
Poster: CO2: Collaborative Packet Classification for

Network Functions with Overselection

Yunhong Xu∗, Hao Wu†, Nick Duffield∗, Bin Liu†, Minlan Yu‡

∗Texas A&M University, †Tsinghua University, ‡Harvard University

Abstract—The growing number of network functions drives
the need to install increasing numbers of fine-grained packet
classification rules in the network switches. However, this demand
for rules is outstripping the size of switch memory. While
much work has focused on compressing classification rules, most
of this work proposes solutions operating in the memory of
a single switch. This paper proposed, instead, a collaborative
approach encompassing switches and network functions: we
couple approximate classification at switches with fine-grained
filtering where needed at network functions to accomplish overall
classification. This architecture enables a trade-off between usage
of (expensive) switch memory and (cheaper) downstream network
bandwidth and network function resources. Our implementation
uses approximate classification and Prefiltering to reduce switch
memory usage. Our system can reduce memory significantly
compared to a strawman approach, as shown by simulations
of real traffic traces and rules.

I. INTRODUCTION

Software Defined Networking (SDN) is a powerful enabler

for Network Function Virtualization (NFV). By moving net-

work appliance functionality from proprietary hardware to

software, NFV promises to bring greater openness and agility

to network data planes [1]. An SDN controller can install

classification rules at switches and set up tunnels to direct

the selected traffic to receivers that run various network func-

tions [2]. In the cloud context, traffic is classified for different

L4-L7 network functions such as software load balancers [3],

WAN optimizers, and proxies. Operators may mirror packets

to analysis functions (e.g., intrusion detection, or deep packet

inspection) to debug network problems [4].

In enterprise networks, about half of network devices are

middleboxes that provide network functions [5]. These func-

tions can require millions of fine-grained traffic rules. Tens of

thousands of 5-tuple flows may be active at each top-of-rack

switch rack [2], [6], each potentially requiring a rule to mirror

selected packets towards network analysis functions [4].

The current switch memory is insufficient to store these

numbers of rules. Even storing 500K 5-tuple prefix rules

exhausts on-chip SRAM (e.g., 20− 60MB in Trident2 [7])),

most of which is already used for regular packet forwarding

and other match-action rules [8]. The reduction in memory

usage attainable by rule compression [9]–[11] does not change

the conclusion, with compression ratios of e.g. 29% for 2

decisions and 48.3% for more distinct decisions classifier [11].

While approximate data structures such as Bloom filters and

Cuckoo filters [12], can reduce the memory usage by a further

Annex to ISBN 978-3-903176-28-7©2020 IFIP.

50%, no systematic treatment of the consequences of the

resulting false positives has been provided.

This paper addresses the problem of how to store and apply

large numbers of classification rules to network traffic. Our

work is based on the observation that network bandwidth

and downstream processing resources are relatively cheap

compared with switch memory. We propose COllaborative

Overselection (CO2) , a framework for packet classification

that distributes classification functionality between switches

and the network functions at end hosts in order to achieve

the best trade-off between switch memory, communication

bandwidth, and computational resources. Figure 1 shows the

CO2 architecture. At a high level, the SDN controller installs

the traffic classification rules at the switch. The switch per-

forms Approximate Packet Classifier (APC) based on these

rules, which has the side-effect of forwarding the overselected

packets to the receivers. The receivers detect overselection and

provide feedback to the controller, which then dynamically

reconfigures the classifiers at the switches in order to control

the amount of overselection.

Fig. 1. CO2 System Architecture.

We summarize the contributions and provide the paper

outline as follows,

1) Reduction in Switch Memory Usage. Section II details

switch design of approximate prefix matching. A Prefilter,

placed in front of the APC, provides a transparent mechanism

to intercept the overselected traffic.

2) In Section III, we evaluate the performance of CO2 under

the configurations of real network traces.

We conclude and describe the future work in Section IV.

II. CO2 SWITCH DESIGN

In this section, we describe the detailed operation of the

components of the CO2 and their capabilities used to trade

off the memory usage and the downstream bandwidth. Sec-

tion II-A describes the Prefilter to reduce the overselection

619



�✁ ✂✄✄☎

✆✂✝✞✟✠✡☛ ✂ ☞✌✍

✎✏✌☎✑✌✒✌✞✝✌✄

�✁ ✂✄✄☎✓

✠✡✑✌☎✝ ✝✔ ✕☎✌✖✒✝✌☎

Fig. 2. An example of a
Blackkey.

✗✘✙✚✛✛✜✢ ✙✚✣✤✥✦

✧★✩★✩★✩★✪✧★ ✫✬✭✮✯

✰✱✱✩✧✩★✩★✪✧✲ ✫✬✭✮✯

✧✳✩✴✩✱✩✲✪✳★ ✵✶✷✷✭✷✸★

✹✦✺✜✻✼✻✤✦✣
✼✻✜✹✽

✘✜✦✺✣✾
✿✮❀✶✭❁✸❂✭✷❀

★❃❄✴ ✳✧ ✵✶✷✷✭✷✸★

★❃✿❅ ✰❄ ✵✶✷✷✭✷✸✰

★❃❆✳ ✧✲ ✵✶✷✷✭✷✸✧

❇✭❀ ❅✭❈❁❉

❊✷❋●✬❀❋✷ ❍❈✮✯✭✭ ■✶✬❀❋✷

✧★✩★✩★✩✰

✧✰✩★✩★✩✰

Fig. 3. A Prefilter and Cuckoo filter for 1-field
rule set.

rate , where overselection rate is a term defined by the overse-

lected traffic in bytes divided by the wanted traffic required by

the rule set. The information concerning overselection detected

at the receivers and how it can be used to adapt the switch

configuration to maintain conformance to overselection targets

are described in Section II-B.

