
SABES: Statistical Available Bandwidth EStimation
from passive TCP measurements

Francesco Ciaccia∗†, Ivan Romero†, Oriol Arcas-Abella†, Diego Montero†‡, René Serral-Gracià∗, Mario Nemirovsky†
∗Universitat Politècnica de Catalunya (UPC), Barcelona, Spain {fciaccia, rserral}@ac.upc.edu

†Clevernet Inc., San Francisco, USA {fciaccia, oriol, iromero, mario}@clevernet.io
‡Universidad de Cuenca, Cuenca, Ecuador {diego.monterob}@ucuenca.edu.ec

network state is modified by their operation. More recent de-
velopments in TCP congestion control, such as Google’s BBR
[8], take another estimation strategy, much more promising and
effective. However, its way of probing for available bandwidth
still affects the network under analysis, consequently altering
the available bandwidth estimation as detailed in Section II.
On the other hand, many of the developed active probing
methods are not suitable for real-world estimation. Their
biggest limitation is that they usually need to be deployed
in both endpoints of the connection, making them unsuitable
for single-sided analysis, especially on routers. Finally, most
methodologies assume a fluid cross traffic model, defeating
their accuracy in scenarios with highly variable cross traffic
patterns.

In this study, we propose a Statistical Approach to Available
Bandwidth EStimation, – SABES –, a passive probing method
based on the study of the inter-packet arrival time of TCP
acknowledgments. Its main characteristics are:

• computationally inexpensive and therefore suited to real
time analysis,

• does not need to be deployed at both endpoints,
• no assumptions about the cross-traffic model are made, is

data-driven and based on an extensive set of simulations
and real-world scenarios,

• uses a neural network to filter out misleading measures.

Possible applications of SABES include active congestion
control strategies e.g., active queue management at an edge
router or congestion control at the endpoint, and available
bandwidth analysis. While it relies on accurate TCP segments
timestamping, we demonstrate that our filtering technique
makes it robust even in virtualized environments.

The rest of the paper is structured as follows: Section II
discusses previous work in available bandwidth estimation
both as part of TCP congestion controls and as active probing
methodologies. Section III describes the statistical analysis
carried on to build SABES model and the derived heuristic
algorithm. Section IV shows results of the estimations obtained
over large simulated datasets. Section V describes the ap-
proach taken to improve the accuracy of SABES by means of
Deep Neural Networks. Section VI reports the results obtained
by SABES in a real testbed. Section VII exposes future work
and final remarks.

Abstract—Estimating available network resources is funda-
mental when adapting the sending rate both at the application
and transport layer. Traditional approaches either rely on active
probing techniques or iteratively adapting the average sending
rate, as is the case for modern TCP congestion control algorithms.
In this paper, we propose a statistical method based on the inter-
packet arrival time analysis of TCP acknowledgments to estimate
a path available bandwidth. SABES first estimates the bottleneck
link capacity exploiting the TCP flow slow start traffic patterns.
Then, an heuristic based on the capacity estimation, provides an
approximation of the end-to-end available bandwidth. Exhaustive
experimentation on both simulations and real-world scenarios
were conducted to validate our technique, and our results are
promising. Furthermore, we train an artificial neural network to
improve the estimation accuracy.
Index Terms—Available bandwidth, network machine learning,
passive probing

I. INTRODUCTION

Nowadays, improving the Quality of Experience of final
users is of paramount importance. To this end, Software-
Defined Networking (SDN) opens new horizons for network
devices to be smart, and to take advantage of the network
deep contextual knowledge. Network stacks in endpoints and
edge routers play an important role in managing the available
network resources, but they usually lack visibility. Bandwidth
adaptation, on the other hand, has always been one of the
fundamentals research topics in both routing architectures and
transport protocols. As of today, endpoints can infer the avail-
able bandwidth from their achieved TCP throughput; however,
TCP throughput does not necessarily reflect the network avail-
able bandwidth, depending mostly on the congestion control
strategy adopted. Another way to estimate it is to actively
generate probes with specific traffic patterns as extensively
documented in literature [1]–[6]. We detect some limitations
in both these approaches. TCP throughput can be misleading
when estimating the available bandwidth. Congestion control
algorithms use specific metrics to interpret congestion and
adapt their sending rate iteratively. Loss-based congestion
controls react to packet loss. Such algorithms, combined with
the big buffers of modern routers, can considerably degrade
the performance of connections, causing bufferbloat [7]. Their
behavior greatly affects the link utilization, finally impeding
a correct estimation of the available network resources, as the

