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Abstract—Since Network Function Virtualization (NFV) de-
couples network functions (NFs) from the underlying dedicated
hardware and realizes them in the form of software called
Virtual Network Functions (VNFs), they are enabled to run in
any resource-sufficient virtual machines (VMs) and offer diverse
network services by service function chains (SFCs). Given the
complexity and unpredictability of the network state, we propose
a deep reinforcement learning (DRL) based online SFC placement
method named DDQP (Double Deep Q-networks Placement).
Meanwhile, VNFs are vulnerable to various faults such as soft-
ware failures. Thus, we backup standby instances to enhance the
fault tolerance of our model, and DDQP automatically deploys
both active and standby instances in real-time. Specifically, we
use DNN (Deep Neural Networks) to deal with large continuous
network state space. In the case of stateful VNFs, we offer
constant generated state updates from active instances to standby
instances to guarantee seamless redirection after failures. With
the goal of balancing the waste of resources and ensuring service
reliability, we introduce five progressive schemes of resource
reservations to meet different customer needs. Our experimental
results demonstrate that DDQP responds rapidly to arriving
requests and reaches near-optimal performance. Specifically,
DDQP outweighs the state-of-the-art method by 16.30% higher
acceptance ratio with 82x speedup on average.

Index Terms—Deep Reinforcement Learning, Service Function
Chain, Network Function Virtualization, Fault Tolerance

I. INTRODUCTION

Currently, given that networks are filled with a massive and
ever-growing variety of NFs which coupled with proprietary
devices, the difficulty of network management and service
provision raises rapidly. NFV changes such a situation by
decoupling NFs from the underlying dedicated hardware and
realizing them in the form of VNFs [1]-[3].

Conventional hardware NFs have fixed physical locations;
on the contrary, VNFs can be placed in any resource-sufficient
virtual machines (VMs) [1]. And usually, a sequence of NFs
has to be processed in a pre-defined order which is known as
service function chain (SFC) [4], [5]. Thus, a critical problem
appears, that is, how to determine the positions for deploying
SFCs so that the service requirement can be satisfied. Such a
problem is proved to be NP-hard in general [6].

When deploying SFCs, the reliability of the model is
essential. Since VNFs are software running in data centers
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(DCs), they are vulnerable to various problems such as con-
nectivity errors and software faults [7]. Adopting an additional
instance of each SFC instance as a backup helps to achieve
the reliability of the model [8], [9]. However, reserving no
resources for the standby instance in advance may fail in
starting it; in the opposition, DC resources will be wasted
for not all SFCs always encounter problems simultaneously.
Therefore, balanced fault-tolerant deployment schemes are
required, which would relax the rigid requirement of an entire
dedicated copy per instance and work well in most cases.

However, the network state space shows its complexity for
covering a great deal of information including the DCs, link
edges and incoming requests. Specifically, DCs and edges
are always together with their corresponding information such
as computing resources. The incoming requests also host a
body of characteristics. Furthermore, given the fault-tolerant
placement, deploying standby instances makes this continuous
decision problem even more complex. Nevertheless, network
state typically exhibits real-time unpredictable changes due to
stochastically arriving requests [10], [11], thus an appropriate
online model is needed to acquire the dynamic network state
transitions. However, general methods own great complexity
and cost. Thus, we are requested to offer an online method to
handle the huge and dynamic network state space.

To conclude, we want to reach three major targets, which
are: (1) showing high performance brought by placement, (2)
handling complex and large network state space in real-time,
and (3) offering reliable deployment schemes flexibly.

Differing from existing works, we reach these three goals
at once. We propose a deep reinforcement learning (DRL)
based online method to flexibly get the dynamic network
state transitions and jointly optimize SFC active and backup
placement, which solves the first and second problems. For the
third task, we propose five progressive schemes of resource
reservation to meet different customer needs and balance the
tremendous waste of duplicating all the entire SFC instances
and the unreliability of reserving no resources. Also, we show
our deployment design example in Fig. 1. In particular, in
the case of malfunctions, we transfer the states generated by
stateful VNFs during traffic processing to standby instances to
guarantee seamless request redirection.

