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Abstract—The precise dosage of insulin plays an important role
in the treatment of diabetes. To offer accurate dosage, some AI-
based auxiliary dosing systems have been proposed. Unfortunate-
ly, these schemes demand real-time health data, which is highly
relevant to the health situation of the diabetics. The traditional
personalized drug delivery frameworks for accurate dosing of
insulin always collect and transmit medical data in plaintext,
which may cause the disclosure of user privacy. Therefore, to
optimize insulin dosage and protect privacy simultaneously, we
propose a framework for an optimized insulin dosage via privacy-
preserving reinforcement learning for diabetics (OIDPR). In
OIDPR, both the additive secret sharing and edge computing
are deployed to complete data encryption and improve efficiency.
The user’s medical data is divided into secret shares uniformly
at random, then compute separately at the edge servers. During
the computation task of Q-learning, data is stored in the format
of ciphertext and processed using the proposed additive secret
sharing protocol. Finally, comprehensive theoretical analyses and
experiment results demonstrate the security and efficiency of our
framework.

Index Terms—additive secret sharing, privacy-preserving, in-
dividualization dosing delivery

I. INTRODUCTION

Diabetes is a chronic disease world widely, the number of
diabetics will increase to 693 million by 2045 [1]. To alleviate
the worsening form of diabetes, the species of medicines are
increasing correspondingly, which always involving different
mechanisms of effect and safety. Multitudinous researches
are focusing on the best ways to develop new therapies and
optimize prescribing by steering patients to the right drug at
the correct dose [2]. Insulin requirements are strictly defined,
however, in actual medical diagnosis, diabetic drug manage-
ment involves complex investigation and coordination of care
by a myriad of medical specialists. A clearer understanding of
these dynamics highlights the significance of accurate dosing

in the medical scenario and in healthcare aimed at improving
patient safety. The concept of using machine learning to
give the most appropriate drug distribution for each patient’s
condition is proposed.

In recent years, machine learning has promoted the devel-
opment of intelligent medicine [3]. Data storage faces the
risk of information leakage in the cloud server, which is the
main stumbling block that hinders the popularization of the
individualized dosing system [4]. The leaked data may be
used to infer personal living conditions, place of residence, and
even identity information, which could be used to re-identify
a person. Moreover, an adversary can use this information for
commercial or criminal purposes to gain improper benefits. If
these drawbacks are not addressed, the medical community is
unwilling to adopt machine learning as a service platform,
this puts the situation in dilemma. To popularize this new
paradigm, the patient’s personal health information should be
reserved to prevent unauthorized disclosure by the medical
service provider.

The existing medical data privacy protection mainly depends
on the following technologies. Traditional anonymous technol-
ogy, such as k-anonymity may not be suitable for medical data
desensitization. If k users are in the same location or a sensitive
area, such as a hospital, their location information may also be
leaked. Another method to preserve privacy is homomorphic
encryption (HE), which enables the decryption party can only
obtain the final result, without obtaining the message of each
ciphertext [5]. Whereas, the feature of expensive complexity
and intensive memory consumption make it unpractical in real-
world applications. Accordingly, an error-free and efficient
framework to address the privacy problem of personalized drug
dosage needs to be constructed.

To conquer the difficulty of applying privacy-preserving
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in real-time scenario, we re-construct the Q-Learning by
integrating the secret sharing scheme, in which data is stored
in the ciphertext and processed using additive secret sharing.
Accordingly, we put forward an optimized insulin dosage via
privacy-preserving reinforcement learning, namely OIDPR.

II. RELATED WORK

Machine learning has been widely used in medical, industri-
al, and national defense research. Among them in recent years,
medical research is undergoing a transformation from a “one-
size-fits-all” strategy to a precision medical method [6]. Since
the individual response to treatment varies among patient
populations, due to the prolonged nature of the treatment,
patient response may change over time, machine learning can
make accurate treatment plans for patients at the right time.