Annex to ISBN 978-3-903176-28-7 © 2020 IFIP

743

II. STATE OF THE ART IN AVAILABLE BANDWIDTH
ESTIMATION IN TCP AND ACTIVE PROBING

Google’s BBR TCP congestion control operates on the
Kleinrocks optimal operating point [9] in which the available
bandwidth and the round trip time, RTT, are estimated in
order to determine the bandwidth-delay product (BDP). The
endpoint probes periodically to estimate the tight link available
bandwidth by pacing packets at higher rates than the previous
estimation. However, BBR has been proven to build long-term
standing queues that can cause misleading BDP estimation
[10]. This causes the algorithm to often overestimate the
BDP while not being fair to other competing flows [11]
SABES available bandwidth estimation strategy could be used
as part of a congestion control scheme that preserves higher
fairness characteristics such as those guaranteed by loss-based
congestion controls. The SABES approach entails detecting
moments when the TCP sending rate is higher than the
available bandwidth, and analyzing the ACKs inter-packet
distribution to detect its value at that time. Under normal TCP
operating conditions, this type of behavior can provoke phases
where the flow self-induced congestion is still not causing
adverse events such as buffer-bloat or packet loss; to estimate
the available bandwidth during those phases is beneficial. Such
approach is also taken by TCP HyStart [12]: it is a heuristic
to find a safe exit point for TCP slow start which infers the
available bandwidth based on the clocking of TCP ACKs.
HyStart mitigates the losses caused by slow start and it is used
as the default slow start algorithm for the CUBIC congestion
control; their heuristic includes packet trains being sent back-
to-back during the slow start. In addition to what HyStart does,
SABES filters out statistical anomalies in clocking of TCP
ACKs. SABES can run in real-time during the whole lifetime
of the TCP connection and find adequate moments to estimate
available bandwidth. SABES is tested with TCP flows using
CUBIC in Section VI.

The probe-gap model (PGM) and the probe-rate model
(PRM) are extensively covered in the literature and either
one or the other are used for most active probing techniques
aimed at available bandwidth estimation. The idea behind
PGM is to send packet pairs at a rate equal to the one of
the lowest capacity link (narrow link) to then estimate the
rate of the lowest available bandwidth link (tight link). As
such, PGM assumes that capacity is known in advance. A
few tools implementing PGM foresee an exploratory phase in
which capacity is inferred. SABES does the same, exploiting
some characteristics of TCP slow start to infer the narrow
link capacity. Tools implementing PGM include Pathrate [1]
and Spruce [2]. Based on PGM is [3], a work that takes a
similar approach as SABES although with some very relevant
differences: even though they use TCP acknowledgments to
estimate available bandwidth, they take into account both the
sending rate of the data packets and the receiving rate of
the ACKs, following the probe-gap model proposal. SABES
looks exclusively to the ACKs clocking and its distribution
to determine the available bandwidth, making it suitable

for receiver-side-only TCP based estimation; to the authors
knowledge, no other tools implements such an approach. Also,
SABES does not need information provided by the connection
socket or by the operating system, making it suitable for being
deployed in routers. PRM methods are also called iterative
methods, as they gradually decrease the time interval between
the probes or trains of probes to detect the probe-gap curve
bending point, thus they do not take assumptions on the
link capacity. While methods like these have been proven to
be more accurate than PGM-based methods, they generally
require more time and generate more probing traffic. During
this period of time, cross traffic can considerably vary, causing
incorrect estimations. Examples of methods implementing a
PRM approach are TOPP [4], pathChirp [5], and BART
[6]. pathChirp was one of the first tool developed that used
the concept of packet chirps which consist of packet trains
sent with an exponentially decreasing inter-packet time. This
approach aimes at generating self-induced congestion in the
tight link queue, causing increasing queueing delays. A similar
effect is obtained with TCP flows, especially the ones using
loss-based congestion controls such as CUBIC, and SABES
takes advantage of that.

