
Poster: Controlling Quality of Service of Container
Networks in a Hyperconverged Platform

Sumitro Bhaumik
IIT Kharagpur, India 721302
Email: sumitro@iitkgp.ac.in

Kaustav Chanda
Manipal Institute of Technology, India 576104
Email: kaustav.chanda@learner.manipal.edu

Sandip Chakraborty
IIT Kharagpur, India 721302

Email: sandipc@cse.iitkgp.ac.in

Abstract—This poster characterizes the impact of storage
traffic over containerized network workloads in a shared storage
hyperconvergence architecture. We develop CONtrol, a control
theoretic approach for assuring the performance of container
networks in the presence of disk-intensive workloads. CONtrol
uses a proportional integral derivative controller to dynamically
decide the bandwidth redistribution among storage workloads
and container networks. We have implemented CONtrol over a
hyperconverged platform with 5 physical servers, and a thorough
testing indicates that it can significantly improve the performance
of various benchmark applications over a containerized hyper-
converged platform.

Index Terms—container, hyperconvergence, QoS

I. INTRODUCTION

The data center (DC) technologies now-a-days are moving
towards hyperconverged platforms [1] where the storage is
directly coupled with the compute servers unlike network at-
tached storage (NAS) or storage area network (SAN). Software
defined storage (SDS) [2] platforms are normally used for
storage management on this architecture, which provides a
logically unified storage platform on top of the individually
server-coupled storage disks. Consequently, the storage work-
load is distributed across the physical hosts, and any disk read-
write operations initiate storage traffic among interconnection
fabrics carrying block-level data through storage data trans-
mission protocols (like iSCSI, FCIP, iFCP, FCoE etc.). Over
such an architecture, it is challenging to provide consistent
network connectivity with desirable QoS to a large volume
of containers which primarily carry short-lived network work-
load, because of the following reason.

Storage traffic carries block-level data through persis-
tent TCP connections which are typically long-term high-
bandwidth flows. On the other hand, web traffics generate
short-term low-bandwidth connections, like HTTP requests
or responses. It is well known that long flows hurt the
performance of short flows on a shared network bottleneck [3].
To alleviate this problem, existing studies use approaches to
identify and control the bandwidth usage of long flows [4].
However, the distribution of storage-intensive and network-
intensive containerized workloads over a single physical host is
very dynamic. Therefore, a direct upper cap on the bandwidth
usage for long flows may unnecessarily affect the storage

access performance for the storage-intensive container work-
loads. Explicit TCP congestion management approaches like
DCTCP [5] may solve this problem up to certain extent, but
cannot eliminate it completely. This is primarily because they
reduce the latency for short flows by giving them more priority
through active queue management; however, they do not
necessarily share the bandwidth among the flows depending
on the application QoS requirement. Therefore, we argue that
this problem cannot be tackled just by engineering the network
traffic flows in an application-agnostic way.

In this poster, we propose CONtrol, a container orches-
tration framework to balance the network bandwidth usage
among the storage traffic and the application network traffic in
a shared-storage hyperconverged architecture. The objective of
CONtrol is to “control” the storage traffic such the QoS for the
container network is sustained. CONtrol monitors containers
in real-time, and depending upon a container’s current QoS
level, it enforces network policies or migrates containers
to reduce the network-storage conflict. For this purpose, a
control-theoretic approach, based on “Proportional Integral
Derivative” (PID), is used to decide the bandwidth redistri-
bution among the storage traffic and the application network
traffic generated from the containers. We implement and test
the performance of CONtrol over a physical-testbed having
5 bare-metal servers. We observe that CONtrol improves the
QoS of the container networks significantly, especially during
heavy system loads, in comparison to different baselines.

II. CONTROL RESOURCE MANAGER

We consider a set of containers C = {c1, c2, c3...ci},
where each container runs over host machine h; the set of
hosts is denoted by H = {h1, h2, h3...hj}. Every container
runs a specific type of workload; however, in CONtrol, we
primarily focus on disk workloads and the network workloads.
Containers which primarily execute high disk reads or writes
are termed as disk containers, denoted by cd, and similarly,
containers which utilize high network bandwidth are termed
as network containers, denoted by cn. It can be noted that a
container can have a mixed workload with both disk writes
and network usage, and under such scenarios, we treat it with
both the workload types.

Each physical host is associated with a shared storage
system. We consider RAID-1 based shared storage replication;
however, CONtrol can work with any RAID level replicationsAnnex to ISBN 978-3-903176-28-7©2020 IFIP

661



with minor tuning in a few hyper-parameters. CONtrol looks
for the QoS drops at different containers based on their
disk and network resource usage. Once CONtrol detects a
QoS drop, the system uses a control-theoretic approach based
on PID controllers to decide about the required resource
allocation, such that the QoS of all the containers over a host
can be balanced. PID is a simple and very lightweight but
efficient control technique for closed control space (like the
total amount of available resources at a host is fixed) [6], [7],
so the management overhead is low. CONtrol spawns a PID
controller for every container initiated in the system.

