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Abstract—Ethereum is one of the most popular blockchain
systems that supports more than half a million transactions every
day. Whereas it remains mysterious what the transaction pattern
is and how it evolves over time. In this paper, we study the
evolutionary behavior of Ethereum transactions from a temporal
graph point of view. It shows that there is no evidence that
changes in average triplet closure duration is related to prices. We
observe the macroscopic and microscopic burstiness of Ethereum
transactions. We analyze the Gini indexes of the transaction
graphs and the user wealth in which Ethereum is found to be
very unfair since the very beginning, in a sense, “the rich is
already very rich”.

I. INTRODUCTION

As the second largest blockchain platform, the market value
of Ethereum has reached 1573 millions dollars on Jan 1,
2020. Around half a million transactions are conducted on
the Ethereum platform everyday. The boom of Ethereum
has aroused great interests in the understanding of its social
interactions. Analyzing transaction data provides a crucial way
to know the development of Ethereum. A commonly used
approach is to construct transaction graphs. In the existing
literature, Ethereum are usually analyzed as static network,
such as Chen et.al [3] characterized the activity of money
transfer, contracts creation and contracts invocation using dif-
ferent graphs. The evolutionary behavior is largely overlooked.

In this paper, we study some basic questions: How does
Ethereum transaction pattern evolve over time, and how is
it affected by Ether price? To this goal, we first collect the
transaction data and then construct user-to-user graph(UUG),
which characterizes the trading relationship among externally
owned accounts(EOAs). In order to understand the evolution
of Ethereum transactions, we chop UUG into a sequence of
temporal graphs with sliding and incremental time window.

Our graph analysis on UUG is carried out from three
perspectives. Firstly, we measure the local graph structure
that evolve over time. Secondly, the macroscopic burstiness
that captures the aggregation extent of transactions made by
nodes, and the microscopic burstiness that characterizes the
inter-transaction time distribution is quantified. Third, the Gini
indexes of degree, transaction and balance (wealth) distribu-
tions are computed to verify “the rich gets richer” effect.

Our major observations are briefly summarized as below:
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• 1. The global clustering coefficient of UUG is very small.
The correlation between Ether price and the local graph
structure such as the proportion of closed triplets and the
average closure time is not observed.
• 2. For most of nodes, their transactions are concentrated on
a short duration of their active periods. The inter-transaction
time intervals varies considerably, exhibiting burstiness.
• 3. The distribution of degree, transaction and wealth of
nodes are always unfair since the genesis of Ethereum.

II. DATASETS AND BASIC DEFINITIONS

In this section, we describe our dataset. The construction of
transaction graphs is introduced in detail.

A. Overview of Datasets

We collect all the Ethereum transactions spanning from July
30th, 2015, the birth date of Ethereum, to February 9th, 2019.
The total number transactions is around 19 millions, and the
size of our dataset is around 34 GB. Each transaction records
the following items: {Block ID, Sender, Receiver, Transaction
Value}. We also collect the balance of each address at all time.

B. Construction of Transaction Graphs

We focus on the fundamental properties of Ethereum trans-
actions and the compound interactions among users. So we
construct user-to-user graph (UUG), which captures the trans-
action patterns among users, that is, the most important aspect
of Ethereum as a cryptocurrency. In UUG, each Externally
Owned Account (EOA) is a node and two nodes form a
directed edge if a transfer of Ether between them happens.
The basic statistics of UUG is expressed in Table I.

TABLE I: SIZES OF UUG.
type of nodes #of nodes #of edges #of transactions

EOA 41722479 89194399 192300454

Temporal graphs are constructed to explore the evolution of
Ethereum system.Two types of time windows are considered,
the sliding window and the incremental window. We observe
that more than 70% of nodes have a lifetime (the interval
between the first and last transaction time in our dataset)
below 180 days, and thus setting the sliding window to be 180
days is suitable to evaluate the graph dynamics. The sliding
window is shifted with a granularity of 45 days (i.e. 1/4 of
this time window) that is useful to compare the graphs at
different stages. The incremental window expands from 180
days to 1260 days with the same granularity. Although the
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time window is a hyper parameter, it is carefully selected and
its choice does not influence the main conclusions.

