
Toward an Efficient Real-Time Anomaly Detection
System for Cloud Datacenters

Ricardo Dias∗‡, Leopoldo Alexandre. F. Mauricio† and Marcus Poggi∗
∗ Departamento de Informática - Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio, Brazil

† Grupo Globo - Globo.com, Brazil
Emails: {rdias,poggi}@inf.puc-rio.br, {ricardo.dias,leopoldo}@g.globo

Evaluation results show that the proposed algorithm achieves
the best-in-class NAB score. Besides, it is the fastest and
uses the least memory among the state-of-the-art algorithms
included in NAB. We also propose and implement the Sophia
anomaly detection system. Sophia is a modular Big Data
streaming processing system implemented in the Globo.com
cloud datacenter, which collects and analyzes metrics in real-
time using DASRS, providing an accurate anomaly detection
service. Results from this live application show that the min-
imal setup of the proposed system can analyze 2,800 virtual
machine metrics in real-time, 14,000 per minute.

The rest of the paper is organized as follows. In Section II,
we present the proposed algorithm. Section III details the
Sophia anomaly detection architecture. Evaluation results and
the use case of Sophia, analyzing Globo.com streaming data,
are in Section IV. In Section V discusses related work, and
Conclusions are in Section VI.

II. THE PROPOSED ALGORITHM

The DASRS algorithm, proposed in this paper, identifies
and counts the sequences of normalized values that appear in
a time series and generates an anomaly score as a function
of the number of times it identifies each sequence. The first
time DASRS identifies a given sequence, the returned score
is as high as possible because the algorithm interprets it as
a new behavior. Otherwise, the returned score decreases as
the number of times a given sequence is found. Let Xt be a
time series with the observations x1, x2, A sequence of
Xt is a subset of Xt consisting of consecutive elements, for
example, xi, . . . , xj , with i < j. The normalization applied by
DASRS consists of transforming the observation value into an
integer between 0 and a normalization factor that we call θ.
The equation below represents the operations performed on
xi to get its normalized value (x′i): x

′
i =

⌊
xi−minX

maxX−minX
× θ

⌋
,

(equation 1), where xi is the input observation (xi ∈ R),
minX and maxX are respectively the smallest and highest
possible observation values of Xt. θ represents the normal-
ization factor, x′i is the normalized value of xi, x′i ∈ N and
0 ≤ x′i ≤ θ. We normalize observed values to limit the number
of distinct sequences without changing the main characteristics
of a time series. As the normalization reduces the number of
distinct sequences, we can increase the performance of the
anomaly detection algorithm.

Abstract—Anomaly detection in streaming data of cloud dat-
acenter environments requires efficient real-time systems and
algorithms. This paper proposes the Decreased Anomaly Score by
Repeated Sequence (DASRS) algorithm, which normalizes time
series values and counts each sequence to generate anomaly
scores as a function of the number of times they appear.
We also propose and implement the Sophia anomaly detection
system. Sophia is a big data modular streaming processing
system implemented in the Globo.com cloud datacenter. DASRS
achieves the best-in-class score calculated by Numenta Anomaly
Benchmark (NAB) framework. Besides, it is the fastest and uses
the least memory among the state-of-the-art algorithms included
in NAB. Results from a live application show that Sophia provides
an accurate real-time anomaly detection service.

I. INTRODUCTION

Building an efficient real-time anomaly detection system to
monitor a cloud datacenter [1] is a big challenge. Frequent
software and hardware upgrades, typical of cloud computing,
can cause constant behavioral changes in metrics processed by
anomaly detection algorithms. Therefore, efficient algorithms
must automatically adapt to pattern changes without requiring
human intervention to avoid accuracy problems. Moreover,
anomaly detection algorithms must have low complexity and
reduced execution time, along with reduced memory and CPU
usage, even when analyzing large volumes of data.

Every day, more and more data needs to be analyzed,
making the detection time a critical aspect [2]. Security attacks
that exploit vulnerabilities in applications, for instance, fre-
quently produce atypical discrete disk I/O, network traffic vari-
ations, or changes in memory usage patterns. These malicious
anomalies can cause irreparable failure and damage when the
time needed to identify them is too long [3]. Consequently,
robust anomaly detection architectures are required to collect
and process real-time cloud metrics and also provide efficient
visualization mechanisms to report anomalies.