In summary, we study the online fault-tolerant SFC place-
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Fig. 1. An example of fault-tolerant placement design. NFV providers can
place multiple VNFs of one SFC at the same DC if it has sufficient resources,
which is known as VNF consolidation [12]. In particular, we have the state-
updating routes to transfer the generated states for guaranteeing seamless
request redirection.

ment, which is a timely important problem in NFV. The
contributions of this paper are as follows:

o« We apply the model of DDQN to deploy both active
and standby SFC instances concurrently and in real-time.
Our approach named DDQP provides a pretty solution to
handle dynamic network variations and various service
requests. To our best knowledge, we are the first to study
the online fault-tolerant SFC placement problem.

o To provide a fault-tolerant deployment solution, we pro-
pose five progressive schemes of resource reservations
to satisfy customer needs and then compare their perfor-
mance in multiple dimensions.

o Experiments show that our proposal not only surpasses
the state-of-the-art greedy method by 16.30% higher
acceptance ratio but also gains 82x speedup on average.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the problem
formulation and MDP model. In Section IV, we formally pro-
pose our algorithm design. Section V presents the evaluations
and at last, Section VI concludes the paper.

II. RELATED WORK

Online SFC Placement. There has been a large body of
work that studies the VNF placement problem tending to
reach different objectives in varying scenarios [13]. Usually,
mathematical programming methods such as Integer Linear
Programming (ILP) [14] and Mixed ILP (MILP) [15] are
used to tackle it. For instance, Bari et al. [6] formulated the
problem as an ILP model, in which the goals of minimizing the
OPeration EXpenses (OPEX) and maximizing the utilization
are considered. However, in the large scale networks, the
execution time of mathematical solutions grows exponentially
with the network size, resulting in poor performances [1].
Besides, they do not consider that VNFs are always chained as
SFCs, or even that requests come in real-time, which causes

network traffic fluctuations [11]. Xiao et al. [11] tackled it
by introducing a Markov decision process (MDP) model to
acquire the dynamic network state transitions. Although this
approach solved the problem of unpredictable network state
space and offered an online approach, it takes no care of the
traffic routing and service reliability.

Fault-tolerant SFC Placement. Nevertheless, the reliability
of the service is also crucial. NFs can suffer from temporary
unavailability due to misconfiguration or software and hard-
ware failure [16]. Through redundancy, it is possible to offer
schemes guaranteeing high levels of reliability. In the case of
malfunctions, states generated by stateful VNFs during traffic
processing need to be transferred to standby instances for
guaranteeing seamless request redirection. However, Carpio
et. al. [17] studied the joint active and standby stateless VNF
placement problem without considering VNF state transfers.
Yang et. al. [18] jointly optimized the objectives, but several
challenges remain. Their work could not ensure completely
reliable service and would waste abundant resources. Besides,
its incapacity to deal with the real-time requests makes its
performance poor. Thus, an effective solution to schedule both
active and standby instances concurrently is urgently needed.

DRL for NFV. Previous solutions of optimizing SFC
placement such as [6] have the problem of overspending in
dealing with the complex network states. Another important
paradigm is to leverage machine learning mechanisms. For
example, the authors in [11], [19] have proposed DRL-based
approaches to handle the large network state space in SFC
placement problem. However, existing efforts either neglected
fault tolerance or addressed the fault-tolerance problem in an
offline fashion. Our model solves the online fault-tolerant SFC
placement for the first time, which automatically learns and
acts to arriving requests in real-time. In particular, we decide
the placements of both active and standby instances with
different levels of resource guarantees, which can discriminate
customized SFC availability.

III. MODEL AND FORMULATION

In this section, we begin with the NFV structure description
and fault-tolerant SFC placement problem formulation with
the objective and constraints. Then we elaborate on how to
use the MDP model. The key notations are listed in Table 1.

A. Problem Formulation

In an NFV network structure, not the entire DC is available
for us and only part of the permissions are opened leading to
finite available resources [3]. Thus we represent the network
as a connected graph G = (V, E), where V is the set of DCs,
and F is the collection of edges (or links) connecting each
of two DCs, Ve = (v1,v2) € E,v1,v9 € V. Every DC has a
computing resource capacity, which is denoted as C,,. And W,
and L, represent the bandwidth and communication latency of
edge e € E respectively.

