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Abstract—As one of the most critical components in network
appliances, the packet classification method has to deal with two
frequently contradicting requirements: to classify the packets
at line speed and to update the ruleset quickly. Tuple Space
Search (TSS), a classical hash-based packet classification algo-
rithm, achieves fast rule updating at the sacrifice of the packet
classification rate. In TSS, each tuple is managed by a hash
table and classifying a packet needs to go through all hash
tables. Merging tuples can reduce the number of hash tables, but
the improper merging scheme will increase the hash collisions
that may even worsen the classification performance in some
cases. In this paper, we propose a novel packet classification
scheme to achieve fast packet classification and online rule
update simultaneously. By using heat propagation to relax the
tuple merging optimization problem, our method can reduce the
number of hash tables while keeping the number of collisions low.
Experimental results demonstrate that our method achieves 3.2×
classification speed and 4.6× update speed on average compared
with state-of-the-art algorithms.

Index Terms—Routers, middleboxes, network functions and
Software Defined Networking

I. INTRODUCTION

Packet classification is one of the most critical operations in
switches, routers, firewalls, load balancers and other network
appliances. It is at the core of security [1], QoS [2], [3]
and other advanced functions [4]. Packet classification aims
at selecting the rule that matches the packet over multiple
features, e.g., source or destination IP addresses, TCP or UDP
ports, etc., or the context, e.g., current state of a state machine,
previous packet classification results, etc. And then the packets
that match the same rule will be processed as a “flow”. The
packet classification can also be used in an elaborate intrusion
detection state machines, gathering measurement statistics, etc.
It is noteworthy that an incoming packet might match several
rules, and in such case the highest priority rule, e.g., the longest
prefix match rule, should be selected.

Packet classification has to deal with two frequently con-
tradicting requirements. On the one hand, packet classifi-
cation needs to process packets at line speed in the data
plane while ensuring a low processing delay. This requires
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integrating efficient, highly optimized, and sometimes very
complex packet processing pipelines into the critical packet
processing paths of network appliances. For these reasons,
packet classification components have even been integrated
into specific hardware, like ASIC, TCAM [5]–[7], FPGA [8]
or GPU [9]. On the other hand, rulesets used for packet
classification are not static and are updated dynamically. Such
rule update affects the fast packet classification pipeline in
the data plane, e.g. by having to stop the full processing
pipeline or part of it, and buffering the incoming packets.
With the emergence of Software Defined Networking (SDN)
[10], Network Function Virtualization (NFV) [11], [12], high-
performance cloud computing [13] and traffic engineering
[14], the churn-rate, i.e., the number of rules updated per
second, has increased sharply. This makes the issue of rule
update in packet classification more crucial. Therefore, current
network architectures need a packet classification scheme that
supports both fast classification and quick rule update.

As one of the primary network operations, packet classifi-
cation has received enormous attention [15], [16]in the past 30
years. Existing schemes fall into three categories: hardware-
based, dimensionality reduction and space partitioning. Each
type has its strong points and weaknesses. In hardware-based
method, while TCAM achieves high-speed packet classifica-
tion performance thanks to its native parallelism offered by its
hardware architecture. However, it suffers from high energy
consumption and update cost [17]. In contrast, dimensionality
reduction and space partitioning do not need specific hardware
support and can be implemented in RAM. Dimensionality
reduction approaches split the multi-dimensional ruleset into
several single-dimensional ones to match individually. By
making an intersection of the results from each subset, we can
obtain the final result. Space partition methods fall into two
main subcategories, decision tree approaches and hash-based
approach. By splitting the ruleset into non-overlapping subsets,
the decision tree approach uses the tree structure to direct
finding subset that contains the matching rules. However, in
the hash-based approach, each subset is managed by a hash
table. To find the matching rule, we need to look up all the
hash tables one after another.
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The complexities of packet classification of these theoret-
ical approaches have shown unavoidable trade-offs between
classification speed, memory footprint and update complexity
[18]. For example, linear search, where each incoming packet
has to be matched one by one against all rules, has a memory
footprint of O(KN), a time complexity of O(KN) and an
update complexity of O(K), where N is the number of rules
and K is the number of features used to define the packet
classification rules. Space partition approaches using decision
trees achieve a time complexity of Ω (logN)

K−1 and a space
complexity of Ω

(
N (logN)

K−1
)

[18]. Updates are known to
cause a severe increase in complexity [19] as a single deletion
may invalidate large portions of the tree data structure. The
complexity of a mix of d queries and updates in a decision

tree is known to be at worst Ω

(
d
(

log d
log log d

)K)
[18]. Indeed,

these values are the worst case and we can expect that updates
are less costly in practice. Hash-based approaches are between
linear search and tree-based approaches. Linear search has
low memory footprint but high classification delay. And the
tree-based approaches have low classification delay but higher
memory. Hash-based approaches have modest memory foot-
print and classification delay, and with the benefit of having
the O(K) update cost.

