
Fast Reinforcement Learning Algorithms for
Resource Allocation in Data Centers

Yuang Jiang∗, Murali Kodialam†, T. V. Lakshman†, Sarit Mukherjee†, Leandros Tassiulas∗
∗Yale University, New Haven, CT, USA. Email: {yuang.jiang, leandros.tassiulas}@yale.edu

†Nokia Bell Labs, Holmdel, NJ, USA. Email: {murali.kodialam, tv.lakshman, sarit.mukherjee}@nokia-bell-labs.com

Abstract—Dynamic resource allocation to satisfy varying, con-
current and unpredictable demands from multiple applications is
a key need in cloud systems. A fundamental challenge is the need
to find the right balance between over-allocation, which satisfies
each application’s varying needs without requiring frequent
allocation changes, and system efficiency which requires that
the allocation exactly matches the application needs. However,
allocating resources close to current needs will result in frequent
allocation changes. This can be detrimental to applications since
there may be fixed costs (state replication, policy reconfiguration,
etc.) that need to be incurred by applications for each allocation
change. In this paper, we develop an MDP-based dynamic
allocation scheme that uses reinforcement learning to satisfy
unpredictable application demands. It minimizes the overall
resource allocation needed to satisfy varying application demands
while meeting application constraints on the rate of allocation
changes. We prove convergence bounds and use real-world traces
to study the performance.

Index Terms—resource allocation, reinforcement learning, data
center

I. INTRODUCTION

The economic model of data centers is the savings that result
by multiplexing resources among different users. Customers
can flexibly purchase additional resources when needed, and
trim these down when the need has past, while data cen-
ter service providers can direct resources when and where
customers might require. In such a manner, providers can
maintain a manageable load across data-centers even while
customers encounter large fluctuations in demand. This vision
of dynamic resource allocation (and deallocation) comes with
its challenges, one of which is how best to manage resource
allocation. Resources are allocated to (or deallocated from) a
customer’s application by scaling the application horizontally
or vertically [1].

In horizontal scaling new Virtual Machines (VMs) are added
to an already-existing VM cluster executing the application.
For example, an application’s VMs may sit behind a load
balancer that enables the application to grow or shrink dy-
namically. Each time an allocation or deallocation of VMs
happens, the load balancer is reconfigured to allow the new
resources to be used, or old resources to be decommissioned.
The cost of reconfiguration of the VM cluster can vary based
on the application. In vertical scaling, virtualization is used to
scale up (or down) the resource allocation within a host for
a live VM executing the application. For example, a VM can
be resized to have more (or less) CPU based on the current

workload. Such scaling has the cost of re-provisioning a host
and some downtime for the application. More details on cost
associated with resource reconfiguration can be found in [1]–
[3].

It is clear from the above discussion that any resource
scaling mechanism can be costly from the perspectives of both
cloud provider and customer. For the provider the allocation
process can involve initializing dormant hardware and all
the supporting mechanisms involved, as well as the short-
term impact on customer QoS while this process is taking
place. For the customer, the allocation process can involve
complex software flows as part of the customer application
integrating the new VM or storage into the running application,
as well as the time it takes to do so. These challenges are
especially significant in a distributed Cloud, comprising of
multiple medium-scale data centers, such as those considered
by providers for support of network function virtualization
(NFV). In these systems, capacity at a given location might
be highly utilized and thus improved multiplexing might be
very important. As a result, both provider and customer would
prefer it if resource allocation would be continuous, fast
and with low energy and management overhead. There has
been some work [4]–[6] where researchers predict/model the
applications workload for future allocation of resources that is
as close to the application’s real demand as possible. However,
these comes with large management overhead per-application,
and might not be a scalable solution for the provider.

In this paper, we propose a reinforcement learning based
automatic resource scaling method that minimizes the amount
of over-provisioning while ensuring the rate of allocation/de-
allocation of resources is upper bounded by some user speci-
fied threshold. We show how to exploit the problem structure
to speed up the execution time of the algorithm. We study
the performance of the algorithm on synthetic as well as real-
world traces.

