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Abstract—In recent years, many studies have focused on the
interrelation between the epidemic spreading and the spread of
awareness to prevent infections. A multiplex network is utilized
to depict this scenario. The upper layer of the multiplex network
represents an online social network, where the awareness of
epidemic spreads. The lower layer of the multiplex network
represents an off-line social network, where the epidemic spreads
among individuals. However, most previous studies neglected that
the online social network has diverse social ties, such as the
dense social ties (in-roles and friends) and the sparse social ties
(familiar strangers and strangers). In this work, we study how
the online social ties impact on epidemic spreading in the off-line
social network. We assume that besides the same dense in-roles
and friends, an online social network could have only familiar
strangers, only strangers, or both. We analyze the influence of the
effective epidemic spreading rate and the awareness spreading
rate on the infection fraction at the steady state with two
empirical datasets. An interesting finding is that an online social
network containing strangers is more likely to reduce epidemic
prevalence than that containing familiar strangers.

I. INTRODUCTION

Epidemic spreading in social networks has a great impact
on our lives, and has been studied for a long time. Many
mathematical models [1] [2] [3] [4] [5] have been proposed to
describe the spread of infectious virus, and the most classical
epidemic spreading model is the compartmental model. The
susceptible-infected-susceptible (SIS) model is one of the
most studied compartment models and has two compartments:
susceptible (S) and infected (I). An infected individual (I)
infects its susceptible (S) neighbors (direct contact) with an
infection probability β, and recovers with a probability µ.
The effective spreading rate is defined as λ = β

µ . Epidemic
threshold βc is a critical point of effective spreading rate
which separates two phases of epidemic spreading processes:
If β < βc, the infection dies out and the the infection fraction
at the steady state ρI = 0; If β > βc, the infection will become
pandemic and ρI will approach a stable value.

The spread of awareness always accompanies the epidemic
spreading. Wang et al. [6] analyzed the influenza-like illness
dataset and the Google Flu Trends dataset, found that epi-
demic spreading promotes awareness spreading, but awareness
spreading suppresses epidemic spreading. In other words, there
are asymmetric interactions between the awareness spreading

and virus spreading. Funk et al. [7] introduced the spread of
awareness into an epidemiological model. They found that the
awareness could reduce the infection fraction ρI , but does
not affect the epidemic threshold βc. To keep things simple,
many studies focused on the interplay between epidemic
spreading and awareness spreading in static networks [8] [9]
[10]. Granell et al. [11] studied the interplay between epidemic
spreading and awareness spreading in multiplex networks.
They built a multiplex network with two layers: the upper
layer represents an online social network, and the lower
layer represents an off-line social network. They found that
the epidemic threshold βc is determined by the awareness
dynamics and the topology of the online social network. Guo
et al. [12] assumed that the information spreading layer is a
time-varying network which is generated by the activity-driven
model [13]. They found that the awareness spreading cloud
increase the epidemic threshold βc and reduce the epidemic
prevalence.

Besides the awareness spreading, social ties in social net-
works have a great influence on epidemic spreading. Social ties
are regarded as the connections among individuals. Individuals
share information through social ties in the online social
networks, and have face-to-face contacts through social ties
in the off-line social networks. Social ties consist of strong
social ties (in-roles and friends) and weak social ties (familiar
strangers and strangers) [14]. Granovetter [15] created the
“strength of weak ties” hypothesis, that people are more likely
to get a job through weak ties rather than strong ties. The
debate on which social ties are more important continues to
this day. Previous studies [16] [17] have shown that strong ties
construct community structures in the network, and weak ties
create bridges between them. Karsai et al. [18] defined the
strength of social tie as the total number of calls between two
individuals, and observed that strong ties severely suppress
the information spreading by creating recurrent interaction
patterns. Refs. [19] [20] suggest that strong ties play a more
important role than weak ties in the process of art creating.
Wu et al. [21] investigated a face-to-face interactions network,
and found that teams mainly consisting of strong ties are
more efficient than teams mainly consisting of weak ties when
executing complex tasks. They have given an explanation that
strong ties could build up an information-rich communicationISBN 978-3-903176-28-7 © 2020 IFIP
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media for transferring the complex knowledge.
The impact of awareness spreading on epidemics and the

