MHM: A Novel Collaborative Spectrum Sensing

Method based on Markov-chains and Harmonic
Mean for 5G Networks

Gabriel Ferreira®, Priscila Solis Barreto T, Geraldo P. Rocha FilhoT,
Marcos F. Caetano’, Heikki Karvonen$, Johanna Vartiainen®

Department of Computer Science, University of Brasilia, Brasilia, Brazil
Email: *gabrielcarvfer@aluno.unb.br, t {pris,geraldof,mfcaetano } @unb.br
Centre for Wireless Communications, Oulu University, Oulu, Finland
Email: 8 {heikki.karvonen,johanna.vartiainen } @oulu.fi

Abstract—Cognitive radios and spectrum sensing are consid-
ered fundamental for spectrum optimization in 5G networks. Col-
laborative spectrum sensing improves detection by collecting data
from different nodes and increasing the amount of information
available for accurate channel state detection. However, malicious
nodes can report wrong information, disturbing the collaborative
sensing results and network operation. This paper presents two
techniques: (1) a Markov chain-based technique that improves
spectrum sensing accuracy while reducing the reporting control
traffic; (2) a harmonic mean-based technique that discards less
relevant sensing reports, mitigating Byzantine attacks. The two
techniques were evaluated in a simulation scenarios based on
rural areas. The results show that the proposed techniques in-
crease the accuracy of a classic hard-combining fusion technique,
reducing false positives and reporting overhead while improving
network resilience to malicious nodes.

Index Terms—collaborative spectrum sensing, byzantine at-
tacks, MAC Layer, dynamic spectrum access, simulation, rural
areas.

I. INTRODUCTION

The massive use of mobile devices along with new internet
services has generated an increasing demand for the already
scarce spectrum of frequencies available. It is necessary to bet-
ter use the available spectrum in order to provide appropriate
levels of service. While 5G in urban areas is expected to grow
substantially when compared to 4G, rural areas have been left
behind due to low economic incentives.

Mobile network costs are driven by several factors such
as technology, spectrum availability and licensing, topography
and population distribution. Most of the spectrum is already
allocated for different applications [1], free bands are rare
and expensive, preventing entrance of new players in less
lucrative areas, even though studies show that much of licensed
spectrum is underused in non-urban areas [1].

Cognitive Radio (CR) enables dynamic spectrum access,
which mitigates spectrum scarcity and increases the spectrum

efficiency and utilization [2]. There are three types of wireless
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channel users: Primary User (PU), Secondary User (SU)
and malicious user/attacker. PUs are exclusive users of their
licensed bands, while SUs typically use unlicensed bands and
want to use licensed bands in the absence of the PU. Malicious
users try to deny the SUs from accessing the spectrum by
cheating them. One of the CR techniques used to improve the
spectrum utilization is the Dynamic Spectrum Access (DSA),
where a non-licensee (SU), opportunistically uses a licensed
band. The SUs is required to avoid interfering with the licensee
by transmitting only when the PU is not detected, and back
off from the channel as soon as PU transmissions are detected.
The correct execution of the DSA increases the amount of
bandwidth for the SUs applications [3]. Several Spectrum
Management Agencies (SMAs) are evaluating alternatives to
static spectrum allocation, including temporary licenses, like
the license-shared-access (LSA) [4].

In CRs, one common approach is to integrate Collaborative
Spectrum Sensing (CSS) techniques with DSA [1]. CSS is
based on a detection function that runs on individual sensing
nodes that reports their results to a central node Fusion Center
(FC). The FC performs a fusion procedure to consolidate
the reports and makes a single global decision about the
channel state [5]. The fusion scheme is a key component
of CSS and several research works approach this topic [6].
Another challenging issue in CSS is security, as it relies
on information provided by third parties and has no way to
validate it, what is known as the Byzantine generals problem.
Malicious nodes may send false sensing data to the FC,
increasing the probability of wrong results that lead to poor
network performance or even unavailability. Some research
works provide techniques to increase resilience to Byzantine
attacks [7], but none of them focus on improving the CSS
performance and reducing the reporting overhead along with
Byzantine attack mitigation.