III. SABES HEURISTIC

The idea behind SABES is to evaluate the inter-packet
arrival time of the acknowledgments of a TCP flow. The ACK
number carried in a packet allows the computation of the ac-
tual inter-packet rate of the packets that generated each specific
ACK pair. For each ACK pair with ACK number acknum we
define the the inter-ack bytes as δacks = acknumi

−acknumi−1

and the inter-packet time δt is then: δt = tsi − tsi−1. ts is
the ACK timestamp taken either on the egress interface of
the receiver or the ingress interface of the sender. We finally
define the inter-packet rate - IPrate as:

IPrate =
acknumi

− acknumi−1

tsi − tsi−1
=
δacks
δt

(1)

Duplicated and out of order ACKs-derived measurements are
discarded. Figure 1 provides a graphical representation of
the inter-packet gap/rate model using TCP acknowledgements.
IPrate can be measured both in sender and receiver. To be
noted that in real systems, TCP stacks implement cumulative
acknowledgements. Measuring the inter-ACK gap for every
ACK-pair comprises the behavior of two or more original
packet-pairs sent by the sender. Using the measurements
obtained with Equation 1, we split the algorithm into two
phases. The first phase tries to infer the connection narrow
link capacity at the beginning of a TCP connection, while
the second one tries to continuously estimate the available
bandwidth.

A. Capacity Estimation

At the beginning of a TCP connection, while the sender
congestion window is still growing, packets are sent in bursts
with an inter-packet rate that approximates the sender NIC link
speed; at that time, packets are said to be sent back-to-back

744

SENDER

RECEIVER

t

Seq

4345

Seq

5793

Seq

7241

Seq

8689

Seq

10137

Seq

11585

Seq

13033

ACK

5793

Cumulative

ACK

Cumulative

ACK

Cumulative

ACK

ACK

8689

ACK

11585

ACK

14481

Seq

14481

Inter-Packet Rate is modified according

to the bottleneck available bandwidth

Delayed in

bottleneck buffer

t

. . .

Seq

15929

Seq

17377

The Inter-ACK gap (or Inter-Packet Rate)

allows us to measure the sender's original pacing

and the effects of cross traffic over it

Fig. 1: The Inter-Packet Rate is the rate of the originally sent data packets that is possible to infer from their TCP acknowledgments
spacing.

and cross traffic is less likely to interfere with such packets;
cross-traffic interference is more likely when TCP slow start
has grown considerably or during TCP congestion avoidance.
However, if there is a link with lower capacity than the sender
NIC, packets will be queued before entering this link and the
inter-packet rate measured on the acknowledgements will be
paced accordingly. We base our capacity estimation technique
on the one proposed by pathrate in [1]. We study the IPrate
distribution of the first α ACKs. Valid values for α vary
according to the link capacity, the TCP slow start algorithm,
the connection RTT, and the amount of cross traffic in the tight
link. We always assume that the TCP flow in analysis is a bulk
data transfer and all packets are the size of TCP MSS. We
study a worst-case scenario, looking for the minimum amount
of packets for α that makes a correct capacity estimation
possible. We find that for a 100Mbps narrow link, with 90%
cross traffic from multiple Pareto sources, 140ms RTT, and
multiple competing flows, that at least 10 acknowledgments
are needed to estimate the capacity. To this end, we bind the
formula to the NIC capacity Cn, which we assume we can
know in advance, being 1Gbps for this specific case. We derive
then:

α =
Cn

2 ·MSS ·RTT
· ε (2)

where ε is a constant derived from the data exploration of the
previously cited worst case scenario. With such an α value we
are able to complete the capacity estimation between 3 and 30
RTTs, with less cycles for larger RTTs. In this way, we can
capture enough information to build the histogram statistic
while not delaying the capacity estimation to a late moment
in the connection lifetime. Being the first packets of a TCP
connection sent back-to-back, we can follow the conclusions
of [1] and analyze if the distribution highest mode represents
more than β% of the total sample data. We choose β = 30% as
shown in [1]; this applies to non-congested scenarios where
a strong capacity mode is formed, as shown in Figure 2a.
If the distribution is not found to have a single high mode,
we proceed by studying the IPrate generated by ACK-trains:
we consider every N acknowledgements instead of each pair
and perform the same computation described in Equation 1.
This is equivalent to using packet trains as done in pathrate.
We look at ACKs trains of size N = 4. In this scenario,

0 20 40 60 80 100 121 141 161 181
ip_rate [Mbps]

0

5

10

15

20

25

sa

m
pl

es

estimated_capacity pairs

(a) Capacity estimation is
obtained from single strong

mode in packet pairs

0 22 44 66 88 110 132 154 176 199

ip_rate [Mbps]

0.0

2.5

5.0

7.5

10.0

12.5

#
 s

a
m

p
le

s

estimated_capacity pairs trains

ADR
Highest strong mode > ADR

(b) Capacity estimation is
obtained from packet trains

dispersion

Fig. 2: Capacity estimation following SABES heuristic.

