Poster: CO2: Collaborative Packet Classification for
Network Functions with Overselection

Yunhong Xu*, Hao Wu', Nick Duffield*, Bin Liu, Minlan Yu*
*Texas A&M University, " Tsinghua University, *Harvard University

Abstract—The growing number of network functions drives
the need to install increasing numbers of fine-grained packet
classification rules in the network switches. However, this demand
for rules is outstripping the size of switch memory. While
much work has focused on compressing classification rules, most
of this work proposes solutions operating in the memory of
a single switch. This paper proposed, instead, a collaborative
approach encompassing switches and network functions: we
couple approximate classification at switches with fine-grained
filtering where needed at network functions to accomplish overall
classification. This architecture enables a trade-off between usage
of (expensive) switch memory and (cheaper) downstream network
bandwidth and network function resources. Our implementation
uses approximate classification and Prefiltering to reduce switch
memory usage. Our system can reduce memory significantly
compared to a strawman approach, as shown by simulations
of real traffic traces and rules.

I. INTRODUCTION

Software Defined Networking (SDN) is a powerful enabler
for Network Function Virtualization (NFV). By moving net-
work appliance functionality from proprietary hardware to
software, NFV promises to bring greater openness and agility
to network data planes [1]. An SDN controller can install
classification rules at switches and set up tunnels to direct
the selected traffic to receivers that run various network func-
tions [2]. In the cloud context, traffic is classified for different
L4-L7 network functions such as software load balancers [3],
WAN optimizers, and proxies. Operators may mirror packets
to analysis functions (e.g., intrusion detection, or deep packet
inspection) to debug network problems [4].

In enterprise networks, about half of network devices are
middleboxes that provide network functions [5]. These func-
tions can require millions of fine-grained traffic rules. Tens of
thousands of 5-tuple flows may be active at each top-of-rack
switch rack [2], [6], each potentially requiring a rule to mirror
selected packets towards network analysis functions [4].

The current switch memory is insufficient to store these
numbers of rules. Even storing 500K 5-tuple prefix rules
exhausts on-chip SRAM (e.g., 20 — 60MB in Trident2 [7])),
most of which is already used for regular packet forwarding
and other match-action rules [8]. The reduction in memory
usage attainable by rule compression [9]-[11] does not change
the conclusion, with compression ratios of e.g. 29% for 2
decisions and 48.3% for more distinct decisions classifier [11].
While approximate data structures such as Bloom filters and
Cuckoo filters [12], can reduce the memory usage by a further

Annex to ISBN 978-3-903176-28-7©2020 IFIP.

50%, no systematic treatment of the consequences of the
resulting false positives has been provided.

This paper addresses the problem of how to store and apply
large numbers of classification rules to network traffic. Our
work is based on the observation that network bandwidth
and downstream processing resources are relatively cheap
compared with switch memory. We propose COllaborative
Overselection (CO2) , a framework for packet classification
that distributes classification functionality between switches
and the network functions at end hosts in order to achieve
the best trade-off between switch memory, communication
bandwidth, and computational resources. Figure 1 shows the
CO2 architecture. At a high level, the SDN controller installs
the traffic classification rules at the switch. The switch per-
forms Approximate Packet Classifier (APC) based on these
rules, which has the side-effect of forwarding the overselected
packets to the receivers. The receivers detect overselection and
provide feedback to the controller, which then dynamically
reconfigures the classifiers at the switches in order to control
the amount of overselection.

,,,,,,,,,,,,,,,,
| Controller:
| Overselection
| management

Rule
L information

Mirror

qr) Overseected. | peceivers }

| -i g wihc i E-E_E-ll 1

! ¥y |

7 a » i D@@ ¢

-" '-’ : i
Dataplane

Fig. 1. CO2 System Architecture.

We summarize the contributions and provide the paper
outline as follows,
1) Reduction in Switch Memory Usage. Section II details
switch design of approximate prefix matching. A Prefilter,
placed in front of the APC, provides a transparent mechanism
to intercept the overselected traffic.
2) In Section III, we evaluate the performance of CO2 under
the configurations of real network traces.
We conclude and describe the future work in Section IV.

