Poster: Word embedding for deployment descriptors
in NFV

Wassim Sellil Atoui?, Imen Grida Ben Yahia' and Walid Gaaloul?
!Orange Labs, Chatillon, France
2Telecom SudParis, Samovar, Evry, France
{wassimsellil.atoui, imen.gridabenyahia}@orange.com, walid.gaaloul@mines-telecom.fr

Abstract—Virtualized networks such as NFV enable the au-
tomation of the network and decrease the need for human
interventions. They ensure the availability of adequate compute,
storage, and network resources for network services. To automate
the network, the NFV orchestrator coordinates and manages
automatically the resources to meet the requirement of network
functions and services. To date, network function deployment
descriptors are manually designed by service providers. Learning
automatically from deployment descriptors is an important step
toward fully automating the network management. In this work,
we propose a word embedding approach that learns from a set of
deployment descriptors a vector representation. This approach
is shown to be useful for recommending deployment descriptors.

Index Terms—Network Function Virtualization, NFV, Word
Embedding, Deployment descriptors, VNFD.

I. INTRODUCTION

Currently, in NFV, the onboarding and the deployment of
new virtual network function (VNFs) or network services
(NSs) requires specifications provided by the service owner
about the deployment requirements. The specifications are
deployment descriptors that describe for a network service
[1], the virtual network function (VNFs) that compose it,
the topology of interconnecting the VNFs, and the data flow
direction between them. Also, the deployment descriptors for
the VNFs indicate the deployment and operational behavior
in terms of connectivity, interface, and virtualized resource
requirements.

Learning automatically from deployment descriptors is an
important step toward fully automating the network manage-
ment. In this work, we propose a word embedding approach
for deployment descriptors, that learns from a set of deploy-
ment descriptors a vector representation for each element that
compose the descriptors. The vector representation captures
the semantic similarity between the elements which helps
to solve diverse problems such as deployment description
completion, recommendation, and classification [1]. Word em-
beddings are very effective in solving many Natural language
processing (NLP) problems such as Automatic summariza-
tion, Machine translation, Named entity resolution, Sentiment
analysis, Information retrieval, etc. They are a numerical word
representation where words that have the same semantic have
a similar representation. In NLP, word embeddings are learned
from text based on the distributional hypothesis that emphasis
that words that occur in the same contexts tend to have

Annex to ISBN 978-3-903176-28-7 (© 2020 IFIP

similar meanings. The context of deployment descriptors is
different from the text. The context of an element is not a
flat window of words. We propose therefore a graph model
for deployment descriptors that we use to extract the context
for each descriptor element. More precisely, we focus our
attention on VNF descriptors (VNFDs) and propose a model
to represent the elements that compose them.

The rest of the paper is organized as follows: In section II,
we describe a hierarchical model for the VNFD elements. This
model is used afterward to learn the word embedding from
the deployment descriptors. In section III, we conduct some
experiments to evaluate the performance of the proposed word
embedding approach and discuss the results. Finally, in section
IV, we conclude our work and present future perspectives.

II. LEARNING WORD EMBEDDING FOR VNFD
DEPLOYMENT DESCRIPTORS

In this section, we present an implementation approach of
word embedding for deployment descriptors in NFV. More
particularly, we focus our attention on VNFDs. In our previous
work [1], we have proposed to use word embedding directly
on the VNFD files. For that, we proposed to breakdown the
files into a set of tokens. Tokens are elements that constitute
the VNFD files, it include the data model elements and
also the special characters that structure the VNFD file, i.e.
indentation, text return, tags, brackets, etc. The shortcomings
of this approach are in two folds: Firstly, we used a flat
context (direct surrounding tokens) to learn the embeddings,
which is less efficient given that the structure of the VNFDs
is hierarchical. Secondly, the proposed approach is strongly
dependent on the file structure of the VNFDs. To overcome
these shortcomings, we propose an abstract model for the
VNFDs. This model is used to extract a more significant
context for learning word embedding. The model represents
the VNFD elements independently of their file structure
in a hierarchical way. Moreover, the relation type between
the VNFD elements is used to augment the context of the
VNFD element. We first start in this section by defining the
VNFD model. Afterward, we describe briefly our approach to
learning the word embeddings.

A. VNFD model

VNFD is a configuration file that describes the NFV in-
frastructure resource requirements for a VNF in a service
provider environment and the operational behavior of the VNF
including lifecycle events (e.g. scaling, upgrading).