Consequently, to find a hash-based method that supports
both fast packet classification and quick rule update, this paper
propose the Tuple Merge Relaxation (TMR) method. Com-
pared with other state-of-the-art algorithms, TMR achieves
3.2× classification speed and 4.6× update speed. The re-
mainder of this paper is organized as follows. We introduce
the Tuple Space Search strategy for hash-based methods
and the problems of Tuple Merge in §II. We then describe
the relaxation of the tuple merge optimization problem by
using the solution to the non-homogeneous heat propagation
equation and propose our TMR method in §III. We evaluate
the performance of TMR in §IV and review the related work
in §V. Finally we conclude our work in §VI.

II. TUPLE SPACE SEARCH (TSS)

The ruleset used for packet classification consists of rules
defined over K fields, (F [1], F [2], . . . , F [K]). Each F [i] gen-
erally comes from the packet header and represents a range,
e.g., 102.12.1.∗. An associated action in each rule will be
applied to packets that match all the fields in the rule, e.g.,
rejecting the packet in a firewall. Rules are generally ordered
by a priority value that helps in choosing a single rule when
a packet matches several rules. In Table I, the example ruleset
contains eight rules with four fields each: source address (SA),
destination address (DA), priority (Pri) and action (Act). For
each incoming packet, we use SA and DA to search for the
rule, and apply the action to the matched packet.

Hash-based methods generally follow the basic strategy
of Tuple Space Search (TSS) [20]. In TSS, the ruleset is
partitioned into several tuples, and the resulting set of tuples
is called the tuple space. Each tuple T is identified by a K-
vector (T1, . . . , TK), where K is the number of fields selected

to classify packets and TK is a prefix length for IP address or
a range, e.g., [1024,2048] for port number. Each tuple contains
rules that have identical Ti over its ith field (i = 1, . . . ,K). So
the example ruleset in Table I can be transformed into seven
tuples, as shown in Table II. The tuple space can be represented
as a K-dimensions rectangle with ith side spanning from 0 to
the number of bits in the ith feature.

In TSS, each tuple is managed through a hash table that
contains l entries. The key of the hash table is calculated over
a bit string obtained by concatenating Ti first bits of field i.
Consequently, the length of the key is at least J = dlog le
and the hash table contains 2J < 2l rules matching the key.
When a hash collision happens, the corresponding bucket will
contain more than a single rule and the rules are stored as a
linked chain, i.e., we implement a chaining hash table [21].
Therefore, classifying an incoming packet in TSS consists of
extracting the corresponding prefix bits from the relevant field,
concatenating them, calculating the hash value and checking
if there is any rule in the resulting entry. If more than a single
rule is stored in the hash entry, a linear search has to be
launched to find the rule that matches the packet.

The complexity of calculating the hash value and finding the
corresponding table entry is O(1). However, if there is more
than a unique one in the entry, we should check all the rules in
the bucket. Therefore, the performance of TSS also depends
on the number of collisions in the buckets, which is related to
both hash functions and the space overhead of hashing tables.
The lookup complexity in a chained hash table of size N is
known to be Θ

(
logN

log logN

)
where we have Θ (N) element in

the table [21]. The minimum number of bits needed to identify
N different rules is logN . The maximum number of possible
tuples over logN bits is (logN)

K . This means that the worst
case time complexity of TSS is O

(
(logN)

K
)

(assuming with
perfect hashing). As there is no rule duplication in TSS, the
memory space complexity is Ω(N). Updating a rule in TSS
is straightforward. Removing a rule simply consists of finding
the rule in the hash table and removing it. Rule insertion only
needs hashing its key and inserting it into the corresponding
hash table. The complexity of both operations is O(1). This
means that the classification time complexity of TSS is slightly
worse than that of the tree-based approaches whose footprint
is relatively larger. However, TSS is still superior to it with a
faster and constant update time complexity.

