
FlexMesh : Flexibly Chaining Network Functions on
Programmable Data Planes at Runtime

Yu Zhou, Jun Bi, Cheng Zhang, Mingwei Xu, Jinaping Wu
Institute for Network Sciences and Cyberspace, Tsinghua University

Department of Computer Science, Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—Programmable data planes (PDP) enable operators
to implement various functions (e.g. routing and access control)
on high-performance switches and define the chains of these
functions with a switch profile. However, with the number of
deployed functions increasing, the switch profile faces growing
complexity during development and inflexibility to chain func-
tions at runtime. This paper presents FlexMesh , an integrated
platform which aims to introduce flexibility and simplicity to
PDP while being compatible with existing programmable devices.
FlexMesh designs (1) a set of chaining primitives, so operators
can easily describe the function chain for each flow without
facing the complexity of customizing the switch profile during
development; and (2) a data plane model that can be reconfigured
at runtime and can flexibly construct user-desired function
chains. We implement FlexMesh based on P4 and evaluate it on
various targets. Results indicate that with minor performance
overheads, FlexMesh can be an efficient development-assistance
tool for operators, as well as an automated platform to chain
NFs flexibly while keeping conformance to complex policies.

I. INTRODUCTION

Building high-performance network functions (NF) has
long been a vigorous pursuit of operators. In early days, NFs
running in proprietary middleboxes experience various prob-
lems such as complex management and inflexible chaining.
To overcome the drawbacks of middleboxes, virtualization
is introduced to grant chaining flexibility and scalability
to NFs [1] but comes with performance compromise. The
recent progress of programmable data planes (PDP) [2] opens
new opportunities for offloading NFs with high performance
and programmability. Many research proposals successfully
offload a variety of NFs on PDP with remarkable performance
benefits [3, 4]. Beyond the scope of traditional NFs, research
proposals also explore implementing novel NFs on PDP to
improve networked system performance, such as accelerating
consensus protocols [5] and scaling distributed systems [6, 7].

To facilitate developing NFs, operators are supplied with
the domain-specific languages including P4 [8] and POF [9].
At the configuration time, operators can incorporate multiple
NFs into a PDP program and customize a switch profile,
commonly represented as a Directed Acyclic Graph (DAG),
to preset NF chains for different flows [10]. Then, operators
deploy the program onto various network devices, such as
programmable switches [11] and smart NICs [12], to enforce
the NF chains. Furthermore, due to hardware constraints,
changing the switch profile has to stop the running switching
and brings performance degradation.

With more and more NFs running on PDP, chaining NFs
with conformance to operators’ policies becomes an essential

Switch 1 Switch 2 Switch 3

Switch Profile of Switch 2

L3_SW

FWVLANL2_SW NAT

Management Traffic

Normal Traffic

DF for normal traffic

UF for normal traffic

DF for management traffic

UF for management traffic

Figure 1. Flows traverse desired functions (DF) and undesired functions (UF)
in the fixed switch profile.

but challenging network management task. Firstly, operators
should make sure that every flow traverses the right sequence
of NFs, just like service function chaining in the context
of NF virtualization (NFV) [13]. Otherwise, incorrect NF
chains can violate security and degrade the performance of
certain NFs [14]. Secondly, a PDP program could comprise
multiple NFs (e.g., switch.p4 [15] has as many as 29 NFs) and
policies of different flows require different NF chains [10, 16].
Thus, to satisfy policies of diverse flows, operators need
to manually develop a sophisticated switch profile defining
a satisfactory DAG composed of various NFs to support
desired chains, which is cumbersome and time-consuming.
Thus, a consolidated and automated platform is well needed
for flexibly chaining NFs on PDP but faces the following
problems derived from the inflexibility of PDP:

(1) The rigid switch profile only provides immutable execu-
tion sequence of NFs at runtime. As shown in Figure 1, Switch
2 is deployed with an example switch profile including five
functions (desired functions stand for the functions required
by the flow polices, vice versa for the undesired functions).
Traffic can traverse along the function path defined in the
example profile’s DAG. However, this example profile also
has a restriction that any desired function chain should comply
with the topological sequence of the DAG. For instance,
Switch 2 cannot support the chains of {L3 SW ⇒ NAT ⇒
FW}, which could be the NF chain for reversed flows of the
normal traffic in Figure 1.

(2) The rigid switch profile is incapable of providing
function chains with rigorous conformance to every policy.
The switch profile provides fixed function paths in regardless

ISBN 978-3-903176-28-7 c© 2020 IFIP

73

of the unique demand for function chains from the traffic.
However, the fact is that not all functions along the path are
desired by the traffic [10], i.e., the function paths provide loose
conformance to flow policies. For example, as shown in Figure
1, the normal traffic only requires a chain of {L3 SW⇒ FW
⇒ NAT} for assurance of security, while management traffic
only needs {L2 SW}. However, the example profile of Switch
2 cannot provide the NF chain without undesired functions. As
a result, the management traffic inevitably traverses undesired
functions including VLAN and FW. The undesired functions
in the function path could potentially lead to policy violation
and performance degradation (see §II-A).

In this paper, we are centered on PDP itself and make
efforts on solving the chaining inflexibility issue. To this
end, we propose a novel platform, FlexMesh , which enables
flexible NF chaining on PDP. FlexMesh introduces a unique
data plane model, which logically converts switch profile of
a PDP program to a full mesh connecting every NF. This
model makes the fixed switch profile reconfigurable at runtime
and dynamically chain NFs while keeping the benefit of high
performance. Besides the chaining flexibility improvement,
FlexMesh introduces a suite of chaining primitives to describe
function chains at runtime and to simplify operators’ respon-
sibility of constructing NF DAG at configuration time. We
made the following contributions in this paper:
• We propose FlexMesh to support NF chaining without

modifying existing hardware implementations. FlexMesh
can serve as an efficient development-assistance tool and
an automated policy-enforcement platform for the emerging
PDP architectures. We present motivations and challenges
of FlexMesh .