625

The ETSI NFV [2] has released a specification that defines
the requirements for the structure and format of a VNFD. The
VNEFD is composed of one or many virtual deployment units
(VDUys) that describe the deployment resources and operation
behavior of a VNF component (VNFC). VDUs are virtual
machines that host the VNF or parts of it. Each part of the
VNF is a VNFC and can be deployed on one or more VDUs.
Each VDU is characterized by, among others, the software
image loaded on it and the resources needed to deploy it.
A VDU describes mainly the virtual compute (VC), virtual
storage (VS) and virtual memory (VM) resources that are
necessary for deploying a VNFC and it could be linked via
connection points (CPD) to other VDUs or to external VDUs
that belong to other VNFs via external CPD. Virtual links
in the VNFD indicate how the VDUs are connected and via
which CPD.

As the structure of a VNFD can be mapped to a graph, we
choose graph theory to represent a VNFD model as a tree-
like structure. For sake of simplicity, we restrict our definition
to the general elements that compose a VNFD regardless of
any data model. We consider for that matter the ETSI NFV
specification [2].

Fig. 2, illustrates a basic example of a VNFD representation
of a firewall. Fig. 1 shows the basic elements that compose the
VNFD model representation. The nodes in the VNFD model
represent the different component instances that compose the
VNFD. Each component instance has one of the following
types: VNFC, VDU, VM, VS, VC or CPD and may have one
or more attributes. The root node represents an instance of
the type VNFD. Fig. 2 presents an example where the root
node v; is an instance of type VNFD and has the attribute
“name” which has the value “vFirewall”. Graphically, we use
*“:” in the node label to indicate the component from which the
instance is derived. For sake of simplicity, in our example, we
define one attribute for each node and we indicate it between
“()” in the node.

The relations between the nodes (component instances) can
be one of the following three types: composition, allocation,
or connection. A composition relation between two nodes v
and v, indicates that the instance vy is composed by the
instance ve. That means that vs is part of v; and cannot
exist without it. The composition relation exists typically
between (i) VNFDs and VNFs, (ii)) VNFCs and VDUs, and
(iii)) VDUs and CPDs. Graphically, a 1:1 composition relation
is represented by a solid line. For example, in Fig. 2, the
instance of VDU v, is composed of the instance of CPD vy.
In case a 1:n composition relation exists between multiple
nodes, we use a composition gateway to connect the nodes.
Graphically, the composition gateway is represented by a grey
diamond with the label “C”. In our example, the instance of
VNFC w7 is composed of two instances: VDU v3 and VDU
V4.

An allocation relation between two nodes v; and vy indi-
cates that v, is a resource that needs to be allocated to v;.
The allocation relation can only exist between VDUs on the
one hand and VS, VC, and VM on the other hand, i.e. only
the virtual storage, virtual memory, and virtual component

Elements in the VNFD model

CJ

e

Component instance node
Composition edge

---> Alocation edge

T F comectionedse
<>

Composition gateway

>

Allocation gateway

Connection gateway

Fig. 1. Graphical representation of the elements used in a VNFD
model

v,: VNFD
(name: vFirewall)

e,

"
v, : VNFC
(name:vFirewall)

€

e 27
Ve: CPD
(name: vNIC)

==

vs: VS
(Size:5Gb)

& L
e vg: VC Vi VM
(nCPU: 4) (Size: 100 MB)

Fig. 2. An example of a vFireWall VNFD represented graphically
as a tree-like structure

resources can be allocated to the VDUs. Graphically, the
allocation relation is represented by a dashed line. As an
example, in Fig. 2, the VS v5 is allocated to the VDU wvs.
In case multiple resources are allocated to a VDU (i.e. 1:n
relation), we use an allocation gateway to connect the nodes.
Graphically, the gateway is represented by a blue diamond
with the label “A”. In our example, the VC vg and the VM
vg are allocated to the VDU wvy.

A connection relation can exist between the component
instances of type CPD and is a bidirectional relation. It rep-
resents the virtual links that connect the CPDs of the internal
VDUs or to external VDUs of external VNFs. Graphically,
a connection relation is represented by a solid green line.
As an example, in Fig. 2, the relation between the CPD v
and the CPD v~ indicates that a virtual link connects the two
connection points. We also introduce the connection gateway
(as shown in Fig. 1) that allows to connect multiple connection
points. The connection gateway is graphically represented by
a green diamond with the label “N”.

B. Word Embedding

The word embedding approach is SkipGram [3]. It learns a
representation of the elements of the VNFD model. The goal is
to learn a representation in a vector space, where each unique
element in the deployment descriptor data set is positioned
in the vector space such that elements that share common
contexts in the corpus are located near one another in the
space.

C. VNFD context augmented SkipGram

The distributional hypothesis that emphasis that words that
occur in the same context tend to have similar meanings

626

is not applicable for deployment descriptors the same way
as in NLP. As shown in the previous section, the context
of each element in the deployment descriptors is not a flat
set of elements that surround it. The elements are rather
related directly and indirectly to other elements. Moreover,
the graph structure of the VNFD model shows also that
different dependencies could occur between the elements. It
is therefore important to account for a hierarchical context
when learning the embedding for the deployment descriptors.
Also, the context needs to be augmented with the relational
type that relates the VNFD elements together. We define the
window size of the target element as the area to which the
context elements are connected. For example, window size =
1, means that the context elements are the elements that are
directly related to the target word. Window size = 2, include
also the elements that are related to the context elements of
the first context area.