In this paper we propose a novel approach based on two
techniques using Markov-chains to improve CSS fusion accu-
racy, while optimizing reporting overhead and increasing re-
silience against attackers, using a hard-combining fusion tech-
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nique. Both techniques are evaluated in simulation scenarios
of rural areas using CSS to opportunistically access underused
bands. The results show that the proposed techniques have
better accuracy than classic hard-combining fusion techniques.

This paper is organized as follows: Section II presents
related works. Section III presents and discusses the proposed
techniques. Section IV describes the simulation scenarios and
analyses the simulation results. Finally, Section V presents the
conclusions and future works.

II. RELATED WORKS

Markov-chain based solutions have been used in CR meth-
ods for the CSMA/CA protocol [8], where the medium access
control is distributed. The Spectrum Sensing (SS) results are
used to control the protocol back-off timer using a Markov-
chain to guarantee a certain level of certainty that the channel
is free before transmitting. Other CSMA/CA solutions [2],
propose that each node executes its own SS and broadcast it to
nearby nodes. Each node, then fuses the available reports and
performs the CSMA/CA protocol on the detected free channel.

Regarding CSS, correctly identifying which nodes con-
tribute more for the sensing is fundamental to improve the
efficiency and the accuracy in PU detection [9]. Validating the
User Equipments (UEs) reports with against retransmission
metrics is one of the way to identify collisions with the PU.
However, several factors influence the detection probability
like shadowing, fading effects, and noise uncertainty. Choosing
which UEs need to report may require additional information,
like localization and energy constraints. Other ways to reduce
overlapped sensing reports include selecting users with low
correlation levels between them or to select devices with
higher gain antennas, that can collect other local user reports
with a side-channel and forward them to the FC [10]. In
[11], the authors study grouping methods (random, reference-
based, statistic-based and distance-based) to select adequate
UEs to report, where only the random ones do not require
localization information. In [12], the UEs are selected based
on the received transmission power and distance to the Evolved
Node-B (eNB).

Regarding malicious users/attackers, the resilience to
Byzantine attacks is studied in [7], in which mitigation is
done using voting, consensus techniques and machine learning.
However, these works focus exclusively on the resilience
instead of CSS performance. In [13], the authors propose a
mitigation technique for false reporting of the Channel Quality
Indicator (CQI) in the 3GPP LTE standard. The mitigation
technique uses the number of retransmissions to determine if
the reported CQI is inconsistent with the channel behavior.

The previous works show that Markov-chain based tech-
niques are not unheard in CR and SS research, but are
not commonly used, especially in CSS. To the best of our
knowledge, in the related works listed to date, none addresses
the resilience to malicious users/attackers considering opti-
mization of control channel transmissions in CSS reporting,
while maintaining low false positives and negatives for the
collaborative spectrum sensing in remote area scenarios.

III. PROPOSAL

This section presents two proposed techniques to increase
CSS performance and resilience to attackers. The first tech-
nique filters noise of the hard-combining individual SS using
a Markov-chain, reducing unnecessary reporting and saving
Common Control Channel (CCC) bandwidth. The second
technique filters less relevant reports from the CSS fusion,
using a Markov-chain and the harmonic mean, to improve the
resilience against attacks.

The techniques are based on the following premises:

P.1 the individual SS depends unique and exclusively on the
UE to detect the state of the channel, which are repre-
sented as the probability of detection p; and probability
of false positives py, functions.

P.2 UEs, eNB and the PUs are completely or almost static.

P.3 pg >> 1 — pg if the PU is active.

P4 p;, << 1—pyp if the PU is not active.

P.5 the sensing period tsepsing is much smaller than the PU
transmission period tpyiransmission -

From the premises P.1, the probability of detection is given
by the Equation 1. The variable d refers to the distance
between the UE and the PU while pugesive indicates whether
the PU is active at a given time ¢. Considering the premise
P.2, d(t) = d(0)Vt € [0,00). The probability of k positive
samples out of n-sized population is given by the Binomial
distribution, shown in Equation 2.

pald(t)),
DPfps

if PUactive (t) =1
otherwise.

psense(tvdvpuactive) = { (l)

<Z> pfevzse(l - psense)nik (2)

For  premises P3 and the  probability
hmk—>n,n—>0 (Z)pfense(l — Psense ~  Psense fOr a
small n-sized population (e.g. n € [2,3,4]). The probability
lmy—sn n—oo (Z)p’;eme(l — Psense)” % =~ 0. The side-effect
of this behavior can be seen in the probability curve, which
models the real spectrum sensing technique, P;(d) in Figure
4, where the source probability of detection (blue squares) is
further attenuated as the number consecutive samples with
same results k = n grows.