role of social ties in spreading processes has been discussed.
So far, the influence of the social ties in the awareness
spreading networks on the epidemic process has scarcely been
discussed. In this work, we generate several online social
networks which contain different social ties, and find out the
influence of the social ties on epidemic spreading of an online-
offline mulitplex network. This work is organized as follows.
In Section II, we introduce methods for identifying social
ties in social networks, and build an online-offline mulitplex
network model with two layers: the online social network and
the off-line social network. In Section III, we introduce the
UAU-SIS dynamics. In our online-offline mulitplex network
model, the epidemic spreads on the off-line social network
and the awareness of epidemic spreads on the online social
network. Two spreading processes interact with each other. In
Section IV, we introduce two empirical campus Wi-Fi datasets
and construct online-offline mulitplex networks with them.
Then we analyze the characteristics of each type of social
tie in the constructed networks. In Section V, We analyze the
influence of the social ties in online social networks on the
epidemic spreading with the online-offline mulitplex networks.
We observe that the online social network containing strangers
leads to a smaller infection fraction than that containing
familiar strangers. Finally, we conclude in Section VI.

II. NETWORK MODEL

A. Social ties in the network

Most previous studies divide social ties into two types:
the strong ties and the weak ties. For instance, Karsai et
al. [18] analyzed a mobile phone call dataset and separated
social ties into strong and weak ties by the number of calls
between individuals. However, social ties in social networks
are diverse. The familiar stranger is a kind of social ties,
that individuals could recognize each other but never interact.
Milgram [22] first proposed the concept in 1972 through a
famous subway experiment. He took a photo for the passengers
at a subway station. One week later, he distributed the photo to
the passengers at the same subway station and the same time,
and let them find out whether any person in the photo looks
familiar. The result is that up to 89% of respondents identified
at least one impressed stranger in the photo. Paulos et al. [23]
reproduced this experiment thirty years later to find the impact
of the widely use of mobile phone on the identification of
familiar strangers. As the result, 78% of respondents identified
at least one impressed stranger. Although the ratio 78% is
lower than Milgram’s experimental, the result shows that
familiar strangers are still common in daily lives. Sun et al.
[24] analyzed the travel smart card data in Singapore. They
defined the familiar strangers as passengers who were on the
same bus at the same time, and believed that the familiar
strangers are caused by the limit of encounters, which is
brought by individual’s regular activities. In this work, we
divide social ties into four types: in-roles (such as colleagues
and classmates) [25], friends, familiar strangers and strangers,

with the social tie classifier proposed in [14]. The first two
are dense social ties (strong ties) and the second two are
spare social ties (weak ties). A time-varying off-line social
network with edge set E can be divided in to N cycles with
individuals’ behavioral periodicity T . Individuals’ behaviors
are represented by a behavioral matrix Sn(u) = [su,nt,l ],
where u is the individual index, n represents the n-th cycle,
t ∈ [1, T/∆T ] (∆T is the time step length of the time-varying
network) is the time step and l ∈ [1, |L|] (|L| is the number
of interaction locations) is the location index. If individual u
visits location l at time step t of the n-th cycle, su,nt,l = 1,
otherwise su,nt,l = 0. The interaction weight wu,vt,l and the
interaction probability probu,vt,l , between two individuals u and
v, are calculated as follows:

wu,vt,l = |{n|(u, v, t, l, n) ∈ E,n = 1 · · ·N}|, (1)

probu,vt,l =

∑N
n=1 s

u,n
t,l ×

∑N
n=1 s

v,n
t,l

N2
. (2)

Next, we calculate two metrics, the encounter regularity dr
and the spatiotemporal entropy de. The encounter regularity
dr which measures to what degree the interactions between a
pair of individuals u and v is generated obeying the periodic
life routines,

dr(u, v) =

∑
t

∑
l(w

u,v
t,l × prob

u,v
t,l )∑

t

∑
l w

u,v
t,l

, (3)

and the spatiotemporal entropy de measures the degree of
social similarity,

de(u, v) = log2

∑
t

∑
l

sign(wu,vt,l ). (4)

Four types of social ties are identified based on these two
metrics. We first generate a null model by degree-preserving
rewiring [26] links in the origin time-varying network (details
see [14]). Then, we let the complementary cumulative distri-
bution functions of the null model P (dnullr (u, v) > r0) =
P (dnulle (u, v) > e0) = p0 = 10−3, to get the critical
thresholds r0 and e0 of dr and de. Social ties are classified as
follows,
• if dr(u, v) > r0 and de(u, v) > e0, u and v are in-roles,
• if dr(u, v) < r0 and de(u, v) > e0, u and v are friends,
• if dr(u, v) > r0 and de(u, v) < e0, u and v are familiar

strangers,
• otherwise, u and v are strangers.