II. PROBLEM FORMULATION

For the ease of exposition, in this section we first consider
the single resource allocation problem across multiple time
periods. This single resource can be thought of as compute
power, disk space, etc. The techniques can be extended directly
to the multi-resource allocation problem. Assuming time t
is discretized, we denote by d(t) the amount of requested
resource from the user at time t and u(t), the decision variable
which specifies the amount of resource allocated by the dataISBN 978-3-903176-28-7© 2020 IFIP

271

center provider. For all t, the provider must ensure u(t) ≥ d(t).
It is also easy to extend the algorithms developed in this paper
to the case where resource shortage is permitted with some
shortage costs. If the data center provider attempts to allocate
resource to exactly match the demand in every time period,
there are two potential drawbacks:

1) There is significant overhead on the data center service
provider to monitor a huge number of users constantly
and scale up or down resources as needed.

2) Applications can suffer performance degradation when
resources are being augmented or deallocated [5].

Therefore, depending on the application, the data service
provider ideally would like to reduce the number of reconfig-
urations (i.e. changes of resource allocation). An easy way to
achieve this will be to set the resource allocation at a relatively
high value. This will, however, result in wastage of resources
that can potentially be used by other customers. Thus, a bal-
ance has to be struck between avoiding resource wastage and
lowering the number of reconfigurations in resource allocation.
For t ≥ 1, we define

δ(t) =

{
1 if u(t) 6= u(t− 1)

0 Otherwise

to be the indicator of resource reconfiguration at time t.
Ideally, we would like the average reconfiguration rate to
be less than an upper bound R. The rate R is specific to
the application and will be larger for applications that do
not have a significant overhead when changes are made.
The average reconfiguration rate constraint can be written as
1
T

∑T
t=1 δ(t) ≤ R considering some finite time interval T , and

we have the following formulation:

Q = min
T∑
t=1

[u(t)− d(t)]

u(t) ≥ d(t) 1 ≤ t ≤ T
T∑
t=1

δ(t) ≤ R T

The objective is to minimize the amount of over-provisioning
subject to the constraints that the allocation amount is greater
than the demand and the rate of reconfiguration is bounded
above by R.

III. OFFLINE SOLUTION

Before considering the online decision problem, we first
solve the offline, finite horizon problem with T time steps.
In this offline resource allocation problem, the input are the
demand vector d(1), d(2), . . . , d(T) and upper bound on the
number of resource reconfigurations K = RT . The output
are allocation vector u(1), u(2), . . . , u(T) that minimizes total
resource cost while not having more than K resource recon-
figurations.

We use a dynamic programming based approach to solve
this problem. Let us define mb

a = maxa≤t≤b d(t) and we de-
note by φk(a) the minimum objective function value required

to cover the demands d(1) . . . d(T) between time periods a
and T using at most k change points. Note that

φ1(i) = min
i≤j≤T

(j − i+ 1) mj
i + (T − j)mT

j+1.

Since φ1(i) denotes the optimum allocation for the problem
starting from time period i when one jump is permitted.
Assume that the jump is after time period j ≥ i. In this case for
the (j− i+1) intervals before the jump, the function value is
set to the maximum value of the demand curve in this interval
which is denoted by mj

i . For the (T − j) intervals after the
jump the solution value is set to mT

j+1. The value of φ1(i) is
to pick the jump point j that minimizes the total allocation.
We compute the φ1(i) for all values of 1 ≤ i ≤ T . This
computation takes O(T 2) time. Similarly, for k = 2, . . . ,K,
we replace the second part with φk−1(j + 1):

φk(i) = min
i≤j≤T

(j − i+ 1) mj
i + φk−1(j + 1).