IPrate converges closer to the flow throughput; in [1] a similar
concept is identified as Asymptotic Dispersion Rate (ADR).
We pick the ADR value as the main mode of the distribution
obtained from ACKs trains. We then look for the first mode in
the original set of modes obtained from ACK pairs and select
the first mode with a value higher than the ADR as capacity
value as show in Figure 2b. The accuracy of this technique
is affected by the bin size selected. In our case, we fix the
number of bins to 10 instead of selecting a single bin size.

B. Available Bandwidth Estimation

SABES main objective is to first identify specific moments
in which the IPrate measurements are valid to be used to
estimate available bandwidth. Since we are not controlling
how the probes are generated, the packet pacing applied by
TCP is not always adequate to proceed with the estimation.
For example, this happens when the flow has a very low
throughput, as per the application generating the traffic itself
(e.g. interactive flows or constant bit-rate flows) or because
of very high level of concurrency on the machine generating
traffic (e.g., more than hundreds of bulky flows). A sliding-
window mechanism based on the connection Round-Trip Time
(RTT) is used. When measuring in the sender the exponentially
smoothed RTT sRTT is used. In the receiver, the RTT used
for the sliding window is measured during the three-way
handshake. The dynamic sliding window Di of the ACKs

745

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ip_rate values normalized to capacity

0.0

0.1

0.2

0.3

0.4

P
er

ce
nt

ag
e

mean
median

75p
25p

real_avbw

(a) Mean is representative of the
available bandwidth

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ip_rate values normalized to capacity

0.0

0.2

0.4

P
er

ce
nt

ag
e

mean
median

75p
25p

real_avbw

(b) Mean is not representative of
the available bandwidth

Fig. 3: Example of IPrate distribution that matches SABES criteria
obtained with the dynamic sliding window.

IPrate is obtained as defined in Eq. 3:

Di = {pk.iprate|tspk ∈ Wi} (3)
Wi = [tspi −min(1sec, sRTTi), tspi] (4)

where ts is the packet timestamp, pi is the last received
ACK and sRTTi is the smoothed RTT computed up to the
last RTT measurement. The maximum window horizon is set
to 1 second behind tspi as defined in Eq. 4. The result is
filtered to remove statistical outliers that can derive from noisy
measurements, using a simple inter-quartile range rule over
the window in analysis. We discard duplicated ACKs. We
finally filter any inter-packet time bigger than twice the RTT,
as they are usually associated with retransmission timeouts
or slowly growing congestion windows. We use the samples
selected through this dynamic sliding window mechanism -
Di - to build a statistical distribution of the inter-packet rate
in form of an histogram. We studied this histogram for a
big simulation data-set and derive an heuristic to infer when
the IPrate follows specific patterns. Given Di we define
its inter-quartile range as I(Di) = q75(Di) − q25(Di) and
its mean-median distance as M(Di) = |q50(Di) − x̄(Di)|,
where qy() and x̄() are the y-quantile and mean operator,
respectively. From extensive data-analysis of both simulations
and real-world traces we detect that when M(Di) is small
and I(Di) is big, x̄(Di) is representative of the network
available bandwidth. We finally define two parameters ω and
γ as the mean-median maximum distance and the minimum
distribution spread, respectively. Both are derived from the
capacity C estimated in III-A; we experimentally find that
ω = 0.1 · C and γ = 3 · ω allow to identify distributions
that meet our criteria. The set B of all available bandwidth
estimations obtained from a single TCP flow is defined as:

B = {x̄(Di) |M(Di) ≤ ω and I(Di) ≥ γ} (5)

In Figure 3a is shown an example of valid IPrate sliding
histogram following the heuristic criteria. The samples are
normalized according to the estimated link capacity. In this
case, the mean value actually approximates the available
bandwidth with an error of 3.5%.