For the sake of brevity, we denote in-roles and friends, which
are both dense social ties, by F&IR, the familiar strangers
by FS, and the strangers by S. Note that the social ties of
individuals who only interact with each other once belong to
S by definition in [14], which is not considered in this work.

B. Online-offline mutiplex network model

The time-aggregated representation of the off-line social
network contains all social ties between individuals, and we
divide them into four types of social ties, i.e. in-roles (IR),
friends (F), familiar strangers (FS) and strangers (S), by the
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Fig. 1. The generating process of the three online social networks. (a) IR&F+S, consists of in-roles, friends and strangers; (b) All types, consists of all four
types of social ties; (c) IR&F+FS, consists of in-roles, friends and familiar strangers. IR&F, green lines; FS ,red lines; and S, blue lines. All the social ties are
identified on the time-varying off-line social network. All online social networks have the same number of edges, and the sets of IR&F edges are the same.

social tie classifier [14] that we introduced in Section II A.
IR&F belongs to dense social ties, which has higher interaction
frequency than FS and S. In real life, individuals are more
likely to build a friendship in the online social network with
IR&F. Meanwhile, individuals could build a friendship in
the online social network with the sparse social ties, i.e. FS
and S, via the friend recommendation systems provided by
social media platforms, such as “People You May Know” or
“People Nearby”. Refs. [24] [14] have found that the average
number of FS and S is much lager than IR&F, indicating
that sparse social ties in online social networks might play an
important role and should not be ignored. In order to figure
out the impact of the social ties in the online social network
on epidemic spreading, here we generate three online social
networks containing different types of social ties:

1) Only contains IR&F and S (IR&F+S);
2) Contains all four types of social ties (All types);
3) Only contains IR&F and FS (IR&F+FS).

We here guarantee that the three online social networks
have the same number of edges and the same set of IR&F
edges. For the IR&F+FS online social network, we select the
FS edges randomly with uniform probability η. Other online
social networks are generated by taking the same number of
edges as the IR&F+FS. That means, for the All types online
social network, the FS and S edges are randomly selected
with uniform probability η |FS|

|FS|+|S| , and for the IR&F+S
online social network, the S edges are randomly selected
with uniform probability η |FS||S| . The online social networks
generating process is shown in Fig.1.
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Fig. 2. The structure of multiplex networks. The upper layer is a static
online social network, where individuals are aware (A) or unaware (U) in
the process of awareness spreading. The lower layer is a time-varying off-
line social network. The individuals are the same as that in the online social
network, and they cloud be susceptible (S) or infected (I) in the process of
epidemic spreading.

III. UAU-SIS DYNAMICS

In this work, we study the awareness spreading and
epidemic spreading with the Unaware-Aware-Unaware-
Susceptible-Infected-Susceptible (UAU-SIS) model [11] [27]
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on a multiplex network with two layers. A two-layer multiplex
network with different network topologies is illustrated in
Fig.2. The upper layer is a static online social network,
where the awareness spreads and the lower layer is a time-
varying off-line social network, where the epidemic spreads.
The off-line social network consists of all contacts among
in-roles, friends, familiar strangers and strangers. Meanwhile,
individuals are likely to establish online contacts with who
they have met off-line. That is to say, the online social network
may comprise part of the contacts in off-line social network.

In the online social network, awareness spreads in a cyclic
process satisfying the cycle unaware-aware-unaware (UAU).
Individuals have two states: unaware (U) and aware (A). Un-
aware individuals are those who do not know or have forgotten
the information of epidemics, and do not take measures to
prevent the infection. The awareness is generated in two ways:
an unaware individual is informed by aware neighbors with
a probability ν, or the individual obtains the awareness along
with being infected. Aware individuals forget or no longer care
about the epidemics with a probability δ, and become unaware
again. In the off-line social network, an SIS spreading process
takes place among the individuals. We denote the unaware
infection probability by βU . However, the risk to be infected
is lower for aware individuals than unaware individuals. The
infection probability βA for aware individuals is reduced by a
factor γ, i.e. βA = γβU . Once an individual is infected, it is
immediately aware of epidemics and changes the state in the
online social network, tries to arouse the neighbors’ attention.
The recovery rate for all infected individuals is the same µ.
The whole scheme is shown in Fig.3. The individuals can
be in three states: unaware and susceptible (US), aware and
susceptible (AS), aware and infected (AI). Let us denote the
elements of adjacency matrices of the online social network
and the snapshot of off-line social network at time t by aij and
bij , respectively. If there is a contact between individuals i and
j in the online (or offline) social network, aij = 1 (or bij = 1),
otherwise aij = 0 (or bij = 0). Each individual i has a certain
probability of being in one of the three states at time t, denoted
by pUSi (t), pASi (t) and pAIi (t), respectively. The transition
probabilities ri(t) for individual i not being informed by any
neighbors, the probability qAi (t) for an aware individual not
being infected by any neighbors, and the probability qUi (t) for
an unaware individual not being infected by any neighbors are