This paper proposes the Decreased Anomaly Score by
Repeated Sequence (DASRS) algorithm. DASRS is a continu-
ously learning algorithm that normalizes time series values and
counts each sequence to generate anomaly scores as a function
of the number of times they appear. We evaluate DASRS
and, using the Numenta Anomaly Benchmark (NAB) [4],
we compare its accuracy with state-of-the-art algorithms [5].

This work has been sponsored by CNPq, CAPES and Grupo Globo.

Annex to ISBN 978–3–903176–28–7 © 2020 IFIP

529

We calculate the anomaly score, taking into account the
current normalized sequence and the number of times that
sequence appeared in the past. The number of elements in
the sequence is defined by a parameter, which we decide
to call sequenceSize. The last sequenceSize normalized
elements of the time series defines the current normalized
sequence. We store in a data structure the number of times each
sequence appears throughout the time series processing. Then,
we calculate the anomaly score using the following equation:
score = 1

occurrences (equation 2), where occurrences repre-
sents the number of times the current sequence appears. At
the beginning of the processing of a time series, the algorithm
generates high scores of anomalies because, until now, it has
found the sequences a few times. For this reason, the initial
processing time of a series should be considered a training
period or a probationary period. Therefore, the anomalies
identified during this period do not trigger alarms. Equation 2
does not generate the final anomaly score. As explained in [6]
and [7], many times, a dataset analyzed registers unpredictable
behaviors caused by noise or the random nature of some
metrics, generating a large number of false positives. To
address this, we developed two versions of DASRS. The first,
DASRS Rest, defines a period after identifying an anomaly, in
which the final anomaly score should be smoothed. DASRS
Rest understands very close anomalies as part of the same
phenomenon. Therefore, after identifying an anomaly, the
following scores are decreased for a period defined by the
restPeriod parameter. The getRestScore function of Algo-
rithm 1 (Lines 25-31) shows how the restPeriod parameter
is used to attenuate the final anomaly score.

On the other hand, we create DASRS Likelihood ver-
sion from the NuPIC library [8]. DASRS Likelihood uses
the anomaly likelihood metric, which is a measure of the
probability of the current state being anomalous based on
the history of the raw anomaly scores calculated by the
algorithm. A detailed explanation of the Likelihood score
calculation is in [6] and [7]. Algorithm 1, Lines 10-11, shows
the getLikelihoodScore that implement the NuPIC library to
find anomalies. We set the useLikelihood parameter to false
in DASRS Rest and use it as true in the DASRS Likelihood
version. Moreover, we use the pointAnomaly function in
DASRS Likelihood (Algorithm 1, Lines 12-24) to identify
point anomalies [9]. Like the Numenta code, we also set the
final score to 1 when we find a point anomaly, regardless of the
values calculated for the raw score and the Likelihood score.
Thus, we can compensate the Likelihood technique limitation
when calculating the probability that the raw score truly is an
anomaly.

Table I shows the step-by-step execution of DASRS Rest
and DASRS Likelihood while processing a time series. The
Time and X columns are the scalar values of a time series
over time. X ′ is the normalized value of X . Sequence is the
last 2 (sequenceSize) elements of X ′. Occurrences is the
number of times the Sequence has been found. RawScore is
the raw anomaly score calculated by the algorithm. RestScore
is the final score returned by the DASRS Rest algorithm after

Algorithm 1: DASRS
Input:

• minV alue: minimum value between observations
• maxV alue: maximum value between observations
• θ: amount of normalized values
• sequenceSize: sequence window size
• restPeriod: period that the anomaly score is attenuated after detecting an

anomaly
• useLikelihood: boolean value indicating whether to use likelihood score
• xi: current observation