Next, we use R and R to denote the sets of real-time arriving
requests and their standby instances respectively. Each request
r € R needs to be steered through its service-related SFC and
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TABLE I
KEY NOTATIONS

Symbol  Description

G The graph G = (V, E) representing the underlying NFV
network

\%4 The set of DCs within the network

FE The set of edges (or links) between the DCs, Ve = (v1,v2) €
E,vi,v2 €V

R The set of service requests

R The set of standby instances

Le The communication latency of edge e € E

We The bandwidth of edge e €

Cy The computing resource of DC v € V

Dy The resource demand D, = (D¢, DL, Db, DL) of service
request » € R in terms of computing resource, throughput,
state updating throughput and latency

Sr Source of request r € R

dy Destination of request » € R

h The path occupied by service request r € R from its source
sy to destination d,- via the DC on which it is deployed

b The state updating path occupied by service request 1 € R

from the DC on which it is deployed to the DC on which its
backup is deployed

Te.h 1 if edge e € h, 0 otherwise
tr The actual processing latency of request » € R
Pr 1 if request € R is accepted, O otherwise
ay - 1 if request » € R is in service at time slot 7 on DC v, 0
otherwise
by 1 if the standby instance of request » € R starts successfully

when its active instance is broken, O otherwise

has its computing resource, transition throughput, and state
updating throughput demand and latency limitation, denoted
by D, = (D¢, Dt, DY, D). And we denote the path occupied
by request » € R from its source s, to destination d, via
the DC on which it is deployed as h,. Meanwhile, h’ is
used to indicate the state updating path. And we use z. , to
indicate whether edge e is contained by path h. Besides, for
each request r € R, we use a binary variable p, to indicate
the deployment decision of each SFC. Specifically, if request
r € R can be accepted, p, = 1; otherwise, p, = 0.

To handle the real-time network variations caused by
stochastic arrival and departure of requests, we use the time
slot 7 to denote the integral multiple of a constant period time
A (e, 7 =nxA, n €N, A is configurable, e.g. A =1
ps, 1 ms or 1 s). In particular, we use binary a;, . to indicate
whether request 7 € R is in service on DC v at time slot 7.
Thus we use binary a. to denote whether it is still in service:

VreRoal =Y aj, (1)
veV
Meanwhile, we introduce binary b, to indicate whether the
standby instance of request r € R starts successfully when its
active instance is broken. Specifically, if backup of request r
can be activated, b,, = 1; otherwise, b, = 0.

Now we present the mathematical formulation of the fault-
tolerant SFC placement problem. We begin with the con-
straints and then the objective together with some insight.

First, NFV providers can place multiple SFCs at the same
DC if it has sufficient resources [12]. Since we consider
backup resource reservations, the total resources occupied by

active instances and reserved for standby instances should not
exceed the capacity of the current DC. As we propose five
schemes for backup resource reservations, we denote it as
C7°° here and will discuss it in the following sections. Thus,
we state the resource constraint on DCs in inequality (2).

YweV: > alDf+Cp <G, 2)
reRUR

Second, we introduce the latency constraint. We use ¢, to
indicate the processing latency of request » € R, while the
total latency should be the sum of processing latency and
the communication latency on links. If a request » € R is
accepted, its response latency can not exceed its limitation D..
Thus, we state the end-to-end latency constraint as follows:

Vre RUR:t, +al » L.< D 3)
ech,

Third, we explore the bandwidth resource constraint. Since
the throughput hosted by link contains the bandwidth occupied
by SFC transition and used for the state updating, the total
occupation demand of all requests passing through link edge
e = (v1,v2) € E cannot exceed its limits. Thus we have:

Ve€ E: Y  alwenDi+ Y alwe Dl <We (4)
reRUR reR

With all these constraints, we have the objective.

Objective: Maximize the number of accepted requests,
which can be defined as maximizing the acceptance ratio
and expressed as:

ZTERPT
|R| (5)

5.t.(2),(3), (4)

Insight: Under the premise of ensuring the service relia-
bility, this objective intuitively demonstrates excellent perfor-
mance of accepting a large number of requests. With a higher
acceptance ratio, we gain larger throughput of requests and
better service which shows great QoS.