• We design a set of chaining primitives that enable operators
to describe flow-level NF chains at runtime.

• We develop a data plane model to enforce on-demand
construction of NF chains.

• We devise an algorithm to optimize FlexMesh in the worst
case of desired NF chains.

• We implement the FlexMesh prototype and evaluate the
prototype on BMv2 [17], the programmable ASIC, and the
SmartNIC [12] regarding performance overheads, perfor-
mance improvements, and chaining flexibility. We illustrate
the practicality and simplicity of FlexMesh by building a
Fat-Tree topology constructing different desired function
chains for diverse flows.

II. MOTIVATIONS
A. Motivations

1) Enhancing chaining flexibility of PDP: As NFs grow
in number and variety, we need a more general and flexible
way to chain NFs while keeping compatibility with existing
PDP architectures. It seems that operators can use some tricky
programming techniques to provide such a flexible compo-
sition of NFs during development. For example, operators
could use a wide-ternary-match policy table to select and tag
the specified flow, then place a predication expression (if-
else statement) before the NF as a gatekeeper to determine

+7.2% +20.6%

Management Traffic Normal Traffic
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (G

bp
s)

 {Traverse UF} {Bypass UF}

(a) One switch

+16.3% +20.8%+26.7%

Management Traffic Normal Traffic
0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 (G

bp
s)

 {Traverse UF} {Bypass UF}
 {Bypass redundant DF}

(b) Three switches
Figure 2. Improve performance of NF chains through bypassing UFs and
redundant DFs.

whether the function should be executed or not. However, this
technique cannot tackle the problem systematically. Because
both the tagging logic and predication expression are parts of
the switch profile and are fixed after deployment. Different
flows may utilize different predication logic, while operators
cannot pre-plan all possible cases into the switch profile. Intu-
itively, like middleboxes which use the physical connectivity
to construct NF chains, native PDP utilizes the hard-coded
DAG to provision NF chains and lacks essential flexibility.

In FlexMesh , we design innovative techniques to provide
chaining flexibility with no modification to the PDP imple-
mentation. FlexMesh uses match-action tables (MAT) and
metadata to equivalently express the predication logic, so
the originally fixed predication logic in switch profile can be
dynamically configured without compromising the expressive-
ness or flexibility. Furthermore, we utilize the recirculation
mechanism cooperated with a dedicated state transition table
to support arbitrary chains in the NF mesh. Similar to NFV,
FlexMesh realizes para-virtualization of chaining-related logic
on PDP through above techniques.

On-demand construction of NF chains can enable bypassing
UFs and redundant DFs to achieve performance improvement.
To prove this claim, we implement the example shown in
Figure 1 on BMv2 [17] and compare the throughput in terms
of bypassing and traversing UFs ({Traverse UF} and {Bypass
UF} in the figure). As shown in Figure 2(a), flows that bypass
UFs acquire a maximum performance increase by 20.6%.
Similarly, in Figure 2(b), we measure the throughput based
on a linear topology of three switches. Moreover, in the test
of {Bypass redundant DF}, we also explore the possible
performance degradation caused by redundantly executing the
same NF across multiple switches. Not all functions need to be
repeatedly executed along the forwarding path. Some unique
functions, such as FW, monitor and heavy hitter detector,
can be invoked just once or few times across the whole path.
By executing FW once instead of three times, the normal
traffic acquires another 5.9% increase in throughput.

2) Simplifying development of PDP programs: Currently,
developing data plane programs is more like the early-binding
method in object-oriented programming. If viewing the switch
profile as an object and the DAG as the definition of the object,
we can observe that the current method requires operators to
declare a switch profile with a deterministic definition for all
traffic during development without enough high-level policy
information. However, the knowledge of which flow requires
which functions is usually acquired as part of the high-level

74

Type Control Flow Chart Syntax Use Case

Sequence

BNF:
sequence_declaration ::=

feature_name => feature_name

Note:
 feature_name denotes the name of deployed features.
Example:

A => B

Command: L2_SW => FW
Description: The feature of Firewall follows the feature of L2_SW.
Sequence structure is the most widely adopted logic.

Selection

if-else:

BNF:
If_else_declaration ::=

feature_name => (feature_name : feature_name ?
validator_declaration)

validator_declaration ::=
metadata_declaration op constant

metadata_declaration ::=
feature_name.global_metadata

op ::=
> | >= | == | <= | < | !=

Note:
 The left value of the validator is the global metadata field

assigned for each packet passing among features.
Example:

A => (C : B ? A.global_metadata == 1)

Command: HITTER => (L3_SW : REPORTER ? HEHITTER.glob
al_metadata <= 300)
Description: The feature of Heavy-flow Hitter identifies the
heavy flow and sends the flow to a Reporter, otherwise to
L3_SW.

multibranch: BNF:
multibranch_declaration ::=
feature_name => ({case_declaration :} case_declaration

metadata_declaration)
case_declaration ::=

const @ feature_name
Note:
 The const number in case_declaration can be set dy

namically at runtime.
Example:

A => (n1@B : n2@C : n3@D # A.global_metadata) Command: FW => (0@DROP:1@IDS:2@LB # FW.global_md)
Description: FW drops the packet; sends the packet to an IDS;
sends the packet to a LB.