100Mbps

Cross traffic

TCP traffic of interest

1Gbps 1Gbps

1Gbps1Gbps

Fig. 4: Simulated topology with one single 100 Mbps bottleneck
and hop-persistent cross-traffic flowing in the same direction of the

main TCP data flow.

IV. HEURISTIC EVALUATION

A. Simulation environment

To validate our model, we simulated a network scenario
in ns-3 [13]. The simulated dumbell topology consists of
multiple intermediate routers and one single bottleneck link
at 100 Mbps, as shown in Figure 4. All the other links have 1
Gbps capacity. We simulate scenarios with different values of
end-to-end latency, varying between 20ms and 140ms. Cross-
traffic is traverses only the bottleneck link (is said to be
one-hop persistent). The TCP traffic of interest goes through
all topology up to the receiver. Cross-traffic and traffic of
interest are generated from different sources and received in
different sinks. The cross-traffic generators simulated are both
constant bit-rate and on-off Pareto sources. In both cases,
cross-traffic is generated so to use 20%, 50%, and finally 90%
of the bottleneck capacity. We generate tests with one single
cross-traffic flow, up to 30 concurrent cross-traffic sources;
cross-traffic flows duration is continuos until the end of the
TCP transfers. The TCP traffic of interest flows are bulk
data transfers of 1MB, 5MB and 50MB. We test generating
only one TCP flow, with 20 and up to 50 concurrent TCP
flows generated from the same host. TCP congestion control
algorithm is the loss-based TCP-Reno (default in ns-3).

B. Heuristic simulation results

We show qualitative results for the heuristic in a single
TCP flow with 20% Pareto cross-traffic scenario in Figure 5.
Blue dots represent SABES estimations. The heuristic provides
correct estimations based purely on acknowledgments-derived
measurements in moments where the actual TCP throughput is
far from matching the real available bandwidth. As a matter of
fact in this scenario the loss-based TCP congestion control is
never converging to an optimal link utilization. As a matter of
fact, this flow TCP throughput diverges from the real available
bandwidth with an error of 30Mbps in its congestion avoidance
phase. On the other hand SABES heuristic is able to detect
when the IPrate measurement is representative of the available
bandwidth and the mean absolute error of the estimation set
B is 7 Mbps.

We show cumulative results with the boxplot in Figure 6a.
Estimations are computed over a validation data-set consisting
of highly competitive simulations scenarios, with 50 TCP
concurrent flows and 30 cross-traffic Pareto sources, using up
to 50% and then 90% of the bottleneck capacity. We test this in
a topology with an end-to-end RTT of 20ms and then 140ms.

746

2.5 5.0 7.5 10.0 12.5
Time [s]

0

20

40

60

80

100
Th

ro
ug

hp
ut

 [M
bp

s]

TCP_flow
cross_traffic

real_avbw
SABES

Fig. 5: Heuristic application to a single TCP flow, single bottleneck
scenario. The mean absolute error of B is 7.4Mbps.

Bottleneck capacity is 100Mbps. We show the distribution of
the mean absolute error of the estimation in Figure 6a. Results
improve in the 90% cross-traffic scenario in respect to the
50%. We deduce that the better estimation obtained in the 90%
cross-traffic scenario is due to the average TCP throughput
being closer to the actual available bandwidth; in these cases
the TCP congestion control is able to converge to a fairly
precise value, improving the IPrate statistic. On the other hand
the estimations accuracy is independent on the RTT. Results
obtained provide good confidence margins in the estimation
with a computationally lightweight process implementable as
part of a real-time system. SABES can be deployed both close
to the sender or the receiver and its estimations are obtained
exclusively from passive TCP analysis. However, the results
distribution for the 50% cross-traffic case shows a median
error value of approximately 30Mbps, which is rather high.
In Section V, we investigate the problem and propose an AI-
enhanced solution, improving estimation results considerably.

V. NEURAL NETWORK EVALUATION

The heuristic described in Section III tries to identify distri-
butions shaped like the one in Figure 3a, looking for a mean
value which is representative of the available bandwidth. How-
ever, there are distributions that match the heuristic criteria but
that do not contain any significant mode close to the available
bandwidth, such as the one shown in Figure 3b. The mean of
such a distribution gives a 50% error in the estimation and no
actual values are present in the bin closest to the distribution
mean. The histogram shapes of Figure 3a and Figure 3b are
notably different. To distinguish between them we train an
artificial neural network. ANNs have proven to be effective
as classifiers when the input features are non-linear and with
high dimensionality, such as the sliding histograms produced
by SABES heuristic. We train a neural network to classify
good and bad histogram distributions; the generalization is
obtained by normalizing the data to the estimated capacity and
the total number of samples obtained in the sliding window.
In this way, the neural network input data is independent of
the link capacity and the sample size. We fix the histogram
bins number to 10. This translates in a lower resolution when
representing IPrate distributions of high capacity links (i.e.
more than 500Mbps), although we opt for this compromise to
keep the neural network of reasonable size.