Output: AnomalyScore ∈ [0,1]: anomaly score
1 Function

init(minV alue,maxV alue, θ, sequenceSize, restPeriod):
2 restWeakenFactor ← 0
3 normInputSequence← []
4 sequences← {}
5 anomalyLikelihood←

nupic.algorithms.anomalylikelihood()
6 minV al← null
7 maxV al← null

8 Function getRawAnomalyScore(occurrences):
9 return 1/occurrences

10 Function getLikelihoodScore(currentScore):
11 return

anomalyLikelihood.computeLogLikelihood(currentScore)

12 Function pointAnomaly(value):
13 isPointAnomaly ← False
14 if minV al! = maxV al then
15 tolerance← maxV al−minV al× 0.05
16 maxExpected← maxV al + tolerance
17 minExpected← minV al− tolerance
18 if value > maxExpected or value < minExpected then
19 isPointAnomaly ← True

20 if maxV al = null or value > maxV al then
21 maxV al← value

22 if minV al = null or value < minV al then
23 minV al← value

24 return isPointAnomaly

25 Function getRestScore(score):
26 if restWeakenFactor > 0 then
27 score← score/restWeakenFactor
28 restWeakenFactor ← restWeakenFactor − 1

29 else if score ≥ 1 then
30 restWeakenFactor ← restPeriod

31 return score

32 Function handleRecord(xi):
33 normInpV al←

bθ × (xi −minV alue)/(maxV alue−minV alue)c
34 normInputSequence.append(normInpV al)
35 if len(normInputSequence) < sequenceSize then
36 return 0

37 if normInputSequence ∈ sequences then
38 sequences[normInputSequence]+ = 1

39 else
40 sequences[normInputSequence] = 1

41 occurrences = count(normInputSequence in sequences)
42 normInputSequence.pop(0)
43 rawAnomalyScore← getRawAnomalyScore(occurrences)
44 if useLikelihood then
45 anomalyScore←

getLikelihoodScore(rawAnomalyScore)
46 if pointAnomaly(xi) then
47 anomalyScore← 1

48 else
49 anomalyScore← getRestScore(rawAnomalyScore)

50 return anomalyScore

530

mitigating the value of the raw score by the restPeriod
period. LikelihoodScore is the final score calculated by the
NuPIC library.

TABLE I
DASRS REST AND DASRS LIKELIHOOD PROCESSING STEP BY STEP

Time X X’ Sequence Occurrences Raw Score Rest Score Likelihood Score
0 10,5 0 - - 0 0 0,030
1 15,3 0 (0, 0) 1 1 1 0,030
2 23,2 1 (0, 1) 1 1 0,5 0,030
3 18,2 0 (1, 0) 1 1 1 0,030
4 27,8 1 (0, 1) 2 0,5 0,5 0,038
5 22,2 1 (1, 1) 1 1 1 0,080
6 20,0 0 (1, 0) 2 0,5 0,25 0,035
7 13,4 0 (0, 0) 2 0,5 0,5 0,051
8 19,0 0 (0, 0) 3 0,33 0,33 0,171
9 24,1 1 (0, 1) 3 0,33 0,33 0,301

10 20,9 0 (1, 0) 3 0,33 0,33 0,167
11 28,1 1 (0, 1) 4 0,25 0,25 0,539
12 22,9 1 (1, 1) 2 0,5 0,5 0,263
13 15,5 0 (1, 0) 4 0,25 0,25 0,492
14 10,4 0 (0, 0) 4 0,25 0,25 0,587
15 16,8 0 (0, 0) 5 0,2 0,2 0,300
16 24,0 1 (0, 1) 5 0,2 0,2 0,207
17 90,0 7 (1, 7) 1 1 1 0,162
18 28,9 1 (7, 1) 1 1 0,5 0,112
19 26,6 1 (1, 1) 3 0,33 0,33 0,112

III. THE SOPHIA ANOMALY DETECTION ARCHITECTURE

Figure 1 illustrates Sophia Anomaly Detection (SAD) ar-
chitecture. We develop a collector, a processing, and a visual-
ization module. We use Telegraf and Apache Kafka to build
the collector module. Telegraf is an agent for collecting, ag-
gregating, processing, and sending metrics. Through plugins,
it integrates with a wide variety of systems. Apache Kafka is a
distributed streaming platform for a large volume of data flow
so that we can use it to publish, store, process, and consume
messages in real-time. We install the Telegraf agent on each
monitored machine to get metrics such as CPU, networking,
memory, disk I/O, disk size, OS load, database connections,
among others. The Telegraf agent sends the collected metrics
to Apache Kafka that temporarily stores them to be consumed
by other applications.