Loop

BNF:
loop_declaration ::=

feature_name => (self : feature_name ?
validator_declaration)

validator_declaration ::=
metadata_declaration op constant

metadata_declaration ::=
feature_name.global_counter

Note:
The orchestrator compiler guarantees the number of loops is
determinate. The constant number can be set at runtime.
Example:

A => (self : B ?A.global_counter > 0)

Command: SEGMENT_ROUTING_ENCAP=>(SEGMENT_ROUTIN
G_ENCAP : Output ? SEG_ROUTNG_ENCAP.global_counter < 10)
Description: By the loop structure, operators can readily
implement the feature with one time of encapsulation, and
dynamically set the counter for each packet to precisely control
the number of times for header encapsulation/de-capsulation.
The SR Encapsulation will execute encapsulation for 10 times,
then output the packet.

feature A feature B

feature A feature B Val?

y
n

feature A

feature B

feature C

feature D

case1

case2

case3

feature A

feature B feature C

Val? n y

L3_SW Reporter

 Val <= 300

Heavy
Hitter
Detector

FW L2_SW

SR Encapsulation

Counter < 10

Output

FW

Drop

Val == 0

IDS

LB

Val == 1

Val == 2

Figure 3. Illustration of chaining primitives.

policy information at runtime and cannot be entirely predicted
or planned during development.

FlexMesh eliminates this contradiction by delaying the
construction of the switch profile with the policy information
to runtime, which is analogous to the late-binding method and
changes the way of developing and managing PDP programs.
At the development stage, FlexMesh frees operators of man-
ually developing complex switch profiles and enables them to
focus on core logic of NFs, i.e., operators only need to give
FlexMesh a half-completed PDP program (i.e., a P4 program
only with headers, parsers, and NFs composed of MATs).
At runtime, operators can use intuitive primitives to describe
function chain policies for each flow. Then the orchestrator in
FlexMesh compiles the descriptions to the data plane model
dynamically, i.e., FlexMesh auto-generates the control flow
of the PDP program that guarantees compliance with given
policies at runtime. Consequently, FlexMesh eliminates the
complexity of developing PDP programs and reduces oper-

ational expenditures for directly manipulating lots of match
rules in MATs at runtime.

III. CHAINING PRIMITIVES

FlexMesh simplifies developing PDP programs and pro-
visions a suite of high-level chaining primitives allowing
operators to specify function chains conveniently. At the de-
velopment stage, operators can create a data plane program by
either importing NFs provided in FlexMesh default function
library or developing new functions from scratch. At runtime,
operators can flexibly define the desired function chains for
each flow through the chaining primitives.

As shown in Figure 3, the syntax of the chaining primitives,
specified with the Backus Normal Form (BNF), is rather
easy to understand and use. Each statement of a primitive
defines the relationship between two functions, and operators
can customize the whole function chains by describing the
relationships of multiple function pairs. After acquiring the

75

descriptions, the FlexMesh orchestrator assembles the rela-
tionships of function pairs, translates the function chains into
data plane rules, and dynamically configures the data plane as
operators required.

A. Control Structure

FlexMesh provides three types of control structures for
describing NF chains including the sequence structure, the
selection structure, and the loop structure.

1) Sequence structure: The sequence structure determi-
nately connects two functions. This structure requires that the
processing sequence between two NFs should be deterministic
regardless of the results from the predecessors. As shown
in Figure 3, packets should sequentially traverse FW after
being processed by L2 SW. Most service function chaining
frameworks in NFV only support the sequence structure [18].
However, chaining NFs on PDP requires more complex logic
between NFs. Thus we introduce following structures.

2) Selection structure: FlexMesh provides two selection
structures: if-else and multi-branching, whose syntax is similar
to the ternary operator in C programming language. The se-
lection structure can dynamically change processing behaviors
at runtime. With the selection structure, operators can flexibly
compose various networks functions, such as the stateful
firewall and the heavy hitter detector [19].

3) Loop structure: The loop structure allows operators
to repeatedly execute a NF according to the conditional
expression. The runtime orchestrator guarantees that the loop
structure is correctly invoked, and the number of loops should
be deterministic at runtime. As shown in Figure 3, when
implementing the Segment Routing [20] in a regular data
plane program, it is hardly possible for operators to precisely
predict the number of the header encapsulation/decapsulation
at the development stage. In the current implementation,
operators usually estimate the most likely maximum numbers
for the encapsulation/decapsulation and statically program the
corresponding actions in the MATs. With the loop structure,
operators merely need to program the function and set the
counter for each flow at runtime to make PDP correctly
process the packets.

B. Parameter Passing Mechanism

Apart from chaining NFs, FlexMesh also specifies how
to pass parameters among NFs. FlexMesh allocates two
parameters to each packet. One is global metadata used for
the selection structure. The other is global counter utilized for
the loop structure. Both global metadata and global counter
are valid through the life of the packet and can be modi-
fied by particular NFs. Taking the heavy hitter detector in
Figure 3 as an example, operators can dynamically set the
threshold value at the time of describing the chain. Flows with
global metadata above 300 will be forwarded to the reporter
to upload the flow information to the control plane. The logic
for setting the value of global metadata is implemented inside
the heavy hitter detector and is correctly maintained.

Device

FlexMesh Data Plane Model

FlexMesh
Orchestrator

L2_SW

Rewinder

Feature Pipeline

L3_SW

recirculation

QoS

If

Initializer

VLAN FW

Device Device

Rules for
control components

Interpreter

Network
Features

Control
Components

Network Feature
Chain Description

Token
Checkers

Figure 4. Architecture overview of FlexMesh.

IV. FLEXMESH DATA PLANE MODEL

To overcome the chaining inflexibility issue of PDP,
FlexMesh provides a general data plane model implemented
by the dedicated switch profile to operators, which logically
presents a NF mesh abstraction. The data plane model pro-
posed in this section is not constrained by the underlaying PDP
architectures, such as RMT [2], dRMT [21], PISA [22], and
Domino [23]. To be concise, we use RMT as the underlying
PDP to support FlexMesh in this paper.