This algorithm is outlined in Algorithm 1. The running time

Algorithm 1: Offline Resource Allocation
for i = 1, 2, . . . T do

mi
i = di

for j = i+ 1, i+ 2, . . . , T do
mj
i = max{mj−1

i , dj}
end

end
for i = 1, 2, . . . T do

φ1(i) =∞
for j = i, i+ 1, . . . , T do

v = (j − i+ 1)mj
i + (T − j)mT

j+1

if φ1(i) > v then
φ1(j) = v
u1(i) = j

end
end

end
for k = 2, 3, . . . ,K do

for i = 1, 2, . . . T do
φk(i) =∞
for j = i, i+ 1, . . . , T do

v = (j − i+ 1)mj
i + φk−1(j + 1)

if φk(i) > v then
φk(j) = v
uk(i) = j

end
end

end
end

of the algorithm is O(KT 2), and the solution to the offline
resource allocation problem serves as a lower bound for the
online allocation problem that we deal with next.

272

IV. ONLINE RESOURCE ALLOCATION

In the online resource allocation model, demands are re-
vealed at the end of previous time interval. The resource
allocation for the current time interval is decided without
knowledge of future demands. One promising approach for
addressing these types of problems is a reinforcement learning
(RL) framework. In reinforcement learning, decisions are
made in an online manner while the decision maker learns
the outcome of decisions made earlier in previous visits to
similar states. However, the constraint for average number
of reconfigurations cannot be handled directly in the RL
framework. We use a Lagrangian relaxation based approach to
indirectly handle the average reconfiguration rate constraint.

A. Enforcing the Reconfiguration Rate Constraint
We relax the average reconfiguration rate constraint by using

a Lagrange multiplier of λ ≥ 0 and taking it into the objective
function. We can now rewrite the formulation as:

Q(λ) = min
T∑
t=1

[u(t)− d(t)] + λ

[
T∑
t=1

δ(t)−R T

]

u(t) ≥ d(t) 1 ≤ t ≤ T

The Lagrangian relaxation is amenable for solution using
reinforcement learning. Moreover, by choosing the Lagrange
multiplier λ carefully, we can ensure that the solution obtained
is optimal to the original problem. The basis for this is the
following result.

Theorem IV.1. Let Q(λ) be defined as above. Then Q(λ) ≤ Q
for all λ ≥ 0. Moreover, if we find a λ̂ such that the optimal
solution û(t) and the corresponding δ̂(t) to Q(λ̂) satisfies

λ̂

[
T∑
t=1

δ(t)−R T

]
= 0,

then û(t) is optimal to the original problem.

Proof. For any λ ≥ 0, it is obvious to see Q ≥ Q(λ). Since
û is feasible, we know Q ≤

∑T
t=1 [û(t)− d(t)]. With λ = λ̂,

we have

Q ≥ Q(λ̂) =
T∑
t=1

[û(t)− d(t)] + λ̂

[
T∑
t=1

δ(t)−R T

]

=
T∑
t=1

[û(t)− d(t)] ≥ Q

The second equality holds due to the assumption in the
theorem. Combining the results above, we get

Q = Q(λ̂).

Removing the constant terms from the objective function,
for a given λ we effectively have the following objective
function:

min
∑
t

[u(t)− d(t)] + λ
∑
t

δ(t).

We can view λ as the cost of making a change in the allocation.
In reality, the time horizon T increases by one in each new
time slot. Hence, we will attempt to enforce the average rate
constraint asymptotically:

lim
T→∞

∑T
t=1 δ(t)

T
≤ R.

This is done by checking the average reconfiguration rate for
every time window W . If it is less than R we decrease λ and
if it is greater than R, we increase λ. More details can be
found in section VI.