II. CO2 SWITCH DESIGN

In this section, we describe the detailed operation of the
components of the CO2 and their capabilities used to trade
off the memory usage and the downstream bandwidth. Sec-
tion II-A describes the Prefilter to reduce the overselection

619

insert to prefilter

A
20.0.0.1 20.0.0.0/20 a@;p.t‘Notfound
""""""""""""""" ‘0)(85 32 Mirror:0 ‘

21.0.0.1 166.2.0.0/24 | Block
. A Oxaf 18 Mirror:1

‘OXDB 24 Mirror:2 ‘

. |235.6.410 M\rror.o‘

IP addr
matching a key

Overselected
IP addr.

Prefiltel Cuckoo Filter

Fig. 2. An example of a Fig. 3. A Prefilter and Cuckoo filter for 1-field
Blackkey. rule set.

rate, where overselection rate is a term defined by the overse-
lected traffic in bytes divided by the wanted traffic required by
the rule set. The information concerning overselection detected
at the receivers and how it can be used to adapt the switch
configuration to maintain conformance to overselection targets
are described in Section II-B.

A. Overselection Reduction

We describe approximate prefix matching of key prefixes
using Cuckoo filters [12] in the APC. Cuckoo filter storage
locations are managed, in part, by a hash of the input known
as the fingerprint. The Cuckoo filter as well adapted to the
CO2 architectural principles because the field length of the
fingerprint determines the hash collision rate and hence the
overselection rate.

One strawman approach of storing a large number of rules
into a switch is to use a Cuckoo filter whose entry is the
fingerprint generated by hashing a rule, which we call it
Cuckoo Only approach. However, if we have a small memory
available for the rules, the only thing we can do with the base
approach is to reduce the fingerprint size, but this will cause
a large number of wrong selections.

We propose to employ Prefiltering to reduce the overselec-
tion by intercepting the traffic (both wanted and unwanted)
before it reaches the APC. In order to optimize the use of
memory in the switch, the Prefilter is configured to treat those
flows responsible for the largest overselection, as determined
by the receivers and the controller. The Prefilter may employ
any data structure that supports exact membership queries. We
implement the Prefilter with a Cuckoo hash table to ensure
constant-time lookup for incoming packets.

We describe the two operations of the Prefilter under this
configuration. First, the Prefilter may blacklist designated
unwanted traffic by blocking packets of selected IP prefixes;
we call these Blackkeys. One Blackkey is generated by finding
the highest ancestor of the overselected IP address until a
key is found. The purpose of this is to block all the traffic
which matches this ancestor. Figure 2 shows an example of
the Blackkey, where the red node denotes an IP address that
matches a rule prefix, and the blue node indicates an IP address
that does not match any rules. Instead of putting the blue
node into a Prefilter, we obtain the highest ancestor (the black
node in Figure 2), which does not include any rule prefixes.
Second, the Prefilter whitelists a subset of the original rules
by applying their stated actions to matching traffic; we call
the corresponding rule prefixes Whitekeys. Whitelisting may
be used to map to the correct action for a large flow, which is
subject to hash-based overselection.

Combining the Prefilter with Cuckoo filter, the procedure of
the selection pipeline is as follows: when a packet arrives at
the switch, it first checks membership with the Prefilter; if no
match is found, the packet consults the Cuckoo filter for further
actions. One example of the pipeline is shown in Figure 3.
The Prefilter includes 3 rules, two of which are blackeys to
block, and one is a Whitekey to port 0. The Cuckoo filter
compromises 3 rules, and each includes a fingerprint, a prefix
length, and an action. The packet with IP address 20.0.0.1
matches the first entry in the Prefilter and is blocked by
Prefilter. Another packet with IP address 21.0.0.1 obtains no
membership in Prefilter, then matches the second entry of the
Cuckoo filter, and is mirrored to port 1. Note that this pipeline
is for measurement and does not influence the routing path of
the packets.