FlexMesh flexibly chains NFs in an on-demand way for
various flows through following steps. (1) At the configuration
stage, FlexMesh can be deployed with dedicated switch profile
and all the registered NFs onto the data plane. (2) At runtime,
the function orchestrator in the control plane can compile the
NF chain description into rules of the control components
in the FlexMesh data plane model. (3) Then, the data plane
model could construct NF chains accordingly.

As shown in Figure 4, FlexMesh organizes all registered
NFs into a ring-like default function pipeline with the ded-
icated switch profile. At the start of the pipeline, FlexMesh
places an initializer to assign each packet a token according
to the rules from the orchestrator. The token uses a bitmap
to identify which NFs should be executed in one round of
pipeline traversing. Then, while the packet is traversing the
pipeline, the token checker, standing before each NF, checks
the token to guarantee the packet is only processed by desired
functions.

The default function pipeline may not fit for all desired
function chains due to the immutable execution sequence
problem. Thus, we design a rewinder, residing at the end of the
pipeline, to recirculate packets for multiple rounds of pipeline
traversing (resubmit action is used). For example, operators
could use the loop primitive to implement multiple-header
decapsulation. Accordingly, the orchestrator will arrange the
packet to be decapsulated by the NF through multiple-round
traversing. Although coming with performance compromise,
FlexMesh can provide the chaining flexibility equivalent to
NFV with the rewinder.

76

Rewinder

Header Fields & Masks Action

10.0.0.1&0xFFFFFFFF, … set(bitmap:0xD000, state_id:0, match_id:1)

10.0.0.2&0xFFFFFFFF, … set(bitmap:0x2F1F, state_id:0, match_id:2)

match_id state_id Action

1 0
set(bitmap:0x0F00,

state_id:1), recirculate

Initializer

Feature #N

Match Action

… …

Match Action

… …
Match Action

… …

Recirculation
PacketInput

Output

Figure 5. Packet-processing procedure in FlexMesh.

A. Finite State Machine

FlexMesh takes the user-specified chains as the input and
calculates a Finite State Machine (FSM) based on the existing
default function pipeline. Each state in FSM identifies that
the flow should be processed by a set of particular functions
in a round of traversing. In case of single-round traversing,
desired function chain can be satisfied by one state without
recirculation. In case of multiple-round traversing, traffic will
transit from one state to the next until completing the desired
chain. The state transition table in the rewinder can be
configured at runtime by the orchestrator.

B. Control Components

1) Token and token checker: The token is a metadata
allocated by FlexMesh to each packet and occupies 4 bytes,
about 1% of the total memory space of RMT. It contains
three parts. The first one is a bitmap that identifies which NFs
should be invoked. The second one is a state id representing
the current state in the FSM. So FlexMesh can utilize this
state id to complete the desired function chain according to
the state transition table. The last one is a match id which is
used as a unified identifier of flows in all control components
except for the initializer. Compared with matching various
header fields, the match id could cut down resource usages
of match fields.

The token checker verifies the bitmap in the token to
determine whether the packet should apply the corresponding
NF, which keeps rigorous conformance to chaining policies
through bypassing UFs. To make the checking procedure
lightweight, FlexMesh implements the token checker by us-
ing the conditional expression with the bitwise-and operator.
Then, the token checker can be compiled into hard-coded logic
and leads to small performance overheads.

2) Initializer: The initializer is responsible of specifying
NF chains for every parsed packet, which is implemented by
one MAT shown in Figure 5. The MAT assigns every ingress
packet a token, whose value can be dynamically configured
by the orchestrator. Packets should only be processed by the
initializer for one time, so FlexMesh uses a flag stored in the
metadata as an identifier for skipping the initializer in the case
of multiple-round traversing.

3) Rewinder: The rewinder recirculates packets whose
chains need multiple-round traversing for the purpose of over-
coming immutable execution sequence problem. As shown in
Figure 5, the rewinder contains one MAT that matches the
match id and state id. The rewinder will (1) set the state id
and match id for the next transition state, then using the
resubmit action to recirculate the packet; or (2) output the
packet if the FSM ends. The rewinder improves the chaining
flexibility but introduces a performance overhead. To mitigate
the performance overhead of the rewinder, we develop a
default function pipeline construction algorithm in §V to
minimize the number of recirculation for a set of chaining
policies. Furthermore, operators could employ FlexMesh to
flexibly chain NFs across devices to achieve the same effect
of the construction algorithm.

4) Other control components: In addition to above com-
ponents, FlexMesh also provides some powerful components
for advantages of both rich expressiveness and dynamic re-
configurability at the same time. These control components
including if-else, multi-branching, and loop, are implemented
by MATs and intrinsic metadata to express the corresponding
chaining logic. FlexMesh can place one or more control
components in the default function pipeline and combines NFs
with control components to implement complex chain policies.

V. FUNCTION PIPELINE CONSTRUCTION

As aforementioned, when the default function pipeline is
unable to satisfy the desired execution sequence of NFs in a
chain, the orchestrator can utilize the rewinder with the help
of an FSM to complete the NF chain through recirculating
packets. Thus, constructing a default function pipeline, which
is general enough to satisfy possible desired chains, becomes
a challenge. To this end, FlexMesh designs a novel algorithm
for constructing an optimal default function pipeline based
on the known data sets of desired chains to avoid multiple
traversing maximally.