The processing module analyzes metrics, instantiates the
anomaly detection algorithm (DASRS), and sends the anomaly
scores and alarms to the visualization module. The Anomaly
Detection API reads the raw metrics from Apache Kafka.
Since the Kafka’s messages are complex data structures, the
API parses them. As illustrated in interaction 1, the API
performs filter, split, mapping, among others operations on
the raw metrics to identify each type of metric collected, and
assemble the data structure expected for the anomaly detection
algorithm, that is, a time series (Interaction 2). If Sophia’s
anomaly detection API receives CPU and network metrics
from three Virtual Machines (VMs), for instance, it will create
six different time series: VM1-CPU, VM2-CPU, VM3-CPU,
VM1-Network, VM2-Network, and VM3-Network. Besides,
to process multiple metrics of several VMs, Sophia’s API uses
multiple instances of the anomaly detection algorithm DASRS.
One DASRS instance for each time series. Therefore, in the
example above, the anomaly detection API will instantiate 6
DASRS instances, and each of them will receive the streaming
values collected from its time series in an orderly manner.

DASRS algorithms generate an anomaly score for each
observation in the time series analyzed. Then, the API com-

Fig. 1. An agent installed on each monitored machine sends application
and operating system metrics to Apache Kafka, which forwards them to the
anomaly detection API. The API processes those raw metrics to create the
time series that are then analyzed by DASRS. The API sends the detector
results to the visualization module, generates security alarms in Zabbix, and
stores the state of the detector. Thus the training phase does not need to be
repeated. Telegraf stores these results in the TimeScale database, and Grafana
displays the results in graphs.

pares the anomaly score with a threshold to decide whether to
generate an anomaly alarm or not. However, no one anomaly
alarm is generated during the training period. Interaction 3
shows that we store the status of each DASRS instance in a
Redis database. When analyzing a time series for the first time,
Sophia’s anomaly detection API creates a new instance of the
DASRS algorithm. Contrarily, when analyzing the same time
series for a second time, Sophia’s anomaly detection API loads
the DASRS instance from the previously-stored (Interaction 4)
detector’s status. This way, it can continue the analyzes of that
particular time series, even after a processing interruption for
maintenance reasons.

Sophia’s anomaly detection API generates anomaly alarms
in a Zabbix server (Interaction 5) and sends anomaly scores
to the Apache Kafka in the visualization module (Interaction
6). The Telegraf agent in this module reads the anomaly
scores from Kafka and sends them to a TimeScale database
to be persisted. System administrators can get all anomaly
alarm generated by DASRS through Zabbix. They also can
analyze the anomaly detections through Grafana. TimeScale
is a relational database designed to store time-series data,
providing automatic time partitioning; Zabbix is an open-
source monitoring software tool, and Grafana is a platform
for visualizing and analyzing metrics through graphs. We
implement the SAD system using docker containers to increase
the architecture portability and flexibility. Thus, using the
Tsuru Platform as a Service, we quickly deploy, scale, and
manage either the API as well as DASRS.

IV. EVALUATION AND RESULTS

In this section, we describe the experiments carried out to
compare the performance of DASRS Rest and DASRS Like-
lihood with several anomaly detection algorithms in the liter-
ature. We use the Numenta Anomaly Benchmark (NAB), that

531

is an open-source framework, to evaluate the algorithms [5]1.
It also presents the results of the Sophia anomaly detection
system when collecting and analyzing metrics in real-time in
the Globo.com cloud datacenter.