B. MDP Model

Since the online fault-tolerant SFC placement is a contin-
uous decision problem, in order to address it and handle the
network state transitions, we formally present the MDP model,
which is typically defined as < S, A, P, R,~ >, where S and
A are the sets of continuous states and discrete actions respec-
tively, P : S x A x S is the transition probability distribution,
R : S x A is the reward function, and + € [0, 1] is a discount
factor for future rewards.

State Definition. For each state s; € S, we define it as
a vector (VZ, Ei, F;). We first label each DC in the network
with an integral index j = 1,2,...,|V| and each edge with
k= 1,2,...,|E. V; = (Vi,V§,.. "Vli/l) represents the
current state of each DC. Vj € [1, [V[], Vi = (V29,Vial, Vid)

max

res
indicates the initial resources, resources occupied by active in-

stances and resources reserved for standby instances of DC v;
respectively. £ = (Ei, Ej, ..., Efy) represents the current
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Fig. 2. The DDQP design structure. There are the agent and the environment in the model. The NFV agent builds a replay buffer. During training, samples

are randomly drawn from the experience pool to replace the current samples.

Then, the learner trains on them and updates the sample network. And at every

C step, the parameters of the target network are updated through the sample network. The NFV network environment includes the current information of the
environment. Depending on the current state, the agent chooses an action. Then the environment feeds a reward back and moves to the next state.

state of each edge. Vk € [1,|E|], Ei = (E}*, ELk,  Ebk)
indicates the latency, remaining bandwidth and bandwidth
reserved for standby instances of edge e severally. F; =
(Cr,, Ty, Ly, T LP Sy, Dy,) reveals the characteristics of
the current SFC being processed, where C,.; is the computing
resources demand, 7)., is the throughput demand, L,, is the
transition latency limitation, 7}, is the state-updating through-
put demand, L% is the processing latency and S, and D, are
the source and destination respectively. We design such state
space to perceive the current state of the environment.

Action Definition. We denote action a € A as an ordered
pair (iq,1), where iq,3 € {1,2,...,|V]}. In particular, we
place the active instance on the DC v;, while standby instance
on the DC v;,.

Reward Function. Since we want to maximize the number
of accepted requests, we define the reward function as whether
the SFC is successfully deployed. We adopt a simple but ef-
fective way of using the active number 1 to reward triumphant
actions while the negative number -1 to punish failing actions.
The mathematical formulation of the reward function is given
considering two different cases as the time slot moves on:
1, if request r; is accepted,

(6)

r(s,a) = ; L
—1, if request r; is rejected.

State Transition. As shown in Fig. 2, the MDP state
transition is defined as (sy, at, ¢, S¢11), where s, is the current
network state and a, is the action taken for dealing with the
deployment of SFCs. And then reward r; is fed back, and s¢41
is the new network state. The MDP state transition will also
be expounded in I'V-B.

IV. ALGORITHM DESIGN

To optimize fault-tolerant SFC placement, we begin with
the architecture introduction together with its neural network

1

design. Then we have how this adaptive online DRL approach
works while deploying. After that, we introduce the DDQN
based training procedure of our design. Finally, we present
five schemes to adapt to different scenarios and user needs.

A. Architecture Design

As shown in Fig. 2, there are two elements in the structure,
agent and environment. The DDQP agent builds a replay
buffer to remove data dependencies. During training, samples
are randomly drawn from the experience pool to replace the
current samples. Then, the learner trains on them and updates
the sample network. And at every C step, the parameters of the
target network are updated through the sample network. The
NFV network environment includes the current information of
topology and being processed SFC. Depending on the current
state, the agent chooses an action. Then the environment feeds
a reward back and moves to the next state.

With MDP, we can automatically and continually charac-
terize the network traffic variations. Next, we need to find
an effective and efficient policy that can automatically take
appropriate actions in each state to achieve a positive reward.
Thus, we propose our design to online deploy SFCs with
service availability guarantee named DDQP.