Nonetheless, the above complexities are the worst case and
one can expect to stay away from these upper bounds in
practice. In particular, to reduce the memory consumption of
hash tables, we have to accept hash collisions. When a packet
matches a hash entry with collisions, the complexity of rule
matching due to a linear search will increase. Therefore, TSS
involves a fundamental trade-off between memory footprint
and additional delay resulting from collisions. However, the
precise performance penalty from collisions depends on the
statistics of the incoming traffic and the probability of a packet
matching a hash entry that store several rules.

Several algorithms were proposed to improve the classifi-

486



Table I: A Sample Ruleset
Rule # SA DA Pri Act

0 101* 11010 0 Drop
1 101* 1001* 3 Fwd 0
2 11101 11100 3 Drop
3 010* 1000* 2 Fwd 1
4 00* 01001 2 Drop
5 11110 * 0 Drop
6 101* 1* 1 Fwd2
7 * * 1 Drop

Table II: Tuples for the Sample Ruleset
Tuple # Tuple Member rules

0 (3,5) 0
1 (3,4) 1,3
2 (5,5) 2
3 (2,5) 4
4 (5,0) 5
5 (3,1) 6
6 (0,0) 7

cation speed of TSS. Pruned Tuple Space Search (PR-TSS)
[20] adds tries over source and destination IP addresses to
reduce the number of tuples that need to be checked. The fact
that the longest prefix match of IP address always has higher
priority introduces an iterative probing strategy. By shaving a
K − 1-dimensional slice in each step, such method reduces
the volume of the K-dimensional rectangle of tuples that
might contain the highest priority rule. This strategy reduces
the worst case time complexity of TSS to Ω

(
(logN)

K−1
)

[20]. However, the information used for removing a slice can
significantly increase the memory footprint. The complexity of
precomputing such information is exponential in the number
of tuples, as shown in [20]. A heuristic method is proposed
that reduces the complexity of precomputing to O(W 3),
where W is the number of initial tuples, which is still not
enough to make the method tractable in practice. Moreover,
the precomputed information needs to be updated when the
ruleset is updated. As a result, the increase of the speed comes
at the cost of a higher update complexity.

PartitionSort (PS) [22] mixes TSS and decision trees. Rather
than partitioning rules based on tuples, rules are partitioned
into sortable sub-rulesets that are stored through balanced
search trees. By reducing hash calculations, PS can classify
packets faster than TSS, but needs more time to generate and
process the sortable sub-rulesets.

TupleMerge (TM) [23] leverages the idea of reducing the
number of tuples by merging neighboring tuples and their
corresponding hash tables into a single one. For example, the
hash tables relative to tuples (1,1),(1,2),(2,1) and (2,2) can be
merged into a single hash table. However, merging two hash
tables might lead to “overlaps”. Overlap happens when rules
have the same prefix values by the reduction of the prefix
length. For example in Table II, if we merge tuple 1 and 5,
both rules 1 (101*,1101*) and 6 (101*, 1*) will be changed

into(101*,1*), and the overlap happens. Overlaps have the
same impact as hash collisions in TSS. As we have to check
all rules in a hash table entry with a linear search, overlaps
slow down the classification speed. If the hash tables are
merged without care, a large number of resulting overlaps will
significantly slow down the classification speed even though
the number of hash tables is reduced. In consequence, to
achieve high classification speed with the hash-based structure,
it is necessary to minimize the number of overlaps when
reducing the number of hash tables. In order to manage the
overlaps, TM sets a threshold to split the hash table into
two when it is exceeded. However, changing a single rule,
in particular with a small prefix, can generate (or remove)
a large number of overlaps. Such procedure will result in
splitting or joining of hash tables with a very high update
cost. Consequently, this paper aims to improve Tuple Merge by
taking a different approach on merging tuples while controlling
the number of overlaps.

III. RELAXATION OF THE TUPLES MERGE OPTIMIZATION
PROBLEM

The previous section introduces Tuple Merge and the issue
of overlaps while merging tuples. In this section, we first
formalize the Tuple Merge problem. Then we illustrate our
TMR method over the case where the ruleset has only two
matched dimensions: IPv4 source and destination addresses.
After that, we extend it to more dimensions.