∑ ∑ System
�(�)

�(�) �(�) �(�)

+

−

+

+

+

�(�) � ��

��(�)

��

� ∫ �(�)����

� �(�)��

Fig. 1: PID controller - Block diagram

A PID controller is a control-loop feedback mechanism [6],
[7] which is very effective in systems that need continuous
monitoring. A standard PID controller is shown in Fig. 1.
Let r(t) be the value of the desired metric m of the system
which is dependent on some parameter or resource b that we
can adjust. A PID controller computes the error function e(t),
which is the difference between r(t) and y(t), where y(t) is
the current value of metric m. In CONtrol design, the error
function is modeled as the QoS drop at the container at time
t. The difference tells us how far the system is currently away
from the optimal operating condition. Based on e(t), we need
to adjust the resource allocation.

We feed the value of e(t) into three sub-modules as follows.
A proportional component (denoted by P ) simply watches
the magnitude of e(t). If e(t) is large enough, then the P
component requests for resources proportional to e(t). The
integral component (denoted by I), integrates over the e(t),
and thus takes into account the past values of history of e(t).
The derivative component (denoted by D) takes the derivative
of e(t) and checks the rapidity of change of the value of e(t),
and thus takes into account the possible future values of error.
The output of the three components are added to form u(t)
which is the new resource allocation to be submitted to the
system.

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(1)

The constant coefficients Kp, Ki, & Kd are gain factors
for the components P , I and D respectively, and are three
hyperparameters in our design. CONtrol provides a flexibility
in the choice of y(t); any metric that gives an indication
of the desired QoS can be used in place of y(t). In our
actual implementation of CONtrol, we define the storage and
the network QoS based on the system performance counters
captured by the DM.

Now, the output of the PID is a unitless value, which is
simply a magnitude of the action to be taken. If it’s positive,
we should give resources to the container, and vice-versa if
it’s negative. So, the output cannot be directly used to adjust
the resources of the container. Hence, we have passed the PID
output though a sigmoid function, shown in Eq. (2) to get the
appropriate resource value (here, the network bandwidth).

S(u(t)) = c
eau(t)+b

1 + eau(t)+b
(2)

Here a, b, & c are the control parameters decided as follows.
c denotes the maximum resource that can be given to a
container; the magnitude of a denotes the responsiveness of the
system while allocating resources, and b denotes the minimum
resource needs to be provided to the container in the event of
a QoS drop.

Once the PID controller has decided on how much
resource to allocate to the container, the container for-
wards this instruction to a network resource manager,
which is in charge of creating network policies for indi-
vidual containers that they are bound to follow. A policy
is of the format {container ID, maximum upload
rate, maximum download rate} which are set at the
network interface of the host. We can use a software defined
networking (SDN) based approach here to embed the policy
at the switch level.

III. IMPLEMENTATION AND RESULTS

We have implemented CONtrol over a server cluster with
five Hewlett-Packard HP BL460C Gen9 servers S1 to S5,
each having 256 GB RAM and two Intel Xeon(R) E-5 2698
processors with a total of 80 cores with hyperthreading, along
with 1.1TB usable storage. The servers are interconnected with
a top-of-rack switch 10Gbps downlink and 40Gbps uplink
bandwidth. Each server is configured with Ubuntu 18.04
server edition along with Docker 19.03. To create the shared
storage environment, we have used GlusterFS, which is
a scalable network file system. We have created a 900GB
Gluster partition in each server and have set the replication
policy as “distributed replicated”. In distributed replication,
all disks have the same content; any write performed in one
server is replicated to all other servers. This enables high
data redundancy and fast migration of containers. For gen-
erating the system load, we have used containerized-version
of standard benchmarking toolboxes. fio is used to perform
large disk writes; whereas to generate the network load, we
have used apache-http server to host multiple files and
apache-benchmark to fetch the files from the web-servers
to emulate the network traffic. The apache-benchmark
runs on a separate client server, and generates network traffic
load for the containers running the web servers.

We run 10 fio containers in S1 to emulate the disk load,
and execute varying numbers of apache-http servers in
S2 and S3 to emulate an outbound network load. Meanwhile,
S4 and S5 run apache-benchmark to generate inbound
network load by fetching data from the apache-http

662



40 60 80 100 120
Number of apache web-server containers

0.002

0.003

0.004

0.005

0.006

0.007

Pe
r 

re
qu

es
t 

de
la

y 
(s

ec
) Swarmkit

CONtrol
DRAPS

(a)

40 60 80 100 120
Number of apache web-server containers

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pe
r 

re
qu

es
t 

de
la

y 
(s

ec
) Swarmkit

CONtrol
DRAPS

(b)

40 60 80 100 120
Number of apache web-server containers

2

3

4

5

6

7

H
ar

d-
di

sk
 b

us
yt

im
e 

(m
ill

is
ec

)

Swarmkit
CONtrol
DRAPS

(c)

40 60 80 100 120
Number of apache web-server containers

1

2

3

4

5

H
ar

d-
di

sk
 b

us
yt

im
e 

(m
ill

is
ec

)