Generally, DRL approach can be classified into two cate-
gories, one is the value-based approach (e.g., deep Q-networks
(DQN) [20]) and the other is the policy-based approach (e.g.,
policy gradient [21]). In the SFC deployment problem, action
space is discrete and we hope algorithm updates every action
and learns rapidly. Under these circumstances, the value-based
approach Double DQN (DDQN) [22] is adopted. The general
goal is to learn a policy 7(als) to maximize expected return.
Q-function Q™(s,a) is used to evaluate it. And calculating
Q™ (s,a) is realized by value function approximation using Q-
network (4 (s,a), which is always a function with parameter
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¢, such as deep neural network (DNN) [7]. In the large state
space and discrete action space, DNN behaves well and suits
our circumstances. Thus, we have our DNN structure with an
input layer, an output layer and 3 hidden layers each with 512
neurons to process the hidden information.

As shown in Fig. 3, the input layer is the state vector
and the output layer is the ) value of each action at current
state. In particular, as mentioned in state definition, we want
to get 3 features of each DC, 3 features of each link and 7
features of the current SFC being processed. Thus, the number
of neurons in the input layer should be 3(|V| + |E|) + 7.
Activation function Leaky ReLU [23] is also used between
layers. Since we adopt a negative return in the reward, ReLU
[24] is suitable for it reaches the activation value just with
a threshold other than complex calculations. However, it is
fragile while training. Thus, Leaky ReLU is proposed to solve
this dying-ReL.U problem and adopted in our model.

B. Deployment Approach

We introduce how the DDQP works as the time slot 7 moves
on in Fig. 4. As we can see, there are two cases as the time
slot moves on: (1) Intra time slot, in which the requests
arrive sequentially. The DDQP agent deals with these arriving
requests in chronological order. In this case, an MDP state
transition happens when a request is deployed or rejected. (2)

Inter time slot, which indicates the moment between every
two time slots. In this case, no action is taken and we just
update the network state. Now we elaborate each case in turn.

Intra time slot. As shown in Fig. 4, two requests arrive (i.e.,
SFC; and SF(C5) at time slot 7. The DDQP agent firstly
rescans all the DCs, starts standby instances whose active
instance has damaged and removes timeout requests, then
refreshes the network state. Then it receives these two arriving
requests successively based on the arriving time. At state si,
the DDQP agent observes the network state and calculates
the Q-network Q4(s, a) according to every a € A. Then we
assume the action (2,7) owns the biggest value of Q4(s,a)
and is returned to the agent. Thus the action (2,7) is applied
to place SF'C'y on the selected candidate DCs, specifically the
former indicates the active instance DC index while the latter
shows the standby index. As a result, SF'C; is successfully
deployed at state s; with r; = 1 as a reward for the action.
At state so, since there is no DC having sufficient resources to
place SFCs, or the bandwidth or latency constraints can not
be satisfied, the returned action (3,6) can not work and thus
SF(Cs is rejected. Then, reward -1 is fed back to the agent as
a punishment and then the model moves to the new state ss.

Inter time slot. As shown in Fig. 4, at the time slot 7, the
DDQP agent has rejected SF'Cy. Between the time slot 7 and
7+ 1 is an inter time slot. The DDQP agent only executes the
following procedures: rescanning all the DCs, starting standby
instances whose active instance has damaged and removing
timeout requests, then updating the network state.

C. DDQN Based Training Procedure

We adopt DDQN to directly optimize the quality of SFC
deployment by calculating the Q-network (Q4(s,a) of the
candidate actions. With DDQN, our target is to learn the
parameter ¢ to let Q-network Q4 (s,a) approach Q-function
Q™ (s,a). An episode of training is defined as a time slot and
thus consists of a sequence of MDP state transitions. During
each episode, all the state transitions are successively stored
in a buffer and used for training until this episode ends. The
target function is defined as:

Y =r+9Q(s argmaxQ(s',a;0):67) ()

where r and s’ are the reward fed back and the state of the
next time, # and 6~ are weights of Q-function ) and target
Q-function Q respectively.