50 90
Pareto cross-traffic link utilization (%)

0
10
20
30
40
50
60
70
80
90

100

M
ea

n
A

bs
ol

ut
e

E
rr

or
 [M

bp
s]

latency
20
140

(a) Heuristic only.

50 90
Pareto cross-traffic link utilization (%)

0
10
20
30
40
50
60
70
80
90

100

M
ea

n
A

bs
ol

ut
e

E
rr

or
 [M

bp
s]

latency
20
140

(b) Neural Network.

Fig. 6: Mean absolute error results of the estimations applying
SABES in a simulated environment with 100Mbps bottleneck for

different values of cross-traffic link utilization and latency.

VM

VM

VM VM

VM

VM

UDP cross-traffic

TCP Traffic

1 Gbps

Host 1 Host 2

300 Mbps 300 Mbps

Fig. 7: Real testbed topology with one single 300Mbps bottleneck.

We run SABES heuristic and get the complete normalized
sliding histograms of the simulations described in Section
IV-A. We obtain over 140000 sliding histograms used as
training data-set for the neural network. We run a supervised-
learning training process labeling all the histograms good
whose mean value provides an available bandwidth estimation
with an error lower than ±10% of the bottleneck capacity, and
as bad the other histograms. We identify that distributions that
overestimate or underestimate have a similar shape, as far as
the estimation error is small. The neural network used is a deep
neural network, consisting of two hidden layers. The network
inputs are 10 neurons, one per normalized bin of the sliding
histogram. The network output are two neurons, one per class
- good and bad. Following [14] we find the minimum number
of neurons per each hidden layer that avoids over-fitting.
Given the neural network number of inputs Ni and outputs
No, we use as upper boundary for the number Nh of the
hidden layers neuron, the result of : Nh = Ns

(σ∗(Ni+No))
where

2 ≤ σ ≤ 10. The activation function for the input and hidden
layers neurons is a rectified linear unit (ReLU) while the
output layer activation is a normalized exponential function,
also known as softmax. After training, we run again SABES
but with the additional filter provided by the neural network.
The validation data-set is the same used for the evaluation
of the heuristic alone. The results obtained are shown in
Figure 6b. The boxplot shows the improved accuracy provided
by the usage of the neural network. The 50th percentile of
the estimations error is below 10Mbps in all the scenarios
proposed, compared to the 30Mbps obtained when using
the heuristic alone. While training a neural network can be
computationally expensive, we quantify that adding the neural
network evaluation increases the computation execution time
only by 6% in respect to the heuristic alone.

747

42.5 45.0 47.5 50.0 52.5 55.0 57.5

Time [s] +1.5794543e9

0

50

100

150

200

T
h
ro

u
g
h
p
u
t
[M

b
p
s
]

TCP_flow

cross_traffic

real_avbw

SABES-NN

Fig. 8: SABES-NN running in a real testbed. Estimations mean
absolute error is 8% of the bottleneck capacity.

VI. EVALUATION IN REAL TESTBED

We finally tested SABES in a real testbed. The testbed
topology is a dumbell as shown in Figure 7. It is composed
of six virtual machines, two for TCP traffic generation, two
for UDP cross-traffic generation, and finally two acting as
intermediate routers and shapers. The VMs are deployed in
two different physical hosts. The two hosts are connected
through a 1Gbps link, but we apply a traffic shaper of 300Mbps
to the egress interfaces of both intermediate routers. We also
add an artificial delay of 20ms between the two physical hosts
using the Linux Traffic Control module NetEm. All VMs run
Debian Linux; Host 1 is running KVM as hypervisor, while
Host 2 has VMWare ESXi. TCP traffic is generated as large
file transfers of 100 MB over HTTP. UDP cross-traffic is
generated with the D-ITG tool [15]. We chose this tool as
it allows to generate traffic following a Pareto distribution
of choice as done in simulation. In Figure 8, the results of
SABES-NN estimations are shown for a single test. The test
consists of three concurrent HTTP/TCP file transfers of 100
MB competing for a bottleneck link of 300Mbps with one
UDP cross-traffic flow. The throughput of only one of the
three TCP flows is shown. SABES effectively detects moments
where is possible to infer the real available bandwidth, even
though the flow throughput is far lower. The mean absolute
error of the B estimation set is less than 10% of the bottleneck
capacity.