Nab Score Benchmark - In the first stage, the calculation
of the native NAB score is used to measure the performance of
the algorithms when searching for anomalies in the NAB and
Yahoo-A1Benchmark datasets. The application profiles used
to calculate the final score are: standard, reward low FP, and
reward low FN. The results, with the final scores of each
evaluated algorithm, are illustrated in tables II and III, sorted
according to the scores obtained in the standard profile. Anal-
ysis of the results shows that both algorithms proposed in this
work perform very well. The DASRS Likelihood algorithm
has the best score when the NAB dataset is processed while
DASRS Rest has the fourth-best score. However, when the
Yahoo-A1Benchmark dataset is processed, DASRS Rest gets
the best score, and DASRS Likelihood gets the fourth. The
reason that the Likelihood version performed better on the
NAB dataset and the REST version performed better on the
Yahoo-A1Benchmark dataset is due to the characteristics of
the time series in each dataset. Most of the time series in
Yahoo-A1Benchmark has little variation over time, except in
the moments where anomalies occur. On the other hand, the
NAB dataset contains many time series with unpredictable
behavior, which can make many anomalies to be identified
incorrectly by the algorithms. Since the Likelihood function
performs well in this scenario, DASRS Likelihood gets better
results in the NAB dataset. The same Likelihood function is
also used in the Numenta algorithm. For the same reason, this
algorithm performed very well in analyzing the NAB dataset,
but it was unable to repeat the excellent results in the Yahoo-
A1Benchmark dataset.

TABLE II
NAB SCORES USING THE NAB DATASET

Detector Standard Profile Reward Low FP Reward Low FN
DASRS Likelihood 70.3 65.5 73.9
CAD OSE 69.9 67.0 73.2
Numenta 69.7 62.3 74.3
DASRS Rest 66.4 60.2 70.4
Earthgecko Skyline 58.2 46.2 63.8
KNN CAD 58.0 43.4 64.8
Relative Entropy 54.1 48.0 57.9
Windowed Gaussian 40.1 23.9 47.7
Etsy Skyline 35.7 27.1 44.5
Bayesian Changepoint 17.7 5.1 32.3
EXPoSE 16.4 3.5 26.9

TABLE III
NAB SCORES USING THE YAHOO-A1BENCHMARK DATASET

Detector Standard Profile Reward Low FP Reward Low FN
DASRS Rest 67.1 62.6 72.3
CAD OSE 62.7 57.5 67.3
KNN CAD 52.9 41.9 58.8
DASRS Likelihood 52.5 45.1 57.7
Windowed Gaussian 48.9 39.7 54.8
Relative Entropy 48.9 41.4 53.6
Numenta 46.2 41.5 50.3
Bayesian Changepoint 41.1 23.9 53.7
Etsy Skyline 36.5 25.9 43.5
Earthgecko Skyline 35.8 34.6 38.0
EXPoSE 13.8 10.9 26.0

1We have also obtained results for Classic Performance Metrics (Precision,
Recall, and F1-Score), and runtime of a time series with 10,000 observations,
but do not present them due to the number of pages limitation.

Runtime Benchmark - In the second stage, we evaluate the
time that each algorithm took to process the NAB and Yahoo-
A1Benchmark datasets. The averages of 5 test rounds are in
tables IV and V. The execution time is measured in seconds.
Evaluation results show that the DASRS Rest algorithm is the
fastest in the two scenarios tested. DASRS Likelihood gets the
second-best time.

TABLE IV
RUNTIME (IN SECONDS) USING NAB DATASET

Detector Round 1 Round 2 Round 3 Round 4 Round 5 Mean
DASRS Rest 23 24 25 22 24 23,60
DASRS Likelihood 64 66 68 63 63 64,80
Windowed Gaussian 45 49 49 45 47 47,00
Relative Entropy 62 65 66 63 63 63,80
Bayesian Changepoint 145 152 147 150 145 147,80
EXPoSE 222 230 228 224 218 224,40
CAD OSE 289 295 303 287 282 291,20
earthgecko Skyline 564 568 691 575 547 589,00
Numenta 696 768 738 791 688 736,20
KNN CAD 716 728 812 833 700 757,80
Etsy Skyline 16365 16072 16589 16497 16524 16409,40