The DDQN based training procedure is listed in Algorithm
1. In each episode, we initialize the NFV environment. And
in each MDP state transition the agent processes one SFC
and gains a reward r;. Specifically, in order to balance the
exploitation of policy and the exploration of the environment,
we adopt the e-greedy method when choosing actions. Also,
we benefit from the Double method to train function ) and Q
with different parameters for it greatly alleviates the problem
of overestimation and shows great performance.
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Fig. 5. The five progressive schemes we propose and an example of DC resource reservations. The Level 0 scheme doesn’t build any standby instance. The
Level 1 method is an original backup method that doesn’t consider the current remaining resources. The Level 2 method considers the current remaining
resources but can fail in case of starting up a standby instance after deploying a new active instance. The Level 3 method considers the maximum demand
among all the standby instances on the current DC and link but may fail if more than one backup wants to start up. The Level 4 method will not fail in any

case for it reserves all needed resources and bandwidth in advance.

Algorithm 1 DDQN Based Training Procedure
: Begin: Initialize replay memory D to capacity N
Initialize Q-function () with random weights 6
Initialize target Q-function Q with weights 6~ =6
for episode < 1, M do
Initialize the NFV environment and let state s <+ s
and preprocessed sequence ¢1 = ¢p(s1)
for t < 1,7 do
7: Select an action a; randomly with the probability
e, otherwise select action a; = max, Q(d(s¢), a;0)
Execute action a; and observe reward 7
9: Transfer the state to s;4; and preprocess ¢;11 =
O(5141)
10: Store transition (¢¢, at, ¢, ¢e+1) in D
11: Sample random minibatch of
(¢4, a5, 75, dj41) from D
12: if episode terminates at step j + 1 then
13: Set y; =
14: else
15: Set a’ = arg maxg/ Q(¢j+1,a,0)
16: Set y; =71 +7Q(dj41,a307)
17: end if
18: Perform a gradient descent step on (y; —
Q(¢j,a;;0))* with respect to the network parameters 6
19: Every C' steps reset Q = Q
20: end for
21: end for

AN

transitions

D. Our Proposed Backup Schemes

In order to meet the different needs of customers and adapt
to different scenarios, we design five progressive schemes
range from Level O to Level 4. We picture them in Fig. 5
and now introduce these schemes in detail.

Request rejected
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~
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Time expired eclpimed
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/

Expired

Time expired

-

Fig. 6. SFC state transition.

Let’s start with our definition of SFC states together with
its state transition. As shown in Fig. 6, we divide the states
into six categories, namely, undeployed, active, failed, backup,
broken and expired. Specifically, once a request comes, we
initialize the SFC as undeployed. Through our decision, we use
active and failed to express whether the deployment succeeds
and the active instance starts. When the active instance fails,
we have backup if the standby instance starts up successfully
and runs well. However, if both active and standby instances
cannot run when the deployment is successful, that is to say,
there is no standby instance or even the standby instance is
damaged, we set this state as broken. If it meets the condition
of time-expired at any time, we use expired to indicate it.

Now we go through each scheme in detail. We refer to
the original non-backup scheme as Level 0 and the backup
scheme without considering resource reservation as Level 1.
As mentioned earlier, the system is fragile and prone to
malfunction in the Level O situation. The Level I method is
also prone to failure when there are many active instances
deployed on the backup DC and a standby instance wants
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to start up. The Level 2 method is designed by considering
whether DC has sufficient resources at present. The difference
in effect between the Level I and Level 2 methods is minor
because the Level 2 method will also fail in cases of a new
active instance is deployed on the backup DC and one standby
instance wants to start up. Hence, we have the idea of Level
3. As for DCs, we reserve the maximum demand of resources
among all the standby instances deployed on it. And we do
the same reservation towards every link. However, it may
still fail if there are more than one backups that need to be
activated. Thus, Level 4 is proposed and it has the highest level
of fault tolerance since it reserves all the needed resources,
including DCs and link bandwidth in advance. Nevertheless,
its reliability is conditional on the sacrifice of half of the
resources. Thus we can say, the progressive schemes are a
tradeoff between the level of fault tolerance and the resource
efficiency. An appropriate scheme can be chosen according to
customer needs (e.g. SLA). We will give the evaluation results
in the next section.