A. Overselection Reduction

We describe approximate prefix matching of key prefixes

using Cuckoo filters [12] in the APC. Cuckoo filter storage

locations are managed, in part, by a hash of the input known

as the fingerprint. The Cuckoo filter as well adapted to the

CO2 architectural principles because the field length of the

fingerprint determines the hash collision rate and hence the

overselection rate .

One strawman approach of storing a large number of rules

into a switch is to use a Cuckoo filter whose entry is the

fingerprint generated by hashing a rule, which we call it

Cuckoo Only approach. However, if we have a small memory

available for the rules, the only thing we can do with the base

approach is to reduce the fingerprint size, but this will cause

a large number of wrong selections.

We propose to employ Prefiltering to reduce the overselec-

tion by intercepting the traffic (both wanted and unwanted)

before it reaches the APC. In order to optimize the use of

memory in the switch, the Prefilter is configured to treat those

flows responsible for the largest overselection, as determined

by the receivers and the controller. The Prefilter may employ

any data structure that supports exact membership queries. We

implement the Prefilter with a Cuckoo hash table to ensure

constant-time lookup for incoming packets.

We describe the two operations of the Prefilter under this

configuration. First, the Prefilter may blacklist designated

unwanted traffic by blocking packets of selected IP prefixes;

we call these Blackkeys. One Blackkey is generated by finding

the highest ancestor of the overselected IP address until a

key is found. The purpose of this is to block all the traffic

which matches this ancestor. Figure 2 shows an example of

the Blackkey, where the red node denotes an IP address that

matches a rule prefix, and the blue node indicates an IP address

that does not match any rules. Instead of putting the blue

node into a Prefilter , we obtain the highest ancestor (the black

node in Figure 2), which does not include any rule prefixes.

Second, the Prefilter whitelists a subset of the original rules

by applying their stated actions to matching traffic; we call

the corresponding rule prefixes Whitekeys. Whitelisting may

be used to map to the correct action for a large flow, which is

subject to hash-based overselection.

Combining the Prefilter with Cuckoo filter, the procedure of

the selection pipeline is as follows: when a packet arrives at

the switch, it first checks membership with the Prefilter; if no

match is found, the packet consults the Cuckoo filter for further

actions. One example of the pipeline is shown in Figure 3.

The Prefilter includes 3 rules, two of which are blackeys to

block, and one is a Whitekey to port 0. The Cuckoo filter

compromises 3 rules, and each includes a fingerprint, a prefix

length, and an action. The packet with IP address 20.0.0.1

matches the first entry in the Prefilter and is blocked by

Prefilter . Another packet with IP address 21.0.0.1 obtains no

membership in Prefilter , then matches the second entry of the

Cuckoo filter, and is mirrored to port 1. Note that this pipeline

is for measurement and does not influence the routing path of

the packets.

B. Prefilter Update

Overselected packets are identified by the absence of a map

entry for them. The receiver maintains a list of byte volumes of

overselected IP prefixes, either exactly or estimated using an

approximating data structure such as a Count-Min sketch [13].

Overselection notifications are then generated periodically for

prefixes that exceed the receiver’s configured overselection

target. Additionally, to reduce overhead in computation and

transmission, receivers only transmit some proportion of these

notifications in decreasing order of overselection size.

The Prefilter is dynamically configured by the controller on

the basis of information supplied by the receivers. The Prefilter

updating is similar to an LRU cache [14], where the oldest

items in the Prefilter will be evicted if the capacity is exceeded.

The goal is to install both the biggest IP addresses/prefixes or

IP addresses/prefixes with the highest overselections to the

Prefilter . Once the controller gets the feedbacks, it identifies

the associated Blackkeys or Whitekeys . Those keys will be

installed to the Prefilter in decreasing order of overselected

traffic volume, up to the Prefilter capacity. Entries remaining

in the Prefilter from the previous period are evicted by time

counts to accommodate feedback IP addresses/prefixes from

the current period.

III. EVALUATION

In this section, we evaluate the performance of CO2 under

the configurations using realistic rules and traffic traces. Our

simulation results show that at a 1% overselection rate , CO2

uses 23.66% less memory than the base approach.

A. Experiment setting

Classification rules. We generate a 500k-rule set on source

and destination pairs (Prefix pairs) using ClassBench [15]. The

set contains 500K distinct source prefixes and 152 distinct

destination prefixes, which covers 54 million distinct IP pairs.

Traffic traces. We employ a 1-hour CAIDA trace [16], which

contains anonymized passive traffic traces from CAIDA’s pas-

sive monitors in 2015. The trace contains 32 million distinct IP

pairs. For each pair, we randomly map it to one of the IP pairs

in the ClassBench rules. After the mapping, all the rules are

620



621