As shown in Figure 6, the pipeline construction algorithm
contains three steps. The first step involves decoupling and
sorting. This step collects collects as many operator-desired
function chains as possible and decouples these chains into
pairs of NFs. Then, it sorts pairs of NFs based on the
dependency of protocol layers. The second step uses a mature
algorithm, minimal acyclic finite-state automata (MA-FSA)
[24], to generate a minimal DAG of NFs. MA-FSA is an al-
gorithm used for constructing minimal, deterministic, acyclic
finite-state automata from a set of words, by which a minimal
DAG of alphabets can be built to guarantee that all words can
be found in the DAG. We can use the standard MA-FSA to
construct the minimal DAG of NFs where all function pairs
can be found in this DAG. Notably, this minimal DAG fits
all pairs of functions with the minimal number of redundant
functions.

The third step uses the topology sorting algorithm to
serialize the minimal DAG and construct the default function
pipeline for FlexMesh . In this way, the control plane can
periodically run the algorithm based on the policy updates and

77

fa

Rewinder

Function
Orchestrations

Decoupling
&Sorting

MA-FSA
Algorithm

Topology
Sorting

Function Pairs

Minimal DAG of
Functions

Optimized Default
Function Pipeline

fcfb

fb fd fc fa

fb fd
Initializer

fa fb

fa fc fc fa

fa

fbfa

fc

fd

Initializer Rewinder

Initializer

fa fc fa fb fd

Rewinder

Figure 6. Pipeline construction algorithm.

deploy the optimized default function pipeline to maximally
avoid recirculation. By the optimized construction algorithm,
FlexMesh constructs the default function pipeline based on the
perceived knowledge and makes a trade-off between flexibility
and performance.

VI. EVALUATION

To evaluate FlexMesh , we have conducted various exper-
iments on one software target (BMv2) and two hardware
targets (SmartNIC and ASIC). Our evaluation comprises three
aspects. (1) §VI-A shows that the performance improvements
brought by FlexMesh are target-dependent. For SmartNIC,
FlexMesh brings remarkable performance improvements via
bypassing UFs. (2) To manifest the flexibility and simplic-
ity of FlexMesh , §VI-B employs the chaining primitives of
FlexMesh to construct function chains for various flows in
the Fat-Tree testbed. (3) §VI-C demonstrates and analyzes
performance overheads of FlexMesh .

Setup: We run BMv2 and SmartNIC on DELL R730xd
servers which are equipped with 2×6 Intel Xeon E5-2620
cores and 64G RAM. The SmartNIC target has two 10
Gbps ports and the NFP-4000 chip [12]. The other hardware
target is the programmable ASIC-based switch which can
be programmed by P4 and equipped with 32 × 100 Gbps
ports. We use MoonGen [25] to test FlexMesh on BMv2
and SmartNIC by 10 Gbps traffic. We use the Spirent Packet
Generator [26] to test FlexMesh on ASIC.

A. Overall Performance Improvement

In this section, we will evaluate how much performance
improvement FlexMesh can achieve on three targets. Instead
of inserting UFs into the function pipeline, we use undesired
MATs (UTs) to simulate the performance costs caused by
traversing UFs. As different functions have different MAT
compositions, using UTs can ensure better generality and
produce more fine-grained results.

In the experiments, all UTs uniformly match five-tuples and
apply the default action to the traffic. The native baseline is
implemented as L3 SW appended by a varied number of UTs.
The traffic in the native baseline cannot match any MAT entry
in UTs and will execute the default action. Comparatively, in
FlexMesh , the traffic bypasses all UTs under the control of
the control components.

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

No. of undesired tables

 FlexMesh

 Native

(a) Throughput on SmartNIC.

0 1 2 3 4 5 6 7 8
0.0

10.0

20.0

30.0

40.0 Mean (FlexMesh) Mean (Native)

 Outliers (FlexMesh) Outliers (Native)

 1%~99% Median Line

No. of undesired tables

D
el

ay
 (

m
s)

(b) Delay on SmartNIC.

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

 FlexMesh

 Native

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

No. of undesired tables

(c) Throughput on ASIC.

0 1 2 3 4 5 6 7 8
0.0

2.0

4.0

6.0

 Mean (FlexMesh) Mean (Native)

 Outliers (FlexMesh) Outliers (Native)

 1%~99% Median Line

No. of undesired tables

D
el

ay
 (

m
s)

(d) Delay on ASIC.
Figure 7. Performance improvements on the single hardware target.

We employ two experiments to evaluate performance im-
provements. (1) Performance improvements on a single hard-
ware device: We measure the throughput and delay on two
hardware targets in terms of bypassing different numbers
of UTs. (2) Cumulative performance improvements across
multiple devices: To further understand how performance im-
provement accumulates across multiple devices, we evaluate
the network performance when traffic traverses the paths with
varied lengths. At each hop along the path, the device is
deployed with different numbers of UTs.

1) Improvement on a single device: The performance im-
provement brought by bypassing UTs largely depends on
the implementation of programmable devices. For SmartNIC,
Figure 7(a) and Figure 7(b) show that bypassing UTs can
provide an obvious performance improvement. When there
are only 8 UTs, SmartNIC has a throughput penalty of 1.9
Gbps (22.7%) and a delay increase of over 2 µs (19.3%).
The performance degradation will aggravate when the un-
desired functions become more complicated. Comparatively,
FlexMesh enables traffic flows to bypass UTs and is immune
to the additional processing costs of UTs. For ASIC, as shown
in Figure 7(c) and 7(d), bypassing UTs do not bring any
performance improvement.

2) Improvement across multiple devices: To quantitatively
evaluate cumulative performance improvements along the
forwarding path, we build a software testbed in which traffic
can traverse forwarding paths with different lengths. At each
hop, the BMv2 switch is configured with L3 SW appended
with different numbers of UTs. Figure 8 shows that FlexMesh
effectively improves the throughput and decreases the delay,
compared with the native baseline, and surpasses the over-
heads of FlexMesh itself. Besides, the absolute value of delay
reduction compared with the native baseline increases as the
path length grows, which demonstrates that FlexMesh brings
cumulative improvements. For a large-scale network with
quantities of programmable switches, FlexMesh can provide
a promising performance improvement.