V. EVALUATION AND ANALYSIS
A. Simulation Setup

Network topology: Our evaluation experiments are based
on five DC topologies, which are Abilene, ANS, AboveNet,
Integra and BICS [25]. These topologies are located in the
United States, Europe and Japan, and several of them also
span these regions. The number of DCs in these topologies
ranges from 9 to 33. Each DC is connected to one or several
other DCs. We assume that in each of the above topologies,
the computing resources of DCs used to place VNFs in each
one range from 60, 000 unit to 80, 000 unit, the bandwidth of
each link ranges from 400Mbps to 800M bps, and the delay
of each link ranges from 2ms to Hms.

SFC of requests: According to [13], different VNFs are
simulated for composing SFCs, including 5 typical VNFs (i.e.,
Firewall, proxy, NAT, DPI, and Load Balancer [26]). Further,
the computing resource demand of a SFC is the sum of the
computing demands of its contained VNFs (the number of
contained VNFs is randomly selected between 1 and 7) and
ranges from 3750 unit to 7500 unit. The processing delay
of a packet for each SFC is randomly drawn from 0.863ms
to 1.725ms [26]. Each request r is generated by randomly
selecting its source s, and destination d,. from G. Each request
has a delay requirement ranging from 10ms to 30ms [27]. And
we suppose the TTL of each request ranges from 5s to 10s.
Finally, we simulate 3000 requests in 300 time slots.

Baseline and schemes compared: We compared DDQP
with Random Greedy (RG) algorithm, Best-fit Greedy (BFG)
algorithm [18] and Near Optimal Sorting Greedy (NOSD)
algorithm. As we are the first to study the online fault-tolerant
placement, we changed these three offline algorithms to online
algorithms for evaluation. The RG algorithm is a time-efficient
algorithm, but its performance is poor. It randomly chooses
resource-sufficient DC to deploy active instances. The BFG
algorithm is a fault-tolerant placement algorithm, which is
a best-fit algorithm. The intuition behind best-fit is simple:

by returning a DC whose remaining resources are closest to
what the user asks, it tries to reduce wasted resources. BFG
searches globally for a DC with least remaining resources
that can meet the needs to place the active instance, and by
choosing a shortest updating link to a closer DC to place the
standby instance. This design reduces the waste of resources
and the overhead of updating, and thus has better performance
than the RG algorithm. NOSD is an improved algorithm
based on the BFG algorithm. In the selection of standby
instances, it takes the guarantee of the post-failure routing into
consideration, which makes the selection of standby instances
more reasonable. Since there is no optimal solution to this
online decision problem, we hold that NOSD has a near-
optimal performance for it always chooses the guaranteed best-
fit instances, but its time overhead is also the largest. We
compared the DDQP algorithm with these three algorithms,
and the results of the comparison will be analyzed later.

Simulation platform: We use a Python-based simulation
framework, which mainly contains the Pytorch library to build
neural networks. All experiments are based on a workstation
with 32GB RAM and an Intel (R) Core (TM) i7-5930K CPU,
which has 6 cores and 12 threads.

B. Performance Evaluation

Acceptance ratio: We compared the acceptance ratios of
the DDQP, RG, BFG and NOSD algorithms in five different
topologies and adopted the RG algorithm as the baseline. From
the comparison results in Fig. 7, we can see that DDQP has
improved the acceptance ratio by 62.14% on average compared
to RG and 16.30% to BFG, and finally, from the comparison
between the DDQP and the NOSD algorithm, it can be seen
that DDQP has a near-optimal performance.

Throughput: We also compared the throughput of them.
From the comparison results in Fig. 8, we can find that com-
pared with the RG algorithm, DDQP improves the throughput
by 61.35% on average, and 16.04% compared with the BFG
algorithm. Finally, it can be seen from the comparison between
DDQP and NOSD that DDQP has a near-optimal performance.

Service availability: We introduce the sum of the actual
service lifetime of each SFC to indicate the service availability,
because backup can increase the lifetime of the instance which
is likely to fail. Specifically, both the number of accepted
requests and the lifetime of every single request affect this
parameter. And the comparison results of these four algorithms
are shown in Fig. 9. Thus, we can conclude that DDQP has im-
proved the service availability by 68.23% on average compared
to the RG algorithm and 16.30% to the BFG algorithm, and
finally, from the comparison between the DDQP and NOSD
algorithms, DDQP shows a near-optimal service availability.