VII. CONCLUSIONS

In this study we presented SABES, a method to estimate
network available bandwidth using passive measurements ob-
tained from TCP traffic. SABES is computationally inexpen-
sive, taking advantage of simple statistical analysis of TCP
traffic. It can be deployed just on one side of the TCP connec-
tion, being it either close to the sender or the receiver.SABES
implements an heuristic that detects IPrate distributions whose
mean value approximates the network available bandwidth.
SABES model was validated in simulations and in a real-
world virtualized scenario. We show that SABES heuristic
provides a fair estimation of the available bandwidth of our
validation data-set with a median mean absolute error of 30%
of the bottleneck capacity. We then improved the heuristic by
detecting patterns in the distributions that could be learned by

an Artificial Neural Network. The ANN acts as discriminator
of histograms that are better suited for the estimation. SABES-
NN improves the estimation results over the validation set
reducing the median mean absolute error down to 10%.
SABES relies on a good initial estimation of the bottleneck
capacity. Future work includes finding an improved technique
for the estimation, taking advantage of other signal processing
techniques such as Kernel Density Estimation. Finally, SABES
is a good candidate for an estimator that is part of a TCP
congestion control algorithm or other types of traffic control
systems such as the one described in [16].

ACKNOWLEDGMENT

This work was supported by the grant 2015DI023 as part
of the Industrial PhD grants of AGAUR and Generalitat de
Catalunya. Project co-financed by the Spanish Ministry of
Ciencia Innovacion y Universidades with reference RTC-2017-
6655-7 (FEDER).

REFERENCES

[1] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?” in Proceedings IEEE INFOCOM 2001. IEEE,
2001.

[2] J. Strauss, D. Katabi, F. Kaashoek, and F. Kaashoek, “A measurement
study of available bandwidth estimation tools,” in Proceedings of the
3rd ACM SIGCOMM Conference on Internet Measurement.

[3] S. K. Khangura and M. Fidler, “Available bandwidth estimation from
passive tcp measurements using the probe gap model,” in 2017 IFIP
Networking Conference (IFIP Networking) and Workshops. IEEE, 2017.

[4] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,”
in Globecom’00-IEEE. Global Telecommunications Conference. Con-
ference Record (Cat. No. 00CH37137). IEEE.

[5] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathchirp: Efficient available bandwidth estimation for network paths,”
in Passive and active measurement workshop, 2003.

[6] S. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J.-E. Mangs,
B. Melander, and M. Bjorkman, “Real-time measurement of end-to-end
available bandwidth using kalman filtering,” in 2006 ieee/ifip network
operations and management symposium noms 2006. IEEE, 2006.

[7] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, 2011.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” 2016.

[9] L. Kleinrock, “Power and deterministic rules of thumb for probabilistic
problems in computer communications.”

[10] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP). IEEE, 2017.

[11] S. Ma, J. Jiang, W. Wang, and B. Li, “Fairness of congestion-based con-
gestion control: Experimental evaluation and analysis,” arXiv preprint
arXiv:1706.09115, 2017.

[12] S. Ha and I. Rhee, “Taming the elephants: New tcp slow start,” Computer
Networks, 2011.

[13] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010.

[14] “How to choose the number of hidden layers and nodes in a
feedforward neural network?” Cross Validated. [Online]. Available:
https://stats.stackexchange.com/q/136542

[15] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-itg
distributed internet traffic generator,” in First International Conference
on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceed-
ings. IEEE, 2004.

[16] F. Ciaccia, O. Arcas-Abella, D. Montero, I. Romero, R. Milito, R. Serral-
Gracia, and M. Nemirovsky, “Improving tcp performance and reducing
self-induced congestion with receive window modulation,” in 2019 28th
International Conference on Computer Communication and Networks
(ICCCN). IEEE, 2019.

748