ri(t) =
∏
j

{1− aij [pASj (t) + pAIj (t)]ν},

qAi (t) =
∏
j

[1− bij(t)pAIj (t)βA],

qUi (t) =
∏
j

[1− bij(t)pAIj (t)βU ],

(5)

respectively. Hence, we obtain the equations of states transfer

probabilities in the UAU-SIS dynamics

pUSi (t+ 1) =pAIi (t)µδ + pUSi (t)ri(t)q
U
i (t) + pASi (t)δqUi (t),

pASi (t+ 1) =pAIi (t)µ(1− δ) + pUSi (t)[1− ri(t)]qAi (t)

+ pASi (t)(1− δ)qAi (t),

pAIi (t+ 1) =pAIi (t)(1− µ) + pUSi (t){[1− ri(t)][1− qAi (t)]

+ ri(t)[1− qUi (t)]}+ pASi (t){δ[1− qUi ]

+ (1− δ)[1− qAi (t)]}.
(6)

We then compare the UAU-SIS dynamics under the three
different online-offline multiplex social networks.

AI

US

AS

µ

γβ

ν
δβU

U

Fig. 3. Transition probabilities between unaware and susceptible (US), aware
and susceptible (AS), as well as aware and infected (AI), in UAU-SIS dynamic
for each time step. The βU is the unaware infection probability. The γβU

is the aware infection probability. The µ is the probability of recovery. The
ν is the transition probability from unaware to aware. The δ is the transition
probability from aware to unaware.

IV. EMPIRICAL ANALYSIS

Two empirical datasets used in this work are both campus
Wi-Fi datasets, one is collected in Chinese campus (FDU13
[28]) and the other is collected in American campus (USC06
[29]). The Wi-Fi datasets record the logs of accessing to wire-
less access points (WAP) that are distributed in Fudan Univer-
sity and University of Southern California, respectively. All
of the logs in each dataset have the same format (u, t,∆t, l),
where u represents the individual u who accesses to Wi-Fi,
the t represents the beginning time of the u’s accessing to
WAP, the ∆t represents the duration of the accessing and l
represents the location of the WAP. The details of the datasets
are shown in Table I.

We convert the campus Wi-Fi datasets into the off-line social
networks. If two individuals u and v accessed the same WAP
at the same time, we assume that an interaction happened
between them, based on the geographic coincidence [30]. This
assumption may induce inaccuracies, but the reasonableness
has been supported by many previous studies [14] [31] [32]
[33]. In order to better represent the interactions between
individuals, we discretize the whole observation time NT with
∆T -long step, where ∆T depends on the scenario depicted in
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(a) (b)

Fig. 4. The complementary cumulative distribution functions (CCDFs) of interaction frequencies for each type of social tie in (a) FDU13 dataset and in (b)
USC06 dataset.

(a) (b)

Fig. 5. The average Jaccard’s coefficient versus interval time for each type of social tie in (a) FDU13 dataset and in (b) USC06 dataset.

TABLE I
STATISTICAL INFORMATION OF TWO EMPIRICAL DATASETS. NOTATIONS

ARE THE NUMBER OF INDIVIDUALS |U |, THE NUMBER OF LOCATIONS |L|,
THE NUMBER OF RECORDS R, THE NUMBER OF CYCLES N AND THE

INDIVIDUAL BEHAVIOR PERIODICITY T (DAYS).

Dataset |U | |L| R N T

FDU13 10146 1452 3825382 12 7

USC06 5185 137 808015 84 1

the dataset [33]. If ∆T is too large, the coarse granularity will
result in loss of temporal information. While a too small ∆T
introduces a lot of disturbance noise into the off-line social
network. Empirically, we set ∆T = 3 hours for FDU13 and
USC06 datasets, which is the representative time variance of
behaviors in daytime of individuals from one day to the next
[34]. A time-varying off-line social network with NT/∆T
time steps is built. If two individuals have an interaction at
time t, an edge is add into the snapshot of time step dt/∆T e.