For each tuple T = (T1, . . . , TK), we can define a neigh-
borhood that contains all tuples with prefix length ±1 of prefix
lengths in T , e.g., tuples (1,2), (2,1), (1,3), (3,1) are neighbors
of tuple (2,2). The concept of the neighborhood can be ex-
tended to a larger distance of prefix length. The merged tuples
combine a “Range Tuple” (RT), a vector R = (R1, . . . , RK)
where Ri represents a range of prefix-lengths that are stored in
the RT. For example, (1–2,1–2) is a RT resulting from merging
four tuples (1,1),(1,2),(2,1) and (2,2). Matching a packet with
a RT R is done by extracting the prefix bits length defined by
the lower bound of each range Ri. And in the above example,
matching can be done by using one bit of each field. After
that, the matching procedure in the corresponding hash table
is similar to TSS.

For the 2-dimension ruleset, the tuple space can be rep-
resented by a 33x33 tuple matrix T , in which each cell
Tij represents the number of rules in the tuple (i, j). Any
contiguous rectangular region of the matrix can be merged
into a Range Tuple. However, merging tuples will result in
overlaps. Therefore, we are in front of two contradicting
factors. On the one hand, merging reduces the classification
delay by reducing the number of hash tables to match. On
the other hand, overlaps and collisions in the hash table
increase the delay as we have to check all rules linearly in the
matched entry. However, these two factors are not equivalent.
Merging any tuple results in removing a hash calculation for
all packets, while adding a collision (or overlap) increase the
matching time only if an incoming packet matches the hash
entry where the collision happens. Moreover, we measured
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Figure 1: Heat Propagation

that calculating a hash takes on average 20 nano seconds while
making a rule comparison entails 5 nano seconds. This means
that the overlap is somewhat acceptable unless the number
of it is large. However, it is not realistic to find an optimal
balance between these two factors by doing an exhaustive
search in all possible merging methods. One can easily see
that if the number of possible Range Tuples in a matrix of
dimension n × m is F(n,m), we have F (n + 1,m + 1) =
(2m + 1)(2n+1 + 1)F (n,m), which results in an exponential
blowup of the number of Range Tuples. As a result, we need
a flexible heuristic method that optimizes the tuple merging
process by balancing these two effects and achieving an overall
excellent performance.

In this paper, we propose Tuple Merge Relaxation (TMR), a
continuous approximation method of the initial discrete Tuple
Merge optimization problem that is based on solving a non-
homogeneous heat propagation problem. The neighbors of
tuple(i, j) are (i, j + 1), (i, j − 1), (i − 1, j), and (i + 1, j).
When we merge two neighboring tuples, the resulting hash
table will have Ti,j +Ti+1,j rules. We represent such merging
in the matrix T by setting both cells (i, j) and (i + 1, j) to
contain Ti,j+Ti+1,j

2 rules. We can easily extend this idea to
cases where the merging involves a larger rectangle in matrix
T , i.e., after merging all the cells inside the rectangle, the
number of rules in each cell is the average value of the total
rules in the rectangle region.

With the above representation, the tuple merging procedure
can be regarded as a diffusion process [24] inside the matrix
T that diffuses the rules of tuples to their neighbors. How-
ever, different from the the traditional diffusion process, the
“diffusion” in the ruleset is highly related to the number of
resulting overlaps. This situation is very similar to an adiabatic
heat propagation problem in two dimensions, where we have
an initial heat energy distribution over a 2-D space. The heat
energy is diffusing through conduction in the two dimensions
and the heat resistance slows down the propagation speed. The
analogy in our case is that we have heat energy equal to the
value Ti,j at each point cell (i, j), and heat resistance between
any two cells is proportional to the number of overlaps when
merging corresponding tuples.

In the following paper, we first give some background in-
formation relative to the heat propagation. Then we introduce
our TMR method with a 2-dimensional ruleset. After that,
how to construct hash tables according to the heat propagation
result is illustrated. Finally, we extend our TMR method to K-
dimensions.

A. Heat Propagation

The propagation of heat in a medium through conduction
is governed by the Fourier Equation :

∂u

∂t
= α∇2u (1)

where u(x, t) is the temperature at point x and time t. This
temperature is proportional to the density of heat energy when
no heat energy is added or removed from the system. α
represents the diffusivity of the medium, i.e., larger (resp.
smaller) values of α means that the medium is more (resp. less)
conductive to heat. α might be constant (homogeneous case),
or depends on x (non-homogeneous case), or even depends on
the temperature (non-linear case).