In the era of big data, the value of personal data has received
more attention [7]. How to resolve the contradiction between
the development of data value and personal privacy protection
is an urgent issue. Luo et al. [8] propose a practical framework
called Privacy Protector, and design a distributed database
composed of multiple cloud servers in this framework. Yang
et al. [9] propose to innovatively combine statistical analysis
and cryptography to provide multiple examples of the balance
between medical data utilization and privacy protection. In
order to solve the privacy leakage problem of outsourcing, Liu
et al. [10] use HE to design a privacy protection RL framework
Preyer. Unfortunately, the computing power and storage space
required by HE-based methods, including Preyer, is vast, but
also achieve unprecedented success in many challenging areas.

III. APPROACH

This section summarizes the important algorithm Q-
Learning in reinforcement learning, which is the cornerstone
of the individualized dosing policy in OIDPR.

A. Q-Learning

Q-Learning is an extensive machine learning model that
can recommend optimal strategies for individualized drug
dosages for patients with diabetes. For a standard Q-Learning
model, there are three entities, an agent, a state space set S,
an action space set A, maximization total reward. Q-Learning
tries to optimize the agent action selection for each state by
virtue of the Q-function Q(si, ai), where si ∈ S and ai ∈ A.
The Q-Value update of Q-Learning is as follows

Qnew(si, ai) = Q(si, ai)+
α[ri+1 + γ argmax

xi+1

Q(si+1, ai+1)−Q(si, ai)],

where α is the learning rate between 0 and 1, ri+1 is the
reward after performing action ai at state si, γ is the discount
factor. Moreover, ε-greedy policy is utilized in Q-Learning
to select the action for the current state. The selector uses
currently available knowledge to compute

ai =

{
argmaxa′Q(si, a′) 1 - εi
randomly select from A εi

where εi is the probability for exploration at iteration i, the
value of which is set to 1 at the beginning and decreases along
with training.

IV. SECRET Q-LEARNING FRAMEWORK

In OIDPR, HCP tries to give a precise dose to the diabetics
on the edge server through the deployed Q-Learning model.
The details of the OIDPR workflow are shown below.

1) Secure Q-Learning Model Initialization: To build OID-
PR, HCP first defines finite state set S = {s1, s2, ..., sδ} and
action set A = {a1, a2, ..., aσ}. S describes the state space of
diabetes data attributes. And A is related to possible actions
that HCP may operate. Corresponding to the states and actions,
a Q-Table Q = {(si, aj ,Q(si, aj))|si ∈ S, aj ∈ A} that stores
the quality of state-action information is built. The elements
of Q are identically initialized with “0” at the beginning.
The three sets are then randomly split into (S ′,S ′′), (A′,A′′),
(Q′,Q′′) and send to ES1 and ES2, respectively. The other
parameters sent along with them are the learning rate (α′, α′′)
and the discount factor (γ′, γ′′). In the viewpoints of ES1 and
ES2, the secret shares are just a mass of random values.

2) Train Data Outsourcing: To train OIDPR, HCP collects
historical state-action data of the whole diabetics as H =
H1

⋃
H2

⋃
...

⋃
Hα according to the time sequence. Based on

the definition of S and A, we can build a very long state-
action sequence N about the diabetics with H. Consider-
ing training efficiency, N is then split into smaller batches
N = {N1, N2, ..., N%}, where Ni = {ni,1, ni,2, ..., ni,τ},
0 < i < %, τ corresponds to the time sequence and ni,j
= (si,j ,〈ai,j〉,si,j+1,〈ri,j+1〉). ri,j+1 is the reward for the
operating action ai,j at state si,j . And N is randomly split
into shares N ′ and N ′′ and send to ES1 and ES2 for training.
In N ′ and N ′′, where n′i,j = (s′i,j ,〈a′i,j〉,s′i,j+1,〈r′i,j+1〉) ∈ N ′,
n′′i,j = (s′′i,j ,〈a′′i,j〉,s′′i,j+1,〈r′′i,j+1〉) ∈ N ′′, and ni,j = n′i,j + n′′i,j .