Then, we identify the social ties by applying the social tie
classifier [14] to the off-line social networks. Here the critical
thresholds (r0, e0) generated by null models are (0.098, 2.152)

TABLE II
PERCENTAGE OF EACH TYPE OF SOCIAL TIE IN TWO DATASETS.

Dataset IR F FS S

FDU13 4.4% 1.7% 40.1% 53.8%

USC06 15.6% 1.8% 34.8% 47.8%

for FDU13 dataset and (0.002, 1.585) for USC06 dataset. The
social ties classification results of two empirical datasets are
shown in Table II. In all datasets, the percentage of S is
the largest among the four types, and the percentage of FS
surpasses that of IR&F greatly.

We further analyze the characteristics of each type of
social tie. The interaction frequency f measures the total
number of interactions between two individuals in off-line
social networks [18]. Fig.4 shows the complementary cu-
mulative distribution functions (CCDFs) P (f) of interaction
frequencies for each type of social tie. In all datasets, IR&F
contributes the highest interaction frequency because of the
close contacts among classmates in the campus environment.
The P (f) of S follows the narrowest interaction frequency
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(d) (e) (f)

(a)(a) (b) (c)

Fig. 6. The density of infected individuals at the steady state ρI versus the effective epidemic spreading rate βU/µ and the awareness spreading rate ν/δ in
UAU-SIS dynamics with different online-offline multiplex networks. (a), (b), (c) are simulated with FDU13; (d), (e), (f) are simulated with USC06. (a), (d)
have the online social network IR&F+FS; (b), (e) have the online social network All types; (c), (f) have the online social network IR&F+S.

distribution due to the completely random interactions between
strangers. In particular, the interaction frequency of FS is
medium between that of IR&F and S. The Jaccard’s coefficient
[35], which characterizes the similarity between neighbors of
two individuals, is defined as the size of the intersection of
the neighbors of two individuals, Γ(u) and Γ(v), divided by
the size of their union,

J(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

. (7)

For each individual u, we calculate the intersection of the
neighbors of u at time t and t+τ ( where t ∈ [1, T/∆T −τ ]),
Γ(u, t) and Γ(u, t+ τ), divided by the size of their union,

J(u, τ) =
|Γ(u, t) ∩ Γ(u, t+ τ)|
|Γ(u, t) ∪ Γ(u, t+ τ)|

. (8)

Then we get the average Jaccard’s coefficient of all individuals
on intervals 〈J〉(τ), which quantify the repeatability of inter-
actions. Fig.5 shows the average Jaccard’s coefficient versus
interval time for each type of social tie. In all datasets, the
average Jaccard’s coefficient 〈J〉 of IR&F and FS have promi-
nent peaks at multiples of cycle length T , indicating a strong
periodicity in repeated interactions between the individuals
with that social ties. The periodicity should be caused by the
weekly course schedules. Because of the completely random
interactions, the average Jaccard’s coefficient 〈J〉 of S is low.

V. SIMULATIONS

In this work, we fix γ = 0, which means that susceptible
individuals are completely protected from the infection when
they get awareness of the epidemic. For instance, aware

individuals will practice self-quarantine. The initial fraction of
infected individuals is 0.001 (10 for FDU13 and 5 for USC06).
All results are averaged over 1000 realizations.

We first investigate the influence of the effective epidemic
spreading rate βU/µ and the awareness spreading rate ν/δ on
the stationary density of infected individuals ρI in UAU-SIS
dynamics with the online-offline multiplex social networks.
We here fix the edge selection probability η = 0.3, µ = 0.4,
δ = 0.6. The range of the effective epidemic spreading rate
βU/µ is [0, 2.5] (infection probability βU ∈ [0, 1]) and
the range of the awareness spreading rate ν/δ is [0, 1.66]
(transition probability from unaware to aware ν ∈ [0, 1]).
Fig.6 shows that the epidemic prevalence ρI increases with
the effective epidemic spreading rate βU/µ and decreases with
the awareness spreading rate ν/δ, regardless of the dataset and
the social ties in online social network.