In the homogeneous case (α is constant), the heat propa-
gation equation illustrates that as long as the temperature is
not homogeneous, i.e., ∇2u 6= 0, the temperature will change.
In other terms, asymptotical temperature will become constant
over all points and α only controls the speed of convergence
from the initial condition to the stable asymptotic uniform
temperature. However, for the non-homogeneous or the non-
linear case, the temperature might vary at different points
which depend on the diffusivity of the medium. An intuitive
example of this is an electric kettle with a wooden handle,
where the temperature of the wooden handle remains very low
despite the metallic part of the kettle is very hot. In this case,
α(x), controls both the shape of the asymptotic distribution of
temperature and the speed of convergence to the stable state.

The heat propagation equation in homogeneous case has
generally closed form solution. However, in non-homogeneous
and non-linear case, one has to resort to the numerical methods
for solving it. The approach used to solve the heat propagation
problem in continuous space is mainly Finite Element methods
[25]. In our application, the merging process plays the role
of heat diffusion. If there is no overlap, all tuples will be
merged into a single RT. However, the overlap would hinder
the diffusion and play the role of the diffusivity barriers that
make the heat propagation non-homogeneous. Consequently,
as the tuples matrix T is discrete in its row and column, we are
already in the discrete settings and can use a simpler approach
to solve our problem.

The non-homogeneous heat propagation Eq. 1 can be dis-
cretized over a N×M rectangular grid of points using discrete
Laplacian:

ui,j(t+ ∆)− ui,j(t)
∆

=

αij→ui+1,j + αij←ui−1,j + αij↑ ui,j+1 + αij↓ ui,j−1 − 4ᾱijui,j

δ2

(2)

where αij→, αij←, αij↑ and αij↓ are non-homogeneous dif-
fusivity coefficients in 4 cardinal directions, and ᾱij =
αij
→+αij

←+αij
↑ +αij

↓
4 is the average diffusivity at point (i, j). ∆ is

a small time-step and δ a small space-step size. Moreover,
we have ∀i < N,αij→ = αi+1,j

← , ∀i > 1, αij← = αi−1,j
→ ,
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∀j < M,αij↑ = αi,j+1
↓ and ∀j > 1, αij↓ = αi,j−1

↑ . We have to
adapt the equation to the boundaries that will not have the four
direction neighbors. For example, on the right-most column of
the 2D area, the discrete heat propagation equation becomes:

uN,j(t+ ∆)− uN,j(t)
∆

=

αNj← uN−1,j + αNj↑ uN,j+1 + αNj↓ uN−1,j−1 − 3ᾱNjui,j

δ2
(3)

with ᾱNj =
αNj
← +αNj

↑ +αNj
↓

3 .
This means that one can model the evolution of the heat

propagation equation as linear time evolution equation from
time k∆ to (k + 1)∆ as

Uk+1 = UK +AkUk (4)

where Uk is the vector with all N2 temperatures points, and
A is a N2 ×N2 matrix where each row and column have at
most 5 non zero values. The non-zeros elements in A are in
form of αij ∆

δ2 or −ᾱij ∆
δ2 .

We are interested in the asymptotic values of U∞. This
value can be found by running iteratively the Eq. 4, till
convergence happens, i.e., ||Uk+1−Uk||2 < ε. The timescale
of convergence of the homogeneous heat propagation equation
is calculated to be τ = 1

4α [26], i.e. convergence happens at
the time scale of τ . We therefore set ∆ = 1

10τ̄ , where τ̄ = 1
4ᾱ

and ᾱ is the average value of αij over the whole 2 dimension
space.

B. Relaxation procedure

The core idea of TMR is to relax the complex integer-valued
2-dimensional Tuple Merge optimization problem into a sim-
pler continuous problem. The relaxation procedure consists of
two steps. In the first step, TMR transforms the ruleset into a
discretized 2-dimensional space and solves it with a specific
heat propagation equation whose parameters depend on the
initial ruleset. In the second step, TMR quantifies the resulting
asymptotic temperature distribution and constructs hash tables
with a split and merging procedure. In the forthcoming, we
will introduce the above two steps in detail.

1) Continuous time heat propagation equation: In the heat
propagation equation, the temperature u(x, t) is proportional
to the density of heat energy at point x. If we define the total
energy of a ruleset as the number of rules in it, the density of
energy at any position (i, j) in the tuple space is proportional
to the number of rules in the tuple (i, j). Therefore, we set the
values in tuples matrix T to be this proportion and represent
it with a heat map in Figure2(a).