B. Flexibility and Simplicity

To demonstrate flexibility and simplicity of FlexMesh , we
build a Fat-Tree (K=4) testbed. In the testbed, the software

78

1 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (G

bp
s)

Path length

 FlexMesh
 Native L3_SW + 2 UTs
 Native L3_SW + 4 UTs
 Native L3_SW + 6 UTs
 Native L3_SW + 8 UTs

(a) Throughput on software testbed.

1 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
el

ay
 (m

s)

Path length

 FlexMesh
 Native L3_SW + 2 UTs
 Native L3_SW + 4 UTs
 Native L3_SW + 6 UTs
 Native L3_SW + 8 UTs

(b) Delay on software testbed.
Figure 8. Performance improvements across multiple devices.

switches configured with FlexMesh running on the same
server and are connected by virtual links to constitute the
topology. Packet generators and sinks run on a separated
server which connects to the server (the edge switches in the
Fat-Tree testbed) by eight 1G cables.

We categorize traffic flows as inter-pod flows and intra-
pod flows in the testbed. As shown in Figure 9(a), we
design different policies to these two categories of flows at
different positions of the Fat-Tree testbed. For example, inter-
pod flows apply desired function chains differently at edge
switches, aggregation switches, and core switches. Moreover,
Figure 9(b) illustrates two examples of describing the complex
function chains for flows by using the chaining primitives
designed by FlexMesh . To the best of our knowledge, no
existing control application can dynamically map such com-
plex configurations onto PDP programs while only requiring
a few lines of descriptions. For native PDP, operators have
to sophisticatedly organize these NFs in the switch profile to
satisfy these policies at the development stage, but FlexMesh
could simplify operators’ responsibility of coordinating NFs
and making chaining NFs much easier.

We use two counterparts in this experiment. (1) For the
ideal baseline, we develop dedicated PDP programs for each
switch and let each switch statically enforce the designated
policies for particular flows. The ideal baseline can produce
optimal performance while statically satisfying the policies in
Figure 9(a). (2) Besides comparing FlexMesh with the ideal
baseline, we also conduct experiments on MPVisor which
pursues the dynamic reconfigurability of PDP but introduces
significant performance and resource overheads. The detailed
comparison between FlexMesh and MPVisor is listed in §VIII.
Through comparing FlexMesh with the ideal baseline and
MPVisor, it shows that FlexMesh makes a good trade-off
between the performance and the chaining flexibility.

The experiments conducted on the Fat-Tree testbed reveal

Flow Position
Dev
Input

MAC
Learning L2_SW L3_SW IP_SG FW

Heavy
Hitter QoS Flood

Dev
Output

Inter
-pod

Edge

Agg

Core

Intra
-pod

Edge

Agg

E2

E1

(a) Policies of the edge switches, aggregation switches and core
switches in the Fat-Tree testbed.

Inter-pod Flows in Core Switches {

Input  L3_SW;

L3_SW  FW;

FW  Heavy Hitter;

Heavy Hitter  (Output : QoS ?

hitter_value < 100);

QoS  Output;

}

Intra-pod Flows in Edge Switches {

Input  MAC Learning;

MAC Learning  L2_SW;

L2_SW  (p1@IP_SG : p2@QoS :

p3@QoS # input_port);

IP_SG  QoS;

QoS  (Output : Flood ?

flood_flag == 0);

Flood  Output;

}

E1: A policy example for inter-pod flows E2: A policy example for intra-pod flows

(b) Policy description examples for E1 and E2.
Figure 9. Policies and description examples for the Fat-Tree testbed.

0 1 2 3 4 5
0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

No. of recirculation

(a) Throughput on SmartNIC.

0 1 2 3 4 5
0

10

20

30

40 25%~75% Range within 1.5IQR

 Median Mean

 Outliers

No. of recirculation

D
el

ay
 (

m
s)

(b) Delay on SmartNIC.

0 1 2 3 4 5
0

100

200

300

400

500

600

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

No. of recirculation

(c) Throughput on ASIC.

0 1 2 3 4 5
0.0

2.0

4.0

6.0

 25%~75% Range within 1.5IQR

 Median Line Mean Outliers

No. of recirculation

D
el

ay
 (

m
s)

(d) Delay on ASIC.
Figure 10. Performance overhead of the rewinder

the flexibility of FlexMesh through following two dimensions.
(1) For the same position, FlexMesh can provide flow-
specific function chains to enforce various policies without
any conflicts. For example, FlexMesh could provide different
function chains for inter-pod flows and intra-pod flows to
satisfy different requirements at the edge switch. (2) For the
same flow, FlexMesh can provide different function chains on
distinct devices in the network. For example, inter-pod flows
are forwarded by L2 SW in the pod, and the core switches
use L3 SW to deliver the inter-pod flows.

C. Performance Overheads in FlexMesh

We implement {L3 SW⇒ FW} on PDP without any other
redundant MAT as the ideal baseline in this experiment. Then
we compare the performance of FlexMesh enforcing {L3 SW
⇒ FW} with the ideal baseline.

1) Performance overhead of the rewinder: As for the
rewinder, we evaluate the performance overhead with different
numbers of recirculation in an extreme scenario where all
packets need recirculation (except the baseline). As is shown
in Figure 10(a) and 10(b), SmartNIC shows a moderate
performance degradation. Throughput starts to decrease from

79

Dev
Input

MAC
Learning L2_SW L3_SW IP_SG FW QoS

Dev
Output

P. 1

P. 2

P. 3

P. 4

P. 5

P. 6

P. 7

Figure 11. Policies. IP SG stands for IP source guard.

the four times of recirculation, while delay increases with the
number of recirculation. Thus, SmartNIC can keep 10 Gbps
throughput if the recirculation times are lower than 4.