We find that the stationary density of infected individuals
ρi increases with the increase of effective spreading rate in
multiplex networks from USC06 much faster than that in mul-
tiplex networks from FDU13. For instance, when βu/µ = 0.6,
the stationary density of infected individuals ρi in multiplex
networks from USC06 is already close to 0.4, however, the
ρi in multiplex networks from FDU13 is around 0.2. When
the effective spreading rate is large enough, the stationary
density of infected individuals ρi increases slowly. Moreover,
we find that the epidemic threshold in multiplex networks
from USC06 is much smaller than that in multiplex networks
from FDU13. The phenomena might be caused by the higher
repetitions of the same interactions in USC06 than that in
FDU13, which we found in Section IV. As shown in Fig.5, the
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Fig. 7. The difference ρIR&F+FS
I − ρAlltypes

I between the stationary density of infected individuals in multiplex networks with online social network
IR&F+FS and that with online social network All types versus the effective epidemic spreading rate βU/µ and the awareness spreading rate ν/δ in UAU-SIS
dynamics with (a) FDU13 dataset and (b) USC06 dataset.

%

(b)
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(a)

Fig. 8. The difference ρAlltypes
I − ρIR&F+S

I between the stationary density of infected individuals in multiplex networks with online social network All
types and that with online social network IR&F+FS versus the effective epidemic spreading rate βU/µ and the awareness spreading rate ν/δ in UAU-SIS
dynamics with (a) FDU13 dataset and (b) USC06 dataset.

average Jaccard’s coefficient 〈J〉 in USC06 is larger than that
in FDU13, which implies that the repeatability of interactions
in USC06 is stronger than that in FDU13.

The stationary density of infected individuals ρI in the
online-offline multiplex networks with three online social
networks are almost the same for both FDU13 and USC06
(see Fig.6). Thus, we plot the differences of the stationary
density of infected individuals in multiplex networks with
different online social networks directly. Fig.7 and Fig.8
show the difference ρIR&F+FS

I − ρAlltypesI (i.e. the stationary
density of infected individuals in multiplex networks with
online social network IR&F+FS minus that with online social
network All types) and the difference ρAlltypesI − ρIR&F+S

I

(i.e. the stationary density of infected individuals in multiplex
networks with online social network All types minus that
with online social network IR&F+S), respectively, versus the
effective epidemic spreading rate βU/µ and the awareness
spreading rate ν/δ. We observe that ρIR&F+FS

I −ρAlltypesI and
ρAlltypesI −ρIR&F+S

I are always positive for both FDU13 and

USC06. It means that, at the same effective epidemic spreading
rate and awareness spreading rate, the epidemic prevalence
in multiplex networks with different online social networks
has ρIR&F+FS

I ≥ ρAlltypesI ≥ ρIR&F+S
I . A higher infection

fraction at the steady state implies that the suppression of
infection by the awareness in the online social network is
weaker. Hence, we could reduce the epidemic prevalence
in multiplex social networks by increasing the friendships
between strangers on the online social networks.

To verify the effect of the number of edges in the online
social networks on our results, we fix the effective epidemic
spreading rate βU/µ = 0.5, the awareness spreading rate
ν/δ = 0.2, and study the influence of the edge selection proba-
bility η on the stationary density of infected individuals ρI . As
shown in Fig.9, the epidemic prevalence ρI decreases with the
increase of the edge selection probability η in all datasets. The
epidemic prevalence ρI in multiplex networks with the online
social network IR&F+FS is always the largest, and that with
the online social network IR&F+S is the smallest. Our results
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(b)

(a)

Fig. 9. The density of infected individuals at the steady state ρI versus
the edge selection probability η in UAU-SIS dynamics with online-offline
multiplex networks. (a), (b), (c) are simulated with FDU13; (d), (e), (f) are
simulated with USC06. (a), (d) have the online social network IR&F+FS; (b),
(e) have the online social network All types; (c), (f) have the online social
network IR&F+S.

are confirmed to be independent of the number of edges in
the online social networks.

VI. CONCLUSION

Inspired by the real-world scenario, we study how social
ties in online social network affect the epidemic spreading. We
propose multiplex social network models with three different
online social networks, i.e. IR&F+FS (consist of in-roles,
friends and familiar strangers), All types (contain all four
types of social ties) and IR&F+S (consist of in-roles, friends
and strangers). We find that the epidemic prevalence increases
with the effective epidemic spreading rate and decreases
with the awareness spreading rate. The stationary density of
infected individuals in multiplex networks with online social
network IR&F+FS is the largest and that with online social
network IR&F+S is the smallest, regardless the online social
network density, the effective epidemic spreading rate and
the awareness spreading rate in UAU-SIS dynamics. It is
counterintuitive that the S social ties in online social networks
are more likely to suppress the epidemic spreading than the

FS social ties. Increasing the friendships between strangers in
online social networks could reduce the epidemic prevalence
in multiplex social networks. Our study provides a new per-
spective for friend recommendation systems in online social
media to control epidemics.
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