B. Prefilter Update

Overselected packets are identified by the absence of a map
entry for them. The receiver maintains a list of byte volumes of
overselected 1P prefixes, either exactly or estimated using an
approximating data structure such as a Count-Min sketch [13].
Overselection notifications are then generated periodically for
prefixes that exceed the receiver’s configured overselection
target. Additionally, to reduce overhead in computation and
transmission, receivers only transmit some proportion of these
notifications in decreasing order of overselection size.

The Prefilter is dynamically configured by the controller on
the basis of information supplied by the receivers. The Prefilter
updating is similar to an LRU cache [14], where the oldest
items in the Prefilter will be evicted if the capacity is exceeded.
The goal is to install both the biggest IP addresses/prefixes or
IP addresses/prefixes with the highest overselections to the
Prefilter. Once the controller gets the feedbacks, it identifies
the associated Blackkeys or Whitekeys. Those keys will be
installed to the Prefilter in decreasing order of overselected
traffic volume, up to the Prefilter capacity. Entries remaining
in the Prefilter from the previous period are evicted by time
counts to accommodate feedback IP addresses/prefixes from
the current period.

III. EVALUATION

In this section, we evaluate the performance of CO2 under
the configurations using realistic rules and traffic traces. Our
simulation results show that at a 1% overselection rate, CO2
uses 23.66% less memory than the base approach.

A. Experiment setting

Classification rules. We generate a 500k-rule set on source
and destination pairs (Prefix pairs) using ClassBench [15]. The
set contains 500K distinct source prefixes and 152 distinct
destination prefixes, which covers 54 million distinct IP pairs.

Traffic traces. We employ a 1-hour CAIDA trace [16], which
contains anonymized passive traffic traces from CAIDA’s pas-
sive monitors in 2015. The trace contains 32 million distinct IP
pairs. For each pair, we randomly map it to one of the IP pairs
in the ClassBench rules. After the mapping, all the rules are

620

- - T 1
—o— Cuckoo Only
10t —— CO2 0.99

&
g 0.8

0.97

Overselection Rate (%)

0.96
10 10* 102 10° 10® 10* 10°
(Estimated - Real)/(Real traffic size)

0.6 0.8 1.0 1.2 1.4
Memory (MB)

103

Fig. 5. The CDF plot of the relative

Fig. 4. Comparison between CO2
byte error per rule.

and Cuckoo only in overselection
rate.

ensured to have matching traffic. We mix the mapped traffic
with the original trace in an order by the timestamp, which
includes traffic that does not match any rules.

B. CO2 performance

We compare the overselection rate for CO2 and Cuckoo
only. The simulation is conducted under fixed memory usages.
The result is shown in Figure 4. We see that CO2 achieves
a lower overselection rate compared to Cuckoo only, which
indicates that, with the same overselection rate, CO2 is more
memory saving. It is referred that CO2 uses 23.66% less
memory than Cuckoo only.

Measurement functions typically report statistics at a finer
level of granularity. Therefore we drill down within our
previous results to report overselection at a per rule granularity
when the memory capacity is 0.71MB. We found the statistical
effects of overselection to be quite limited: 97.0% of rules have
a relative byte error of 1% or less, as referred from Figure 5.
Figure 6 shows a scatter plot over rules of measured vs. real
bytes in a 100ms-interval and shows that more significant
errors are mostly confined to rules with smaller byte volume.