For ASIC in Figure 10(c) and 10(d), the throughput de-
grades proportionally, while the processing delay shows a
steady increase at about 130 nanoseconds for one time of
recirculation. The resubmit action will cause the same packet
being processed multiple times on the same port, and naturally
divides the total bandwidth of a 100G port by the number of
recirculation. If the recirculated packets could be processed
on a separate port, the results may become better.

Based on the above analysis, the recirculation can cause
performance overhead when multiple traversing occurs. Thus,
FlexMesh proposes an algorithm, mentioned in §V, to con-
struct the default function pipeline that can maximally avoid
multiple times of recirculation. For traffic that is optimized by
the algorithm, the evaluation can be referred to the results of
no recirculation in Figure 10. For traffic that is inevitably recir-
culated, the performance also can be referred to above tests.
Similar results will not be redundantly presented. Network
policies update constantly. So the optimized algorithm cannot
entirely avoid recirculation based on the existing limited
training knowledge. Instead, operators can periodically run
the optimization algorithm and update the default function
pipeline to maximally avoid recirculation.

2) Performance overhead with different policies: Apart
from above micro-benchmarks on individual control compo-
nents, we also evaluate the performance overhead of FlexMesh
as a consolidated system with various policies. Figure 11
shows the policies and their desired function chains, e.g., P.6
requires {L3 SW ⇒ IP SG ⇒ FW}. For each policy, we
deploy the same default function pipeline containing all six
NFs onto the FlexMesh data plane model, chain NFs accord-
ingly, and measure the throughput and delay respectively. We
implement the NFs required by the policies for each case and
use the corresponding results as the ideal baseline.

In Figure 12(a), there is no obvious performance overhead
in throughput for most policies except for P.7. For P.1, P.2,
P.3, and P.4 in Figure 12(b), the relative increase in delay
is moderate while the absolute delay increase is trivial. The
NF chains required by policies are simple, which inevitably
leads to highlighting the performance overheads caused by
FlexMesh . For ASIC, there is almost no throughput overhead,
compared with the ideal baseline. Meanwhile, the delay
increases a few tens of nanoseconds across all policies.

Overall, FlexMesh incurs a minor performance overhead

P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7
0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

 FlexMesh

 Ideal

(a) Throughput on SmartNIC.
P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7

0

5

10

15

20

D
el

ay
 (

m
s)

 Mean (FlexMesh) Mean (Ideal)

 Outliers (FlexMesh) Outliers (Ideal)

 1%~99% Median Line

(b) Delay on SmartNIC.

P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7
0

100

200

300

400

500

600

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

 FlexMesh

 Ideal

(c) Throughput on ASIC.
P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7

0.0

2.0

4.0

6.0

D
el

ay
 (

m
s)

 Mean (FlexMesh) Mean (Ideal)

 Outliers (FlexMesh) Outliers (Ideal)

 1%~99% Median Line

(d) Delay on ASIC.
Figure 12. Performance overhead when supporting various policies.

to achieve on-demand construction of NF chains on PDP.
In the next section, we will illustrate that the flexibility
brought by FlexMesh can also improve the packet-processing
performance of specific targets.

VII. DISCUSSION

Performance improvements on hardware. We admit
that the claimed performance improvements vary from the
hardware implementation. For run-to-completion-based (RTC-
based) hardware like dRMT [21], SmartNIC, and BMv2,
performance improvements of bypassing undesired tables are
remarkable, since these targets do not need to allocate pro-
cessing cycles for the undesired tables. However, for RMT-
based hardware like [11], bypassing undesired tables shows
no performance improvement, because the physical stage of
the pipeline is statically pre-allocated by the target-dependent
compiler and will consume the ASIC processing cycles irre-
spective of whether the table is enforced or not. Thus, even
if a table is logically bypassed, the traffic will still consume
the same processing cycles in the pipeline, which is different
from the RTC-based implementation.

Network-wide function orchestration and management.
Besides chaining NFs, the NF orchestration on programmable
data planes involves NF placement, NF scaling, and fast
NF failover, which are also important and interesting topics.
Although we only concentrate on the chaining flexibility and
simplicity in this paper, FlexMesh can be an ideal platform to
achieve goals of network-wide function orchestration. Besides,
for NF management, programmable data planes expose new
challenges, such as program-dependent APIs which make it
hard for operators to develop general applications controlling
PDP programs. Meanwhile, heterogeneity caused by enhanced
data plane programmability also increases the difficulty of
managing different PDP programs in a network. Thus, another
gap which FlexMesh plans to fill is to help operators express
network-wide packet processing intents.

VIII. RELATED WORK

MPVisor [27], Hyper4 [28], and HyperV [29] are recently
proposed hypervisors for P4. They are devoted to full virtual-
ization techniques and virtualize most programmable elements
including the parser, the ingress/egress pipeline, etc. However,

80

they suffer from remarkable performance overhead caused
by the full virtualization. Comparatively, FlexMesh adopts
the technique of virtualization in a more lightweight way.
FlexMesh merely virtualizes the control flow between non-
virtualized NFs so that the control flow can be configured at
runtime to gain chaining flexibility and makes the performance
overhead acceptable. FlexMesh represents a promising way to
improve simplicity in developing PDP programs and enhance
flexibility in running PDP programs.

In NFV, operators can flexibly compose service chains of
Virtual Network Functions (VNFs) [30], which is similar to
the on-demand chaining in FlexMesh . However, due to the
various constraints of the hardware implementation, such as
limited programmability, implementing NF chains in hardware
devices is more challenging than software. Moreover, VNFs
suffer from the lower performance of software when compar-
ing with the programmable hardware devices.