We use the Markov chain described in Section to aggre-
gate the UEs individual sensing results. This is valid if the
premise P.5 is correct, which means that multiple individual
sensing procedures are executed for each PU transmission.
The Markov chain transition states with probability P for
each consecutive value, while different values lead to state
transitions with probability 1 — P. After at least N consecutive
results, the Markov chain reaches the final state S.

As each consecutive state K increases, we accumulate the
certainty Cyeeym = 1 — PE of the previous K consecutive
events is lost and the counting begins from the start. With a
given threshold L for the accumulated probability, the number
of required states S can be calculated. For example, if we

P4,
)nfk
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model using a coin toss with P = 0.5 and we define a
certainty threshold of L = 0.9, the number of number of states
of the Markov chain is S = 5, with 4 state transitions and
an accumulated certainty Cyccym > L. The number of state
transitions is then used to determine the attenuation effect of
the number of states in the source probability P. In our case,
the effects of the different state transitions (K = ) to the
source probability of detection curve is shown in Figure 4, as
calculated with Equation 2 and P = Psepse-

We consider that the sensing results have short-range sta-
tistical dependence, then, for the first technique our approach
is to use a simple Markov chain with S states in the SS,
which represents the counting of same consecutive results
up to a given S state. The adaptation of the SS standard
procedure is illustrated in Figure 1, with two additional checks
used to implement the Markov chain. For each cycle, the
current sensing result (Rgscnse) 1S compared to the previous
one (Rpey). In case both are equal, certainty is accumulated
(Paceum)- With hard-combining, the sensing results are binary,
and we model as a coin toss, which accumulates certainty in
% steps. When the certainty Pj,.cyn, 1S bigger than
a given threshold (e.g. 90%), the sensing result Rgepse 1S
assumed to be correct and the variable that holds the last
reported value sent to the FC (R,,qrk0v) 1S updated with the
current sensing result. This value is then transmitted to the FC.
If the result is different from the previous, the accumulated
probability P,.c.., of the previous K consecutive events is
lost, and the counting begins from the starting point.

}—){ Sensing (Rsense)

Paceum +=

Fig. 1: Individual Spectrum Sensing with the Markov-chain

The second technique uses Markov chain based mechanism
like in the first technique, which is used to discard reports from
UE:s that are less relevant to fusion, as shown in Figure 2. The
filtering policy is based on the Harmonic mean of the CQI
reported by the UEs, using Hybrid-ARQ metrics as a trust
anchor. The first check in Figure 2 halves, following the same
coin toss model, the relevance relev of UEs that are either
far from the PU or approximating to the eNB, since they are
considered potential attackers. The second check increases the
relevance relev of UEs that reported no PU presence and have
a stable CQIL.

Sensing (Ryense)

Start .
{ relev = 1.0 H Wait }—.

[~ Rprev A Rsense AN (CQIprev > CQleurrent)]
VRprew A Rgense A (CQIyren < HarmonicCQlyre,)
MCQLeurrent > HarmonicCQIeyrrent)|?

0.01, if relev < 0.99
1 — relev, otherwise

- n:m,.p{

Fig. 2: Harmonic mean-based spectrum sensing report filtering
scheme

IV. SIMULATION RESULTS

To evaluate the proposal described in the Section III, sim-
ulations of remote areas with a super-cells with 50km radius
cell serving them created based on previous studies using the
NS-3 simulator [14]. The simulation parameters are listed in
the Table 1. The SS probability of detection probability used
are based on the link-layer results of the WIBA [14], also from
the 5G-RANGE scenarios, and is shown in Figure 4.