Then we define the number of overlaps when merging tuple
(i, j) and (i+ 1, j) as Oij→. Similarly, the number of overlaps
when merging tuple (i − 1, j) and (i, j) is Oij←. So do Oij↑
and Oij↓ . Then we define the diffusivity parameter αij to be a
decreasing but positive function g(.) ≥ 0 of the corresponding
Oij , e.g., αij→ = 1− e−Oij

→ or αij→ = 1

1+Oij
→

.
After submitting the above parameters into Eq. 4, the

asymptotic solution of the heat propagation gives the results

of a continuous diffusion approximation for the tuple merge
problem. The result is shown in Figure2(b). The shape of the
function g(.) controls the relationship between overlap and
diffusion, as it defines the value of diffusivity.

2) Split and Merging Process: After obtaining the asymp-
totic result of heat propagation that works on continuous space
assumption, we need a procedure to partition the result into a
set of non-overlapping rectangles that cover the whole space,
and each rectangle represents a hash table. To achieve the
above goal, TMR carries the split and merging process. The
procedure sets a decision probability threshold as a parameter,
e.g. 99%. In the split phase, we use the Quad-tree segmentation
approach [27] to partition the tuple space into four regions,
NW, NE, SW, SE. Before splitting, a statistical test of equality
of means between the large region and each of its contained
four regions is carried out. In order to ensure the statistical
significance, we use t-student test when the number of points
in each region is more than 20, while we use the Mann-
Whitney U test [28] when it is below 20. If the hypothesis
cannot be rejected for all of the sub-regions, we stop splitting
the region. If the hypothesis can be rejected for even a single
region, we split the region and do the same procedure on each
one of the sub-regions recursively.

At the end of the split phase, we obtain a set of rectangular
regions. The merging phase aims at reducing the number of
regions by merging some of them that are homogeneous and
neighboring with each other. For each region, we check all of
its neighbors (at most four neighbors) and use the t-student
test or Mann-Whitney U test to do a pairwise homogeneity
test. If we cannot reject the null hypothesis of homogeneity,
we merge the two regions. We continue this process iteratively
until no more merge can be done. The result of the split and
merging process is shown in Figure3. Finally, we obtain a
set of rectangular regions (Range Tuples) which guides the
construction of hash tables.

C. Construction of hash tables

After obtaining the Range Tuples, we need to build the
hash tables concretely according to them. The classical rule of
thumb for the hash table is to set the hash table size to be L2 to
store L entries in order to ensure the probability of collision to
be very small. However, as merging tuples generates overlaps,
we can accept some additional hashing collisions. Suppose
that we have to insert L entries in the hash table, we hash the
bit string defined by the Range Tuple into dlogLe bits and set
the size of the hash table to be 2dlogLe i.e., the size of the hash
table is between L and 2L. As we are using a multi-position
cuckoo hashing with 2 hash functions [29] the load factor
with negligible collision can go up to 0.93. The additional free
positions in the hash table are used as positions for the future
insertions resulting from updates. In the case where the initial
load factor of the table is too high (>0.9), we can add one more
bit and address elements in the hash table using dlogLe + 1
bits. Then the hash table will contain 2dlogLe+1 entries. With
such choice, we ensure a low collision probability and reserve
the space for the future inserted rules. Updating a rule entails
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Figure 2: Continuous time heat propagation

Figure 3: Splitting and mergering process

adding or removing it from the hash table, i.e., an update can at
most add or reduce one overlap. As stated before, for packets
that will match the corresponding hash table entry, the cost of
delay incurred by adding one additional comparison is only 5
nanosecond under our test environment.

D. Extension to K-dimensions

The above relaxation procedure is described in 2-
dimensions. However, our TMR method can be extended to
K-dimensions. In K-dimensions, the tuple space is projected
into a discretized version of a K-dimensional space. The U
matrix will have NK elements and the A matrix is a NK×NK

matrix. The stationary temperature distribution can be derived
in the same manner as above by iteratively applying Eq. 4. The
split and merging procedure has to adapt to K-dimensions.
In the split phase, we divide each region by 2K sub-regions.
In the merge phase, each remaining region is compared with
2K neighboring regions for a potential merge. In other terms,
the complexity of the scheme is exponential in the number
of classification fields. This is the case for all classification
methods beyond the TCAM, which can overcome this issue
by its native parallelism at the hardware level.