IX. CONCLUSION

In this paper, we propose FlexMesh to provide on-demand
construction of NF chains on PDP. We provide a suite of
chaining primitives for operators to describe the desired
function chain for each flow. Moreover, we devise a novel
data plane model that is reconfigurable at runtime and can
enforce user-specified function chains flexibly. Besides, we
present an algorithm to optimize the default function pipeline
and to minimize performance overheads incurred by the data
plane model. Through above techniques, FlexMesh serves as
an efficient tool to facilitate PDP program development as well
as an automated platform to flexibly chain NFs with rigorous
conformance to complex policies.

ACKNOWLEDGEMENT

We thank all anonymous reviewers for their constructive
comments. We thank Chen Sun, Zhilong Zheng, Heng Yu,
Yunsenxiao Lin, Yiran Zhang, and Zili Meng, Yimin Jiang,
Weibin Meng, and Ya Su for their important suggestions on
this work. Prof. Mingwei Xu is the corresponding author. This
research is supported by National Key R&D Program of China
(2017YFB0801701) and the National Science Foundation of
China (No. 61872426, No. 61625203, and No. 61832013).

REFERENCES
[1] ETSI. Network functions virtualization. Website. http://www.etsi.org/

technologies-clusters/technologies/nfv.
[2] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick

McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz. For-
warding metamorphosis: Fast programmable match-action processing in
hardware for sdn. In Proceedings of SIGCOMM, pages 99–110, 2013.

[3] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. Silkroad: Making stateful layer-4 load balancing fast and cheap
using switching asics. In Proceedings of SIGCOMM, 2017.

[4] Jiamin Cao, Ying Liu, Yu Zhou, Chen Sun, Yangyang Wang, and Jun
Bi. Cofilter: A high-performance switch-accelerated stateful packet filter
for bare-metal servers. In Proceedings of ICCCN, pages 1–9, 2019.

[5] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan
R. K. Ports. Just say no to paxos overhead: Replacing consensus with
network ordering. In Proceedings of OSDI, pages 467–483, 2016.

[6] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value
stores with fast in-network caching. In Proceedings of SOSP, 2017.

[7] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt
coordination. In Proceedings of NSDI, 2018.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. SIGCOMM CCR, 44(3):87–95, July 2014.

[9] Haoyu Song. Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane. In Proceedings of HotSDN,
pages 127–132, 2013.

[10] Anubhavnidhi Abhashkumar, Jeongkeun Lee, Jean Tourrilhes, Sujata
Banerjee, Wenfei Wu, Joon-Myung Kang, and Aditya Akella. P5:
Policy-driven optimization of p4 pipeline. In Proceedings of SOSR,
pages 136–142, 2017.

[11] Barefoot Networks. Barefoot tofino. Website. https://barefootnetworks.
com/technology/.

[12] Netronome Company. Agilio cx smartnics. Website. https://www.
netronome.com/products/agilio-cx/.

[13] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. A policy-aware
switching layer for data centers. In Proceedings of SIGCOMM, pages
51–62, 2008.

[14] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee,
Jeongkeun Lee, and Joon-Myung Kang. Sfc-checker: Checking the
correct forwarding behavior of service function chaining. In Proceedings
of SDN-NFV, pages 134–140, 2016.

[15] P4 Language Consortium. P4 switch. Website. https://github.com/
p4lang/switch.

[16] W Liu, H Li, O Huang, M Boucadair, N Leymann, Z Cao, Q Sun, and
C Pham. Service function chaining (sfc) general use cases. Work in
progress, 2014.

[17] P4 Language Consortium. P4-bmv2. Website. https://github.com/
p4lang/behavioral-model.

[18] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: A framework
for nfv applications. In Proceedings of SOSP, pages 121–136, 2015.

[19] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection entirely
in the data plane. In Proceedings of SOSR, pages 164–176, 2017.

[20] Clarence Filsfils, Stefano Previdi, Bruno Decraene, Stephane Litkowski,
and Rob Shakir. Segment Routing Architecture. Internet-Draft draft-ietf-
spring-segment-routing-11, Internet Engineering Task Force, February
2017. Work in Progress.

[21] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay
Vargaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-
Tse Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall. drmt:
Disaggregated programmable switching. In Proceedings of SIGCOMM,
pages 1–14, 2017.

[22] Barefoot Networks. Protocol independent switch architecture. Website.
https://barefootnetworks.com/technology/.

[23] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-
eown, and Steve Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of SIGCOMM, pages 15–28, 2016.

[24] Jan Daciuk, Bruce W. Watson, Stoyan Mihov, and Richard E. Watson.
Incremental construction of minimal acyclic finite-state automata. Com-
put. Linguist., 26(1):3–16, March 2000.

[25] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. Moongen: A scriptable high-speed packet
generator. In Proceedings of IMC, 2015.

[26] Spirent Communications. Spirent testcenter. Website. https://www.
spirent.com/Products/TestCenter.

[27] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping
Wu. Mpvisor: A modular programmable data plane hypervisor. In
Proceedings of SOSR, pages 179–180, 2017.

[28] David Hancock and Jacobus van der Merwe. Hyper4: Using p4 to
virtualize the programmable data plane. In Proceedings of CoNEXT,
pages 35–49, 2016.

[29] Cheng Zhang, Jun Bi, Yu Zhou, A. B. Dogar, and Jianping Wu. Hyperv:
A high performance hypervisor for virtualization of the programmable
data plane. In Proceedings of ICCCN, pages 1–9, 2017.

[30] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. Netbricks: Taking the v out of nfv. In
Proceedings of OSDI, 2016.

81