. . Scenario Markov and Harmonic
Simulation
parameters technique evaluation
Simulation time 10 s (10% subframes)
Propagation model 5G-RANGE
General | Band 5 (~ 850 MHz)
Number of channels 4
Channel bandwidth 3x5.2 MHz + 1x4.4MHz
PUs per channel 1
Noise floor -174dBm/Hz
PU Tx power 40 dBm
Tx period [1-5] s
Tx duty cycle [0.1-0.4]
Tx power 53 dBm
eNB Antenna gain 9 dBi
Fusion techniques [OR, AND, [2,3]-out-of-n UEs]
Number of UEs [10, 20, 50, 100]
UE Number of attackers [0, 1,2, 5, 10]
Tx power 23 dBm
Antenna gain 9 dBi

TABLE I: Simulation parameters for the different scenarios

The PUs are distributed randomly throughout the cell and
the UEs are distributed either the same or into randomly placed
clusters of 5 km radius. The randomly distributed scenario
may be unrealistic for such a large cell, but provides the
best-case scenario for most fusion techniques, as it provides
more diverse data. The clustered scenario is more realistic and
represents micro-regions, such as small villages.

Take SF' as the number of simulated subframes, SF, tive
and SF,qctive as the number of subframes the PU transmitted
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Fig. 3: OR fusion results with different numbers of attackers, on clustered and randomized UEs distributions throughout the
cell (Cluster and Random), with and without the Markov technique (Mark), with and without the Harmonic technique (Harm).

Probability of detection Py(d)

Distance (km)

Fig. 4: Probability of detection curve based on distance (blue
squares)

or not, F'P and F'N as the number of fusions indicating the PU
presence when it was not transmitting, or the inverse. Three
performance metrics are used to evaluate the techniques: false
positive ratio (Py, = m) false negative ratio (Py,, =
#CNMW) and fusion accuracy (Acc = w)

Figure 3 shows the compiled results for the same scenarios,
where Figures 3a, 3brepresent simulations with 0 and 5
attackers, varying UEs within 10, 20, 50 and 100. The results

include the standalone fusion, along with its combinations
with the proposed techniques. The figures illustrate how the
Markov-chain proposal reduces false positives while keeping
false negatives low (if there is no attacker) and how the
harmonic-mean based technique mitigates attacks (behaving
as the standard fusion in the scenario without attackers).

The performance for the OR fusion is shown in Figure 3a.
For the case with 100 UEs, our proposal was able to reduce
the false positives to a minimum (from 0.6323 + 0.0110 to
0.0008 £0.0002 in the random scenario, a 790x reduction), at
the cost of increasing false negatives (from 0.0000 £ 0.0000
to 0.0047 + 0.0005, in the random scenario, and to 0.0744 +
0.0419, in the clustered scenario). The large difference in the
false negative values of the random and clustered scenarios
shows how the number of UEs and their distribution within
the cell may influence the results when using the Markov-chain
based technique.

Figure 3a, shows that the accuracy and false positives are
very similar for both the randomized and clustered cases.
However, false negatives are wildly different. Figure 3b shows
the scenario with 5 attackers. Both the OR fusion with or
without the Markov-chain based technique behaves poorly,
with nearly 100% of false positives. False negatives with the
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Fig. 5: Performance of different fusion techniques, including the combination of our proposed techniques in orange.

harmonic mean technique follow the same behavior as in the
previous scenario.

To estimate the number of UEs to guarantee a cer-
tain level of false negatives, the data was fitted to an
exponential curve using the least-squares method for both
clustered scenario and random scenario. The resulting
curves are 0.622063¢~0-01278972 with R? =~ 0.937, and
0.761142¢~0-02264372 " wyith R? ~ 0.995. Using a 10% false
negative threshold would require 143 and 90 UEs, respectively.

Figure 5 shows the comparison of simulation results using
different fusion techniques. The effect of the harmonic-mean
based filtering is very clear on Figure 5, where only the OR
fusion mitigated the attackers action, except for the scenario
with 20 UEs grouped into clusters.

V. CONCLUSIONS AND FUTURE WORK

This paper presented two simple techniques based on
Markov chains to improve collaborative spectrum sensing in
networks for rural areas. The results show that the proposed
techniques reduce the overhead of detection reports, enhancing
control channel efficiency and at the same time, reducing
false positives and false negatives, which enables accurate
opportunistic use of the licensed spectrum and protects PUs
transmissions. Further, the proposal improves network security
by providing resilience for byzantine attacks in the spectrum
sensing procedures. As future work we plan to integrate into
the simulated scenarios techniques for resource scheduling
using machine learning.
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