As an illustration, We suppose that the context window
size = 1. The context of the target element vy in Fig.2
is: (vFirewall, Docker VFW/Composition/VNFC),(vFire-
wall, Docker TC/Composition/VNFC), (vFirewall, vFire-
wall/Composition/VNFD). Note that even when vFirewall
appeared two times (in v; and vs), the context of the elements
suggested a different meaning.

III. EXPERIMENTAL RESULTS

To evaluate our experiment, we compare our augmented
version of the SkipGram approach with the classical one. For
that, we use our previous work [4] in which we have proposed
a framework that complements a given network deployment
descriptor with appropriate metadata and its associated values,
selects, and recommends descriptors to ease and automate the
deployment phase of VNFs. The approach is based on the
classical SkipGram embedding approach and DNN methods.
More particularly, we employed two methods of deep learning,
CNN and LSTM.

Our framework encompasses three phases: 1) the Data
preparation phase, 2) the Training phase and 3) the DNN
execution phase. The preparation phase aims to transform the
input set (i.e. deployment descriptors) into a data set that is
used by the DNN methods in the training phase. During the
training phase, the DNN methods learn two models, a CNN
model for the recommendation task and an LSTM model for
the completion task. During the third phase, the generated
LSTM and CNN models are executed. In the preparation
phase, we use the two word embedding approaches (classical
and augmented Skipgram)

To evaluate the performance of both the embeddings (clas-
sical and augmented SkipGram), we focus on the effectiveness
of the two deep learning models: CNN model for the descrip-
tor recommendation task and LSTM model for the descriptor
sequence prediction, with respect only to the VNFD elements.

A. Environment settings

In our experiment, we consider approximately 100 VNFDs
collected from various organizations and private telco vendors.
The data set include several variations of VNFDs for different
VNFs such as Mobility Management Entity (MME), virtual

tab. I. Evaluation of the LSTM model using different output length

Output length | SkipGram | Context augmented SkipGram
5 0.87 0.9

10 0.82 0.85

30 0.78 0.81

70 0.6 0.69

180 0.43 0.51

tab. II. Experiments on the CNN model using different input sizes

Input Size | SkipGram | Context augmented SkipGram
20 0.24 0.29
50 0.31 0.31
100 0.44 0.47
200 0.6 0.64
500 0.84 0.88

Customer Premises Equipment (vCPE), virtualized Subscriber
Data Management (vSDM), etc. The VNFDs are YAML files
that follow the TOSCA data model. We implemented a python
program to construct the VNFD models from the data set. The
number of nodes extracted, with respect to their type, are 65
VNFC, 453 VDUs, 453 VCs, 421 VMs, 357 VSs, 520 CPs.

We evaluate the CNN and LSTM model by taking into
account the two embedding methods. The parameters of the
models are the same as in the previous work. The accuracy
of the classification is measured by varying the input length
of the CNN model and the output size for the LSTM method.
The results are shown in tab.I for the CNN model and tab.Il
for the LSTM model.

We can notice that augmented embedding gives better
results. That makes sense, because the more we add accurate
context information about the description, the more the CNN
and LSTM can extract features and be able to classify it to
the best descriptor file.

IV. CONCLUSION

We proposed in this work a word embedding approach
for deployment descriptors, referred to as token embedding,
that learns from a set of deployment descriptors a vector
representation for each element that compose the descriptors.
The goal is to enable service providers to learn from network
service deployment descriptors. The results show that our
approach can be effective in learning better embeddings for
the deployment descriptors. Our next step involves developing
a descriptor generation engine that could learn from the
previous deployment of network services to suggest adequate
configurations.

REFERENCES

[1] W. S. Atoui, I. G. Ben Yahia, and W. Gaaloul, “Using deep learning for
recommending and completing deployment descriptors in nfv,” in /EEE
Conf. on Net. Softwarization (NetSoft), pp. 233-235, June 2019.

[2] ETSI, “Gs nfv-ifa 011.” https://standards.globalspec.com/std/13271186/gs-
nfv-ifa-011, 2019.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in Neural Information Processing Systems 26 (C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,
eds.), pp. 3111-3119, Curran Associates, Inc., 2013.

[4] W. S. Atoui, I. Grida Ben Yahia, and W. Gaaloul, “Virtual network
function descriptors mining using word embeddings and deep neural net-
works,” in IFIP/IEEE Symp. on Integrated Net. and Service Management
(IM), pp. 515-520, April 2019.

627