III. MOTIFS OF UUG

Transaction patterns usually are the basic building blocks of
the entire graph that reveal the microscopic behaviors on how
the network is formed. In general, the subgraphs containing
a few nodes and edges induced from the original graph, also
named motifs [1], are of particular interests to the network
science research community.

Fig. 1: 3-nodes motifs.
Fig. 2: Number and proportion
of closed triplets in UUG.

Fig. 3: Average time for each
closed triplet.

Fig. 4: Busy period ratio dis-
tribution.

We hereby investigate 3-node motifs of UUG. As a directed
graph, there are thirteen motifs(Figure 1). We classify seven
motifs as closed triplet that has transactions between each pair
of nodes, and name open triplet for the remaining six motifs
as a unity. We illustrate the closed triplets in Figure 2. In the
very beginning, the number of closed triplets is around 104,
and it grows to around 4 × 106 in the last sliding window.
Although this number decreases considerably between the
seventh window and the tenth window, the overall trend is the
expansion of hundreds of times. This manifests more and more
EOAs are conducting transactions with others. The proportion
of closed triplets among all the 3-node motifs is almost strictly
decreasing from the beginning to the twentieth sliding window,
which descends to nearly the order of millionth. The low ratio
of closed triplet directly leads to a very low global clustering
coefficient, up to 10−4. This means the transaction pattern of
UUG is dominated by the mode which a vast majority of nodes
merely interact with a small amount of nodes.

Another interesting question is how long time it will take to
form a closed triplet. Figure 3 shows the average needed time
for an open triplet to be closed. The average closure time
varies at different sliding windows, i.e. ranging between 37
days and 64 days, while their differences are not prominent,
and most of the closure time oscillates between 50 days and 55
days. We further plot the dynamics of Ether price in Figure 3.
The correlation between the Ether price and the closure time

is relatively weak. Especially, when the Ether price increases
fifty to one hundred times, the closure time remains the same
or experiences a relatively small increase.
Observation 1: The global cluster coefficient of Ethereum
is very small. Although the number of closed triplet has
increased, it is still negligible compared to the number of open
triplet. The average closure time fluctuates at different time
and there is no evidence that it affected by the price of Ether.

IV. BURSTINESS OF TRANSACTIONS IN UUG

We witnessed much progress in the study of Ethereum
transactions, little is known about the dynamics characteristics.
Burstiness is common temporal measure of the dynamics of
complex systems. Here, we analyze the burstiness of Ethereum
from both macroscopic and microscopic perspectives.
A. Macroscopic Burstiness

We follow the next step to quantify the macroscopic bursti-
ness. First, the lifetime of a node is defined as the time interval
between the first and final transaction made by him. We next
find the minimum time needed by each node to conduct a
certain percentage of transactions. This time interval quantifies
the bursty period for each node. Based on this, we define
the least required time to complete a certain percentage of
transactions divided by the lifetime of this node as busy period
ratio. Figure 4 shows the results in three scenarios. One can
observe that 80% of nodes complete 40% of the transactions
with only 13.81% of their lifetime; 80% of nodes completed
60% of transactions with 38.02% of their lifetime, and 80%
of nodes use 70.46% of their lifetime to complete 80% of
transactions. Our measurement shows the clear bursty evidence
of almost all the meaningful nodes as a whole.

Fig. 5: Burstiness of transac-
tions in UUG during one day.

Fig. 6: Matthew effect of bal-
ance.

The burstiness of global transactions is measured by the
average number of transactions in each hour on a daily basis
(GMT is adopted). Figure 5 illustrates the intensity of bursty
transactions made by EOAs. The most active period is 7am
∼10am, and the second one is 3am∼4am. The most active
period corresponds to 15 pm∼18pm at Beijing Time (GMT+8),
the afternoon working hours in Asian countries. Due to the
escalating interests toward blockchains in these countries, we
conjecture that this is the very reason accounting for the global
burstiness in terms of the number of transactions in each day.