Swarmkit
CONtrol
DRAPS

(d)

Fig. 2: CONTrol Performance: Avg. web server request delay with respect to number of web servers for Cubic (a) & DCTCP (b), Avg. disk-write busytime with respect to number
of web servers for Cubic (c) & DCTCP (d)

servers running over S2 and S3. It can be noted that although
we initially keep all the 10 disk workload-intensive containers
over S1, the storage access affects all the servers due to the
“distributed replicated” setup of the GlusterFS file system.
The number of network workload-intensive containers in each
server is varied from 40 to 120. The apache-http servers
contain files from 0.25MB to 4MB, which are fetched by
the apache-benchmark clients. In fio, the write block-
size, which is the amount of data to be written at every write
request, is set as 256MB. With this setup, every disk workload-
intensive container consumes around 600Mbps of network
bandwidth. We run each experiment multiple times (5 runs),
where each run is executed for 180 minutes. The purpose of
this experiment is to observe how well our CONtrol model
handles a large number of network containers in the presence
of disk workload.

We compare the performance of CONtrol with the de-
fault docker-based container management (Swarmkit) and
DRAPS [8] which is a dynamic resource-aware container
placement strategy based on the heterogeneity of available
resources. DRAPS uses a methodology to identify the dom-
inant resource type considering the demands from different
services and accordingly places the containers by balancing
the resource usage across devices. As the underlying TCP
congestion control also influences the bandwidth redistribution
at the shared network link, we further evaluate the performance
of the proposed approaches with two different TCP variants –
TCP Cubic and DCTCP [5]. DCTCP is particularly designed
to handle the large network flows over a datacenter.

Figs. 2(a) and 2(b) indicate the delay from the first ex-
periment for TCP Cubic and DCTCP. We observe that when
the number of containers is low, the network request-response
delay per request is almost similar for both CONtrol and the
baselines. However, as the system gets stressed with more
number of network workload-intensive containers, the delay
per request increases rapidly for the other baselines, whereas
it rises slowly for CONtrol. This is because as the number
of apache-http containers are increased, the amount of
network traffic increases, which causes high traffic contention
among the network and the disk containers. Such an underly-
ing network contention is oblivious to Swarmkit and DRAPS,
as they check the resource usage entirely from the application
perspective and do not have information about the network

resource utilization by the GlusterFS storage management.
Further, we observe that DCTCP yields a low delay because of
the TCP congestion control management. However, it cannot
eliminate the problem completely, and CONtrol over DCTCP
performs best among all the competing heuristics.

Next, we analyze the QoS performance for the storage
or disk workload, which is shown in Figs. 2(c) and (d).
The average disk-write busytime indicates the latency for
completing a disk-write operation. Therefore, a low value of
this metric indicates better disk QoS. From the figure, we
observe that the busytime is far less in CONtrol compared
to other baselines.

IV. CONCLUSION

In this poster, we develop an architecture for container QoS
management in a shared-storage hyperconverged environment,
where storage workload-intensive containers and network
workload-intensive containers interfere due to the shared net-
work bandwidth. We developed CONtrol, a PID based storage-
network conflict mitigation model, which improves the QoS of
containers running in the aforementioned environment. From
initial performance investigation, we observe that CONtrol
outperforms other baselines in terms of application QoS while
indulging less management overhead.

REFERENCES

[1] R. S. C. Siddalingaiah, M. Vanninen, R. G. Costea, R. Carter, and
E. Chiu, “Hyperconverged infrastructure supporting storage and compute
capabilities,” jun 2019, uS Patent App. 10/318,393.

[2] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk,
and A. Rindos, “Sdstorage: a software defined storage experimental
framework,” in IEEE ICCE, 2015, pp. 341–346.

[3] L. Guo and I. Matta, “The war between mice and elephants,” in IEEE
ICNP, 2001, pp. 180–188.

[4] L. A. D. Knob, R. P. Esteves, L. Z. Granville, and L. M. R. Tarouco,
“SDEFIX – identifying elephant flows in SDN-based IXP networks,” in
IEEE/IFIP NOMS, 2016, pp. 19–26.

[5] A. M. Abdelmoniem and B. Bensaou, “Hysteresis-based active queue
management for TCP traffic in data centers,” in IEEE INFOCOM, 2019,
pp. 1621–1629.

[6] I. Stathopoulos, F. Papandreou, and S. Manesis, “Position tracking and
control of lightweight flexible joint manipulator robolink® using kinect
sensor,” in IEEE MED, 2018, pp. 788–793.

[7] H. Zhao, A. Cui, S. A. Cullen, B. Paden, M. Laskey, and K. Goldberg,
“FLUIDS: A first-order lightweight urban intersection driving simulator,”
in IEEE CASE, 2018, pp. 697–704.

[8] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu, “DRAPS:
Dynamic and resource-aware placement scheme for docker containers
in a heterogeneous cluster,” in 2017 IEEE 36th IPCCC. IEEE, 2017,
pp. 1–8.

663