Training effciency: To demonstrate our training efficiency,
we compared the DDQP with the RG, BFG and NOSD
algorithms on the AboveNet topology. All our comparison
results were obtained under the Level 3 scheme. During
training, we dynamically change the learning rate to speed
up the learning process. It can be seen from the comparison
results in Fig. 13 that when the DDQP algorithm is trained
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to the 19th episode (each episode takes about one minute), its
average accepted number exceeds the RG algorithm; when it
is trained to the 121th episode, its performance exceeds the
BFG algorithm; and when it is trained to the 676th episode, the
average accepted number of it equals to the NOSD algorithm.
In the end, DDQP started to converge when it was trained
to about 1200th episode, and we must note that this training
time cost is negligible compared to the time between every two
changes in the network topology. Generally speaking, DDQP
converges fast during training. As the number of DCs in the
NFV network and the complexity of the network topology
increase, it takes more time to converge.

Online runtime cost: We compared the online runtime
costs of the DDQP, RG, BFG and NOSD algorithms in five
different DC topologies. Although DDQP spends some time
to train the neural networks, after the training is completed
and deployed, it only needs to use the NN for reasoning.
And without having to consider the complex calculations

ANS  AboveNet Integra

Running time cost between different Fig. 15.

. 77
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BICS Level 0 Levell Level2 Level3 Level4

Service availability between different
schemes.

of DCs and links in NFV networks to make decisions, the
DDQP algorithm has extremely low time overhead. From
the experimental results in Fig. 14, we can see that DDQP
saves about 88.78% of running time overhead compared to
the RG algorithm, 98.81% compared to the BFG algorithm
and 98.86% compared to the NOSD algorithm. That is to say,
Our speed is 7.91 times faster than the RG algorithm, 82.71
times faster than the BFG algorithm, and 86.57 times faster
than the NOSD algorithm. Thus, we have achieved a pretty
performance in running speed.

Evaluation on backup schemes: We use the Level 0
scheme which has no backup as the baseline. From the
comparison results of multiple schemes in Fig. 10, 11, it can
be seen that, because the Level 0 scheme saves the reserved
resources occupied by the standby instances, it has a higher
acceptance ratio and throughput. As seen in Fig. 12, we intro-
duce fault tolerance to represent the reliability of the service
by calculating the startup success ratio of standby instances,
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and these five different levels also progressively increase the
requirements for fault tolerance. Taking these considerations
into account, we assess the comprehensive indicator of service
availability in Fig. 15. The service availability of Level 0 is
relatively low because no backup leads to a shorter lifetime for
each SFC instance. Similarly, Level 4 reserves more resources
for backup and results in fewer requests being accepted,
which also leads to a reduction in service availability. As
shown in Fig. 15, we think service availability reflects the
trade-off between performance (acceptance ratio, throughput)
and reliability (fault tolerance) for different schemes, which
reflects the quality of a scheme when the user does not
explicitly specify the requirements.

Actually, we want users to choose the appropriate scheme
based on their demands. For example, if the user has very
strict requirements for fault-tolerance, we will recommend the
Level 4 scheme. Otherwise, according to Fig. 10, 11 and
12, we will recommend using Level I, Level 2 or Level 3
scheme to get a better balance between performance and fault
tolerance. In Fig. 12, we can see that these three schemes
have significantly improved the fault-tolerance compared to
the Level O scheme. If users think their NFV placement
environment is not necessary for backup, then they can choose
the Level 0 scheme to acquire a higher acceptance ratio.

VI. CONCLUSIONS

In this paper, we present a deep reinforcement learning
solution named DDQP for the optimization of the SFC de-
ployment problem. Specifically, we use different weights to
train action-value function and target action-value function
with the purpose of solving the overestimation problem. Our
design not only gets the actual real-time network traffic
characteristics and responses fast in data centers, but also
gains great improvement on acceptance ratio and service
availability of requests. To minimize the resource wasted by
reservation, we also propose five progressive schemes to match
customer needs. Through our experiments, we show that our
methods scale well in diverse scenarios and adapt well to
large continuous state space and action space. To conclude,
our proposal outweighs the state-of-the-art method by 16.30%
higher acceptance ratio and 82x speedup on average.
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