B. Microscopic Burstiness

The microscopic burstiness refers to the significantly en-
hanced activity level over short periods of time followed by
long periods of inactivity for a single node. Goh and Barabasi
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proposed to characterize the (microscopic) bursty of social
events using orthogonal measures [4]. They quantify two
distinct mechanisms causing burstiness: the inter-event time
distribution and the memory. We adopt the same method to
examine the burstiness and memory of Ethereum transactions.

Fig. 7: MB of normal nodes. Fig. 8: MB of exchanges.

Fig. 9: MB of mining pools. Fig. 10: MB of phish hack.
B is used to measure the inter-event time distribution and it

is defined as Eq.1.

B ≡ σ− < τ >

σ+ < τ >
(1)

< τ > and σ represent the mean and standard deviation of
inter-event times. Here B takes the value of -1 for regular time
series and 0 for random.

M is memory coefficient to measure two-point correlations
between consecutive inter-event times as the following:

M ≡ 1

n− 2

n−2∑
i=1

((τi)− 〈τ〉1)(τi+1 − 〈τ〉2)
(σ1)(σ2)

(2)

The closer M is to 1 (-1), the greater the probability that the
time interval after the long interval is long (short).

The same number of accounts are selected from normal
accounts, exchanges, mining pools and fraud accounts respec-
tively, and then we map the transaction of these accounts on
the (M,B-space). Figure 8 and Figure 9 show the transactions
of exchanges and mining pools are all busty, we conjecture
this may be caused by the burstiness of transactions during on
day. Compared with Figure 7, Figure 10 shows the memory
of phishing accounts are distributed on a wider range.
Observation 5: From perspective of macroscopic burstiness,
the transactions of most of nodes are concentrated on a small
part of the lifetime of the nodes and the transactions during one
day is distributed on some hours. From perspective of micro-
scopic burstiness, the arrival time distribution of transactions
of nodes is very highly devise.

V. THE RICH GETS RICHER IN UUG

The Matthew effect can be observed in many aspects of
social and economic system [2]. It is sometimes known as the
adage “the rich get richer”. We measure it to know whether
Ethereum will evolve into an extremely unhealthy economic
system. In Ethereum network, we measure the Matthew effect
with Gini coefficient, a commonly used measure for the

income gap. The Gini coefficient is in the range [0, 1], when
it is above 0.5, it means that income is too unbalanced.

From Figure 11 and Figure 12, we discover the Gini coeffi-
cient of degree and transaction number is above 0.5. It means
the degree and the transaction number distribution is unbalance
in all time periods. But there is no sign on the direction that the
Gini coefficient is moving toward both in degree distribution
and transaction number distribution. Hence, we can conclude
that in terms of degree distribution and transaction number
distribution, “Always unfair but not the rich gets richer.”
Meanwhile, we hope that Gini coefficient of nodes’ balances
can reveal the (un)fairness of wealth distribution in Ethereum.
As the first step, we assume that a node is “dead” if his balance
is 0, and he does not trade with any others afterwards. Then
Figure 6 shows the Gini coefficient of balance increase from
0.982 to 0.998, it means Ethereum is ”extremely unfair in
terms of the balance since its birth”.

Fig. 11: Matthew effect of de-
gree.

Fig. 12: Matthew effect of Tx
num.

A subsequent question is “will the rich still be rich in the
near future?”. In Gini coefficient, there is no differentiation
on the node identity. We then introduce the Pearson product-
moment correlation coefficient (PPMCC) to explore this ques-
tion. In statistics, PPMCC is a measure of linear correlation
between two variables, and when it is above 0.6, there is
a strong correlation among variable. We evaluate PPMCC
of the degree, transaction number and balance of nodes in
consecutive windows. Figure 11, Figure 12 and Figure 6 show
that they are all above 0.6. This implies that PPMCC is very
large between consecutive windows, which means that the
nodes with rich degrees, rich transaction number and large
health are still rich.
Observation 6: The distribution of degree and transaction
number are always unfair but not the rich get richer. The
distribution of wealth is extremely unfair since very beginning.

VI. CONCLUSION

We conduct an evolution of Ethereum from the perspective
of temporal graph analysis. By analyzing it through various
metrics, we obtain many new observations and insights, which
help people have a understanding of the evolution of Ethereum.
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