In summary, the relaxation of the tuple merge optimization
consists of transferring the tuples matrix into a discretized con-
tinuous space with heat density and applying heat diffusivity
to the tuple space based on the number of rule overlaps. After
running the heat propagation equation over the tuple space,
we derive an asymptotic stable distribution of heat energy
over the continuous space. After that, a split and merging
quantification method is applied to the continuous space in
order to retrieve the method of constructing hash tables. In

Table III: Rulesets for Experiments

Ruleset #Rules #Hash Tables

TSS TMR

ACL1 9672 768 58
ACL2 9454 252 25
FW1 9375 474 58
FW2 9701 822 66
IPC1 9118 449 45
IPC2 10000 526 52

§IV, we will validate the performance of TMR and compare
it with other state-of-the-art algorithms.

IV. VALIDATION RESULTS

We carry out extensive experiments to compare the perfor-
mance of the TM Relaxation (TMR) with four state-of-the-art
hash-based packet classification algorithms, including Tuple
Space Search (TSS), Pruned Tuple Space Search (PR-TSS),
PartitionSort (PS), and TupleMerge (TM). Rulesets used in
practice generally have port pair used for detecting specifying
application and usually consists of a wildcard and an exact
port number [30]. Therefore, the possibility of merging in
dimensions relative to port number is limited. If we merge
these ports, we will have range (0-16), which seems like we
are not using the port dimension in tuples. For this reason,
we apply our TMR on tuples defined over the source and
destination IP addresses, i.e., port dimensions are fully merged.
All the other methods we compare with are implemented with
the schemes in their original papers.

We first introduce the validation environment setup in this
part. Second, we evaluate the packet classification performance
without rule update, then the performance of rule update and
packet classification with rule update. Finally, we test the
memory footprint.

A. Experimental Setup

In our experiment, all the experiments run on a server
with an Intel Xeon CPU E5-2630 v3 @ 2.40GHz, 32 cores
and 128GB DDR3 memory. Each core is equipped with a
64 KB L1 data cache and a 256KB L2 cache. A 20MB
L3 cache is shared among all cores. Ubuntu 16.04.1 with
Linux kernel 4.10.0 is installed as the operating system. To
test the performance of different algorithms accurately and
in the similar setting, we carry out packet classification and
packet updates for all the competitors in separate threads, each
allocated to a single core. We choose six different rulesets
generated by ClassBench [30] as shown in Table III.

B. Packet Classification without Update

We first compare the packet classification throughput per-
formance of TMR with other algorithms. Figure 4 shows the
packet classification throughput without updates in kilo packets
per second (kpps). We observe that on average TMR’s packet
classification throughput is 2.8× that of PS, 5.0× that of TSS,
3.0× that of PR-TSS and 1.9× that of TM. Compared with
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Figure 4: Packet classification performance without update:
varying rulesets

TSS, TMR significantly reduces the number of hash tables as
shown in Table III. The better performance of TMR compared
to TM shows that the heat propagation heuristics generated
better merging of tuples by reducing rule overlapping. Besides,
we evaluate the impact of ruleset size on the classification
performance. For each of ACL, FW and IPC, we choose the
same seed file and generate five different sizes of rulesets: 1K,
5K, 10K, 50K, 100K. Figure 5 indicates that the classification
throughput decreases with larger ruleset size. Nonetheless, the
classification throughput of TMR is still significantly higher
than those of other methods.

C. Update time

Update operations contain both rule insertion and deletion.
To evaluate the delay of the update operation, we split each
ruleset from 20% of it. We use the remaining 80% of the
ruleset for defining the corresponding packet classification data
structure and the split 20% as updates. Then we measured the
average dealy of a single update operation. Figure 6 shows that
the update speed of TMR is 10.2× that of PS, 1.5× that of PR-
TSS and 5.4× that of TM on average. The update speed of TSS
is similar to TMR, as they both only need to update the hash
table without other structures. The poor update performance
of PS is due to the utilization of the tree structure. PR-TSS
also uses tries to accelerate the classification at the cost of
higher update time. TM fails to achieve fast update due to the
splitting-up of the hash table when the number of collisions
exceeds a certain threshold. In summary, TMR guarantees fast
rules update by preserving the structure of the hash table.