B. Formulation of Reinforcement Learning

After leaving out the constant terms in the objective func-
tion, the online optimization problem that we have to solve is
the the following:

min
T∑
t=1

[u(t)− d(t)] + λ
T∑
t=1

δ(t)

u(t) ≥ d(t) 1 ≤ t ≤ T

We generalize single resource to N types of resource (e.g.
N = 3 if we consider CPU, disk space and memory resources),
and use the following notations for the underlying Markov
decision process model:

1) S represents the state space. It is a 2-tuple, (u,d), com-
prising of the current resources allocation and demand in
vector form. The i-th element of such vectors represents
the value for the i-th type of resources. We assume that
resource demand/allocation vectors are selected from the
set

S = {0, ..., s1max} × . . .× {0, ..., sNmax}

where simax denotes the discretized maximum resource
allocation of the i-th resource. Thus, the state space is

S = {(u,d)|u,d ∈ S}.

2) A represents the action space. The action a(t) at time t
is just deciding the allocation of resources at next time
t+ 1, i.e. u(t+ 1) = a(t). Hence,

A = S.

In the following text, we also use A(u,d) to denote the
eligible actions at state (u,d), i.e. A(u,d) = {a|a �
d}. We use symbol � for element-wise comparison, i.e.
x � y means xi ≥ yi, ∀i, and x � y means ∃i s.t.
xi < yi.

3) In Markov decision processes, the transition from one
time period to another depends on the current state and
the current action. We assume that the demand process
is independent of the the actions taken by the algorithm,
and it is Markovian where

Pr [d(t) = x|d(t− j) = xj , 1 ≤ j ≤ t− 1] =

Pr [d(t) = x|d(t− 1) = x1] = P (x1,x).

273

P (x1,x) is the probability that a (vector) demand of x1

is followed by a demand of x.
4) There are two costs in the objective function. First is

the cost of providing the resource, we denote by ci the
unit cost associated with the type-i resource, so the total
cost will be c(u(t)) =

∑
i ciui(t). Second is the change

cost λ, the cost resource reconfiguration. This cost is
independent of the amount by which the resource is
changed.

At each time step t, the provider does the following in
sequence:

1) Pay for the current resource allocation c
(
u(t)

)
.

2) Observe new demand d(t+ 1).
3) Decide the next resource allocation u(t+ 1).
4) If u(t+ 1) 6= u(t), pay the change cost λ.

Since the objective function of the online optimization problem
does not use discounted costs, we use an average-cost rein-
forcement learning algorithm. We can either use a model-free
approach like Q-learning or a model-based approach where
the transition matrix P is explicitly estimated. We show in
Figure 2 in section VI that the convergence of model-free
approaches like Q-learning is extremely slow even when we
use discounted learning. Therefore, an average-cost, model-
based reinforcement learning approach is adopted.

V. MODEL-BASED AVERAGE-COST OPTIMIZATION

We can now solve the online optimization problem using
model-based average-cost reinforcement learning. A naive
implementation of the Model-Based Average-Cost Reinforce-
ment Learning (MARCO) is shown in Algorithm 2. MARCO
is based on (relative) value iteration [7]. At each time step, a
sweep over the state space is performed, in which an average
cost J and the transition matrix are updated using the observed
information at this step. In the standard algorithm, we select a
reference state s0. Two sets of value functions: V (·) and the
relative value function w.r.t. s0, Vrel(·) are maintained. In this
algorithm, there is no discount factor γ (or γ = 1), and after
each round of updates, a normalization step is performed. One
key element in a model-based approach is the estimation of
the transition matrix. Assume that we observe nij transitions
from demand i to demand j. The estimate of the transition
probability is

P (i, j) =
nij∑
j nij

.

Alternatively, we can use a Bayesian approach with a Dirichlet
prior. The resource allocation procedure is a value iteration
based learning algorithm that uses the estimated traffic matrix.
The algorithm is shown in Algorithm 2. The running time of
the algorithm is O(|S|4) at each iteration. In the next section,
we use the structure of our problem to improve the standard
algorithm.