TABLE V
RUNTIME (IN SECONDS) USING YAHOO-A1BENCHMARK DATASET

Detector Round 1 Round 2 Round 3 Round 4 Round 5 Mean
DASRS Rest 7 8 8 8 9 8,00
DASRS Likelihood 10 11 11 11 11 10,80
Windowed Gaussian 18 13 13 12 14 14,00
Relative Entropy 26 19 18 17 18 19,60
Bayesian Changepoint 25 22 20 20 21 21,60
CAD OSE 56 53 52 54 53 53,60
Earthgecko Skyline 74 61 61 61 61 63,60
KNN CAD 79 69 65 70 65 69,60
EXPoSE 81 66 70 62 63 68,40
Numenta 212 188 181 192 178 190,20
Etsy Skyline 787 639 625 684 652 677,40

Memory Benchmark In the third step, we evaluated how
much memory each anomaly detection algorithm used to
process from 1,000 to 10,000 observations. Figure 2 shows
that the CAD OSE, Etsy Skyline, and Earthgecko Skyline al-
gorithms present a constant increase in memory usage that are
higher than those of the other evaluated algorithms. DASRS
Rest, on the other hand, has no variation in memory usage,
which is also the smallest (0.87 MB) among all the anomaly
detection algorithms analyzed.

Fig. 2. Memory usage to process 10,000 observations.

The Sophia Anomaly Detection System Evaluation - We
install the Telegraf agent in 2,800 machines with a collection
interval time of one minute. We configure the Sophia API to
analyze five metrics collected by the agent: CPU User, CPU
System, CPU Idle, CPU IO Wait, and Used Percent Disk.
In this scenario, the Sophia API analyzes 14,000 metrics per
minute. The approximate processing time for each observation

532

is only 0.001348 seconds. The system does not produce any
delay. The elapsed time between the collection of the metric
and the visualization of anomaly alarms in Zabbix is less than
1 minute, including the flush interval of the Telegraf agent.
The same goes for visualizing anomaly scores in Grafana.
The Redis database consumes only 12 MB of memory to
persist the 14,000 DASRS Rest instances. The Sophia anomaly
detection system analyzes approximately 20,000,000 metrics
in real-time per day, where 0.005% on average are assertively
classified as anomalies. Table VI shows the number of obser-
vations analyzed and anomalies detected by Sophia System in
the period between 2019-06-30 and 2019-07-10.

TABLE VI
OBSERVATIONS ANALYZED AND ANOMALIES DETECTED BY SOPHIA

Day Observations Anomalies
2019-06-30 8123973 0
2019-07-01 19482918 786
2019-07-02 19555331 3039
2019-07-03 19604947 2334
2019-07-04 19651201 2023
2019-07-05 19703618 2139
2019-07-06 19874881 1476
2019-07-07 19874880 1825
2019-07-08 19879536 1191
2019-07-09 19908169 1050
2019-07-10 19942131 1241

V. RELATED WORK

The problem of anomaly detection has a rich literature. [4]
implements the Numenta Anomaly Benchmark framework to
compare anomaly detection algorithms [7], [10]. NAB dataset
has multiple types of time series with labeled anomalies, and it
implements a scoring system that rewards the earlier detection
algorithms. [7] propose the Numenta HTM detector, which
uses Hierarchical Temporal Memory (HTM) for anomaly
detection. HTM is a machine learning technology, which uses
error prediction calculations to measure how efficiently the
model can avoid false positives. HTM models the time series
sequences so that, for each instant t, the algorithm makes
several predictions for the value of the data in t + 1. Then,
the algorithm compares such predictions with the actual value
to decide whether it can be considered normal or anomalous.
Thus, the HTM neocortex-inspired algorithm [11] implements
a probabilistic metric defining how anomalous the current state
is, based on the prediction history.