D. Packet Classification with Update

In §IV-C, we test the rule update delay and observe that
TMR has a lower delay. However, we also need to check
whether the update operation has a serious impact on the
classification throughput. For this purpose, we evaluate the
packet classification throughput of TMR with a churn rate
(update speed) varying from 0.01Kups to 10Kups (Kilo update
per second). The 10 Kups is relevant for cases where we use
packet classification for flow monitoring and 10K flows are
added or removed each second. We use two threads to simulate
the setting. One thread continuously classifies the packets, and
the other generates updates and changes the classification data

(a) ACL with different size

(b) FW with different size

(c) IPC with different size

Figure 5: Packet classification performance without update:
varying size of rulesets

Figure 6: Rule’s update time

structure at a given speed. We use a mutex lock on the hash
table to manage the concurrent access. The comparison result
is in Figure 7. We can observe that the updates slightly slow
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Figure 7: TMR Packet classification throughput with different
update speeds

the packet classification speed. However, moving from 0.01
Kups to 10 Kups, the update operation does not decrease the
throughput more than 5% .

E. Memory Footprint

We compare the memory footprint of TMR with other
methods on different rulesets. As shown in Figure 8(a), the
memory footprint of PS is larger than the other methods.
This is caused by the overhead of the use of pointers in
decision trees. PR-TSS is also penalized by the use of tries
to filter out some tuples. TSS, TM and TMR are all hash-
based algorithms, so the memory footprint of them are similar.
The subtle differences between them are due to the rounding
effect of the ceiling effect of the individual hash table size.
As explained in §III-C, the size is set to 2dlogLe . In our test,
all the hash-based algorithms use multi-position cuckoo hash
[29] to construct hash tables.

In Figure 8(b), we show the evolution of footprint with
increasing ruleset size. For small rulesets, hash-based methods
achieve a smaller footprint. However, with the increasing of
the ruleset size, the memory footprint of the hash-based ap-
proaches is larger than that of the decision tree in PS. However,
the footprint is still relatively low with less than 4 Mbytes for
100K rules! Because in some tree-based approaches that not
mentioned in this paper, the space needed can go up to 4
Gbytes for 100K rules.

V. RELATED WORK

Existing packet classification schemes fall into three cat-
egories: hardware-based, dimensionality reduction and space
partitioning.

Hardware-Based: T-CAM [5]–[7] is the de facto standard
chip for high-speed packet classification. It applies hardware-
based parallel search to achieve low deterministic lookup
time. However, T-CAM suffers from problems such as limited
memory size, power-hungry and slow rule update. Packet
classification can also run on other hardware platforms, such as
GPU [9] and FPGA [8]. However, it requires specific designs
of hardware instructions, chips and programming language.
The limited flexibility and high cost are the barriers that
prevent these solutions from widespread usage.

(a) with different ruleset

(b) with different size of ruleset

Figure 8: Memory Footprint

Dimensionality Reduction: Cross-producting [31] and
RFC [32] first split multi-dimensional rules into several single-
dimensional ones to match individually, and then merge the
results. When the ruleset is large, however, the merging
procedure becomes very sophisticated. Furthermore, the rule
update is slow, because the rule tables corresponding to every
dimension need to be updated for one rule update.

Space Partitioning: The main idea of space partitioning ap-
proach is to sub-divide the rule space. Instead of matching an
incoming packet against the overall ruleset, the classification
procedure is divided into two steps: determining the sub-space
to search, and matching the packet against the small ruleset in
the corresponding sub-space. This approach further falls into
two main subcategories: decision tree approaches and hash-
based approaches.

The core of decision tree approaches such as HyperCuts [33]
and HiCuts [34] is to partition the search space recursively into
several regions until the rule number in each region is below
a certain threshold. The efficiency of decision trees allows for
high-speed packet classification, but the tree updating is slow.
In addition, some rules may need to be copied into multi-
ple partitions, which consumes a large amount of memory.
EffiCuts [35] and SmartSplit [36] propose some other rule
space partition policies to reduce the rule replication, but still
fail to support fast rule update. NeuroCuts [37] is a machine
learning-based method to classify packets with decision trees.
By utilizing deep reinforcement learning, NeuroCuts provides
significant improvements on classification time and memory
footprint. However, this method still does not support online
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rule update due to the inherent defect of the decision tree.
In contrast, hash-based approaches introduced in §II can

update rules quickly but suffer from slow packet classification.

VI. CONCLUSION

In this paper, we propose the relaxation of the tuple merge
(TMR) to support both high-speed packet classification and
fast online rule update. TMR utilizes the heat propagation
to guide the merging of hash tables. Based on the merging
method, TMR can reduce the number of hash tables while
maintaining the number of collisions low. We have evaluated
the performance of TMR using different types of rulesets.
TMR achieves 3.2× classification speed and 4.6× update
speed on average compared with state-of-the-art algorithms.
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