A. VIRU: Value Iteration With Rapid Updates

The standard algorithm as outlined in Algorithm 2 does not
take into account the special structure of the online optimiza-
tion problem: If the current amount of resource u(t) � d(t+1)

Algorithm 2: MARCO: Model-Based Average-Cost
Algorithm
Initialize estimated transition matrix P , value function
V , relative value function Vrel, and average cost J
arbitrarily.

Select reference state s0.
for t = 1, 2, . . . do

foreach (u,d) do
V (u,d)←
mina∈A(u,d)

{∑
d′∈S P (d,d

′)
[
(c(u) +

Ia6=u · λ) + Vrel(a,d
′)
]}

J ← V (s0)
foreach (u,d) do

Vrel(u,d)← V (u,d)− J
Observe next demand d′ and update transition
probabilities

then the resource allocation algorithm can either leave the
resource unchanged, or change the amount of resource to
satisfy future demand requests; If u(t) � d(t + 1), the
amount of resource has to be increased and the allocation
algorithm has to decide how much resource to allocate. We
now exploit the structure of the optimization problem to
develop a Value Iteration scheme with Rapid Updates (VIRU).
VIRU exploits the cost structure as well as the fact that the
transition probability relies only on the demand. Let d′ be
the next demand, and Ia6=u be the indicator for a change on
resource provision. Using a relative value iteration scheme, we
have

V (u,d) = min
a�d

∑
d′∈S

P (d,d′)
[
c(u) + Ia6=u · λ+ Vrel(a,d

′)
]

= min
a�d

[
(c(u) + Ia6=u · λ) +

∑
d′∈S

P (d,d′)Vrel(a,d
′)
]

Using the fact that the term
∑

d′∈S P (d,d
′)Vrel(a,d

′) is
independent of u, we obtain a function

F (a) =
∑
d′∈S

P (d,d′)Vrel(a,d
′)

for a � d. We denote the minimum value of this function by
fm = mina�d F (a) and its minimizer by a∗. Then the value
function can be re-written as

V (u,d) = min
a�d

[
(c(u) + Ia6=u · λ) + F (a)

]
.

At time t, there are two possible situations: at least one type of
the current allocation is less than the newly observed demand(
u(t) � d(t + 1)

)
, or the contrary

(
u(t) � d(t + 1)

)
. In

the first case, the data center operator has the only choice to
increase its allocation to match or exceed the new demand.

274

In this case, Ia6=u = 1. Since a∗ is also the minimizer of
V (u,d), the best action is to provide resource of a∗.

V (u,d) = min
a�d

[
(c(u) + 1 · λ) + F (a)

]
= c(u) + λ+ fm

In the second case where the new demand is already satisfied
by current allocation, the operator has two choices: change
allocation or keep the same allocation. The value function of
keeping the allocation is

V (u,d) =c(u) +
∑
d′

P (d,d′)Vrel(u,d
′)

= c(u) + F (u)

without a change cost. If we choose to update the allocation,
we must change to a∗, and the value function is

V (u,d) = c(u) + λ+ fm

We take the minimum over the above 2 quantities. Thus, we
update the value functions as follows:

V (u,d) =

{
c(u) + λ+ fm for u � d
c(u) + min{λ+ fm, F (u)} for u � d

Based on this equation, we propose a fast resource allocation
algorithm VIRU in Algorithm 3. The complexity analysis of
Algorithm 3 is presented in Theorem V.1 and its convergence
analysis is presented in Theorem V.2.

Algorithm 3: VIRU: Value Iteration with Rapid Up-
dates

Initialize estimated transition matrix P , value function
V , relative value function Vrel, and average cost J
arbitrarily.

Initialize reference state s0.
for t = 1, 2, ... do

foreach d ∈ S do
for a � d do

Fa ←
∑

d′∈S P (d,d
′)Vrel(a,d

′)

fm ← mina�d Fa

foreach u � d do
V (u,d)← c(u) + λ+ Fa

foreach u � d do
V (u,d)← c(u) + min{λ+ fm, Fa}

J ← V (s0)
foreach (u,d) do

Vrel(u,d)← V (u,d)− J
Observe next demand d′ and update transition
probabilities

Theorem V.1. The standard value iteration algorithm
MARCO takes O(|S|4) computations per iteration, and VIRU
reduces the complexity to O(|S|3) computations per iteration.