[12] develops the open-source contextual anomaly detec-
tor CAD-OSE. CAD-OSE’s anomaly scores are a function
of transformations made in input observations that include
normalization and binary representation of metrics in struc-
tured data called context. The algorithm identifies anomalies
comparing elements of the current context with previous ones
to decide how much an observed input value corresponds or
not to a new context. [13] implements the EXPected Similarity
Estimation (EXPoSE) algorithm, which efficiently calculates
the similarity between new data points and the regular distri-
bution of data. The algorithm calculates the probability that
a data point is reasonable, based on its similarity to previous
points without assuming an underlying data distribution.

In contrast, the HP research team developed an anomaly
detection technique based on Tukey and Relative Entropy

statistics [14]. They compare observations of a time series data
against multiple null hypotheses. When an observation data
does not match any of the existing hypotheses, it is considered
anomalous. Then, the algorithm creates a new hypothesis to
match the identified anomalous observation. Otherwise, it is
declared non-anomalous as long as the accepted hypothesis
occurs often enough to become a pattern.

VI. CONCLUSIONS

This paper proposes the anomaly detection algorithms
DASRS Rest and DASRS Likelihood. DASRS Rest has the
best NAB score when we analyze the Yahoo dataset, and it has
one of the four best scores when we analyze the NAB dataset.
Moreover, DASRS Rest is the algorithm that most quickly
analyzes all datasets used. Further, DASRS Rest registers the
smallest (0.87 MB) memory usage. We also propose and
implement the Sophia anomaly detection system that collects
and analyzes metrics in real-time in the Globo.com cloud
datacenter. DASRS Likelihood ranks first using the NAB
dataset, but due to the better overall results, we decide to use
DASRS Rest in Sophia to analyze the Globo.com streaming
time series in real-time. Sophia, using DASRS Rest, provides
an accurate anomaly detection service.

REFERENCES

[1] G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to
continuous deployment: Technical and social challenges along the way,”
Information and Software technology, vol. 57, pp. 21–31, 2015.

[2] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks
and applications, vol. 19, no. 2, pp. 171–209, 2014.

[3] L. A. F. Mauricio, M. G. Rubinstein, and O. C. M. B. Duarte,
“ACLFLOW: An NFV/SDN Security Framework for Provisioning and
Managing Access Control Lists,” in 2018 9th International Conference
on the Network of the Future (NOF), Nov 2018, pp. 44–51.

[4] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection
algorithms - the numenta anomaly benchmark,” in 2015 IEEE 14th Inter-
national Conference on Machine Learning and Applications (ICMLA),
Dec 2015, pp. 38–44.

[5] N. Singh and C. Olinsky, “Demystifying numenta anomaly benchmark,”
in 2017 International Joint Conference on Neural Networks (IJCNN),
May 2017, pp. 1570–1577.

[6] S. Ahmad and S. Purdy, “Real-Time Anomaly Detection for Streaming
Analytics,” CoRR, vol. abs/1607.02480, 2016.

[7] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134 – 147, 2017.

[8] Numenta, Inc., “Nupic API Documentation,” 2019, Accessed: 2019-04-
27. [Online]. Available: http://nupic.docs.numenta.org/stable/index.html

[9] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly
detection techniques in financial domain,” Future Generation Computer
Systems, vol. 55, pp. 278 – 288, 2016.

[10] M. Munir, S. Siddiqui, A. Dengel, and S. Ahmed, “DeepAnT: A
Deep Learning Approach for Unsupervised Anomaly Detection in Time
Series,” IEEE Access, vol. PP, pp. 1–1, 12 2018.

[11] J. Hawkins and S. Ahmad, “Why Neurons Have Thousands of Synapses,
a Theory of Sequence Memory in Neocortex,” Frontiers in Neural
Circuits, vol. 10, p. 23, 2016.

[12] M. Smirnov, “Contextual Anomaly Detector,” June 2016, Accessed:
2019-05-01. [Online]. Available: https://github.com/smirmik/CAD

[13] M. Schneider, W. Ertel, and F. T. Ramos, “Expected Similarity Estima-
tion for Large-Scale Batch and Streaming Anomaly Detection,” CoRR,
vol. abs/1601.06602, 2016.

[14] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan, “Statistical techniques for online anomaly detection in data
centers,” in 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2011) and Workshops, May 2011, pp. 385–
392.

533

