16]. Such access is sadly impractical when you need to
support a large variety of network devices. Our method only
requires very basic access to the network device but can only
detect ”microbursts” that are measured in seconds. While less
than ideal, we still catch some of the problems.

VI. DISCUSSION

Our system reduces the volume of telemetry data, which
is retained indefinitely and is required to pinpoint the root
cause of faults in NFVI products. Our system discards most
of the data and retains the data from incidents where some
automated analysis process detects a change. We presented a
new lightweight algorithm designed to perform an initial anal-
ysis within minimal space and processing overheads. Then, we
reduce the amount of stored data by automating existing log-
analysis tools to inspect the triggers of the lightweight method.

Our evaluation includes multiple case studies and 313 real
application traces. In these traces, we demonstrate a reduction
of over 99% in log file storage, without missing out on any of
the (few) real faults. Such a reduction extends the storage time
of telemetry information from one day to over three months
without allocating additional storage for telemetry data. Such
an increase makes it easier to pinpoint the root cause of
problems when they become apparent.

Our approach detects all of the real faults within the
telemetry data that we currently have, but the number of such
faults is not big enough to reason about false negatives. We
will be able to evaluate this ratio more accurately in the future
as our system would encounter additional real faults.

Many of the common faults in our products involve the
formation of microbursts, and we show that our lightweight
method can detect such microbursts without requiring non-
standard interfaces. The usage of such interfaces is important
as it allows our solution to monitor a large variety of network
devices, whereas existing works target specific devices with
specific programming models [6], [24], [16]. Due to perfor-
mance limitations, our resolution is limited to above second
microbursts (which differ from sub-second microbursts in the
literature). We performed a controlled experiment in realistic
conditions on our 5G lab and showed that detecting such
microbursts improves our current capabilities. In the future,
we will seek ways to reach subsecond intervals.

We are currently evaluating applications of evaluating met-
rics such as process level memory and CPU usage. We
also consider comparing our estimators with the method of
of [22], since their approach does not determine the threshold
automatically, we will use it to replace E1 and E2 while
retaining the rest of our architecture unchanged.
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