C. Prefilter Size and Feedback Portion

Our results show that a small Prefilter of 10—20KB suffices,
with a feedback rate of 10% — 20%. The simulations are
conducted to study the dependence of the overselection rate on
the capacity of Prefilter and the feedback proportions of pos-
sible overselection notifications that the receivers send to the
controller. From a total switch memory of 0.71MB, we explore
Prefilter capacities of 3KB, 5KB, 10KB, 15KB, and 20KB,
together with feedback proportions of 1% —40%. The results
are shown in Figure 7. From it, we observe the overselection
rate is smallest for feedback ratios of 20% — 30%. The reason
why the overselection rate begins to increase at 25% feedback
is that a larger feedback ratio makes the entries existed in the
Prefilter evicted to install new Blackkeys/Whitekeys, and this
eviction results in a number of large flows (still live) bypassing
Prefilter to Cuckoo filter. From Figure 7, we can also see that
the best Prefilter sizes are 10 —20KB because employing a
larger Prefilter reduces the length of the fingerprint, which
causes more overselections of Cuckoo filter.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under award CNS-1618030, the National Natural

B

3 g°

@ & f i -6

£ T 5°h

E 1ot Mt = g N\

B 4

2 i ® Blackkey 2] @

£ 102 2 + Rule prefix |43 X -

k7l (e} <— |

* |
10° 102 10* 10° 108 0 10 20 30 10

Real Traffic size (Bytes) Feedback portion (%)
Fig. 6. The scatter plot of estimated

! Fig. 7. The overselection rates with
vs. real traffic size.

different feedback portions and Pre-
filter capacities.

Science Foundation of China (68172213,61432009) and by
Google.

IV. CONCLUSION

With the growing number of classification rules, it becomes
critical to limit memory usage. CO2 allows approximate clas-
sification at switches to reduce memory usage by introducing
a small amount of overselected traffic. Our simulations with
real traffic traces and rules show that CO2 achieves 23.66%
less memory than Cuckoo only at the overselection rate of 1%.

We have a few discussions beyond the scope of the work.
one concern is the overhead introduced by prefiltering, e.g.,
CPU usage, delay, and etc. We will study the performance
degradation caused by this overhead, especially, in extreme
situations, e.g. high network load. Another concern is the
trade-off between sizes of prefilter and cuckoo filters. In the
future, we may need to find a sweet point which provides
optimized trade-off both theoretically and experimentally.

REFERENCES

[1] S. Palkar and e. Lan, “E2: a framework for nfv applications,” in SOSP.
ACM, 2015.

[2] Z. A.Qazi and e. Tu, “Simple-fying middlebox policy enforcement using
sdn,” vol. 43. ACM, 2013.

[3] P. Patel, D. Bansal, and etc., “Ananta: Cloud Scale Load Balancing,” in
SIGCOMM, 2013.

[4] Y. Zhu and N. K. etc., “Packet-level telemetry in large datacenter
networks,” in SIGCOMM, 2015.

[5] J. Sherry and e. Hasan, “Making middleboxes someone else’s problem:
network processing as a cloud service,” SIGCOMM, vol. 42, no. 4, 2012.

[6] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM, 2015.

[7] Ipspace, “Trident 2 Chipset and Nexus 9500.” [Online]. Available:
http://blog.ipspace.net/2014/06/trident- 2-chipset-and-nexus-9500.html

[8] P. Bosshart, D. Daly, and etc., “P4: Programming protocol-independent
packet processors,” SIGCOMM, 2014.

[9] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed packet

classification without tcams: A few more registers (and a bit of logic)

are enough,” SIGMETRICS Perform., 2007.

O. Rottenstreich and J. Tapolcai, “Lossy compression of packet classi-

fiers,” in ANCS, May 2015.

A. X. Liu, C. R. Meiners, and E. Torng, “Tcam razor: A systematic

approach towards minimizing packet classifiers in tcams,” IEEE/ACM

Trans. Netw., 2010.

[12] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,

“Cuckoo filter: Practically better than bloom,” ser. CONEXT, 2014.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:

The count-min sketch and its applications,” J. Algorithms, vol. 55, 2005.

[14] T. R. Puzak, “Analysis of cache replacement-algorithms,” 1985.

[15] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification

Benchmark,” Transactions on Networking, vol. 15, no. 3, 2007.

“CAIDA Anonymized Internet Traces 2012,” http://www.caida.org/data/

passive/passive_2012_dataset.xml.

[10]

(1]

[13]

[16]

621