3) Privacy-Preserving Decision Making: To obtain a
decision from the trained OIDPR, UP splits their current
state sq into uniformly random secret shares (s′q , s

′′
q ) and

sends them to ES1 and ES2, respectively. After completing
the interactive protocols of OIDPR, ES1 and ES2 send back
the optimal action decision (a′q , a

′′
q ), UP computes aq = a′q +

a′′q to recover the plaintext of final output.

V. PERFORMANCE EVALUATION

In this section, comprehensive experiments are operated to
prove the efficiency of OIDPR. The experiment data are online
available historical data from a diabetes dataset in the UCL
machine learning database.

A. Performance Analysis of OIDPR

It can be discovered that four key factors affect the opera-
tional efficiency of our protocol, namely, state number δ, action
number σ, experience record length τ and number of iteration
Rmax. Therefore, we evaluate the performance changes of the
three interaction protocols through four factors. Note that, in
the following experiments, the default setting is that the data
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(a) Communication Overhead with δ (b) Communication Overhead with σ

(c) Runtime with τ (d) Runtime with Rmax

Fig. 1. Performance Evaluation of Interactive Protocols

length, ε = 0.1, α = 0.1, γ = 0.7, % = 10, τ = 3, and Rmax =
3, while experimenting the performance change with δ and σ,
we set τ = 1 and Rmax = 1, which correspond to one times
Q-Learning computation process cost.

From Fig. 1(a) and Fig. 1(b), it is observed the com-
munication overhead of the interactive protocols SecUq ,
SecQ−learning, and SecRep increase with δ and σ. From
Fig. 1(c) to Fig. 1(d), SecQ−learning and SecRep increase
the running time with the augment of τ and Rmax. Along
with the increment of states number, OIDPR needs to call
SecCom and SecMul multiple times to locate the target state
in the sub-protocols. Therefore, as shown in Fig. 1(a), the
interaction messages and communication overhead of the three
upper-layer interaction protocols increase correspondingly. As
can be seen in Fig. 1(b), the communication overhead also be
increased at a similar rate. This is because, according to the
further experimental results on the performance of the sub-
protocols, it has basically the same effect on the efficiency of
the sub-protocols. As can be seen from Fig. 1(c) to Fig. 1(d),
the experience memory pool parameters will also increase the
calculation and communication costs of OIDPR. Nevertheless,
the increase is caused by the increment of invocation times for
the basic protocols.

B. Effectiveness Analysis of OIDPR

We compare the efficiency of OIDPR with the homomorphic
encryption (HE) based method in [10] in Table II. Here, the
setting of key parameters is δ = 10, σ = 10, %= 10, τ = 10,
Rmax = 2. The most important reason for this phenomenon
is that, for OIDPR, data encryption and decryption only need
to generate a few uniform random values or perform simple
addition. However, for HE, a large number of time-consuming
exponential operations or other mathematical operations are
required.

TABLE I
PROTOCOL RUNTIME AND COMMUNICATION OVERHEAD COMPARISON

Runtime(s) Communication Overhead(KB)
Our Scheme [10] Our Scheme [10]

SecAct 0.103 31.39 119.1 264.7

SecEle 0.224 81.2 238.2 264.7

SecMax 0.025 0.17 0.9 1.75

SecGry 0.140 32.7 123.3 280.4

SecUq 0.543 184.8 810.3 1545

SecQ−learning 1.732 714.1 2231.7 6180

SecRep 2.045 1011 3582.3 8734

VI. CONCLUSION

In this paper, we propose a lightweight Q-Learning-based
additive secret sharing protocol that can be used in the privacy
protection system of personal data of diabetic patients, named
OIDPR. This system uses edge servers to reduce model
updates and drug dose detection operation completion times.
The proposed additive secret sharing makes data encryption
and decryption only need additive operations. It reduces the
demand for computing power and guarantees efficiency and
privacy protection in terms of practicality.
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