Proof. In each iteration of MARCO (Algorithm 2), there
are |S|2 states to update. For each state (u,d), there are
|A(u,d)| = O(|S|) summations over the set S. Therefore,
the complexity is O(|S|4).

In each iteration of VIRU (Algorithm 3), there are |S|
loops for each demand d. For each d, the computation with
highest complexity is the vector Fa, which takes |A(u,d)| ·
|S| = O(|S|2) computations. Thus, the complexity of VIRU
is O(|S|3).

Theorem V.2. Let Jn(Pt) denote the average cost after n
iterations using the estimated traffic matrix Pt, and J∗(P)
denote the optimal cost. Then,

|J∗(P)− Jn(Pt)| ≤ C1 · rn + C2 · ‖P − Pt‖∞

where C1, C2 and r < 1 are constants.

Proof. See section IX for an outline of proof.

Discussion. It’s worth mentioning that, though a single,
universal change cost λ is used throughout this paper, we can
directly extend it to multiple change costs for different types of
scaling. We claim without proof that if the number of different
change costs are finite, Theorem V.2 still holds. Also notice
that the estimation of transition matrix and the value iteration
can be performed asynchronously. For example, at a certain
time, value iteration may be run n times while transition matrix
is updated t 6= n times.

The “curse of dimentionality” is a problem of table-based
RL algorithms as the number of states grow exponentially in
its dimension (in our case, N). To reduce the computational
overhead, we can run VIRU asynchronously in parallel while
preserving the convergence results, provided that every state
gets updated infinitely often in a infinite time horizon [8].
Moreover, the size of state space can be far smaller than
an exponential function of N in practice since the use of
different resources are usually highly correlated. Most cloud
provides, e.g. Amazon [9], support limited number of resource
combinations rather than an arbitrary granularity (Amazon
EC2 on-demand service provides less than 200 instances in
total).

VI. PERFORMANCE EVALUATION

The evaluation is performed on the public Google cluster
data [10]. This data represents cell information, including
machine attributes, machine events, job and task events, re-
source usage information, etc. on a cluster of about 12.5k
machines for 29 days. To simplify our analysis, we ignored the
hidden scheduling information and analyze the “task events”
data set which records all time stamps of events happened
of one specific user. We consider a “SUBMITTED” or “UP-
DATE RUNNING” event as the beginning of a task’s life
cycle and a “FINISH” or “LOST” event as a task’s end of
life cycle. The requested resource usage is recorded during
the task’s life cycle. The original usages are rounded to
discrete numbers and normalized with a maximum of 20.
Time is rounded to seconds. All experiments are performed

275

0 50000 100000 150000 200000 250000
Time/s

0

5

10

15

20
Sc

al
ed

 U
sa

ge
Demand

Fig. 1. Demand curve.

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60

80

100

120

Er
ro
r (
Ha

m
m
in
g
Di
st
an

ce
)

Q-Learning, discount factor = 0.45
Q-Learning, discount factor = 0.85
VIRU

Fig. 2. Convergence speed of different algorithms.

on a physical machine with 2.5 GHz Intel Core i7 processor
and 16GB memory. The following evaluations will be based
on the data of requested memory from one user, from time
stamp 1503960208646 to time stamp 1759531162512 (in µs)
as shown in Figure 1.

A. Comparing the Speed of Convergence

To compare the convergence rate of different algorithms, we
generated a random 11×11 transition matrix. We implemented
Q-learning with γ = 0.85, α = 0.5, as in [11], γ = 0.45,
α = 0.8 as in [12], and VIRU for 10000 steps. Actions taken
in Q-learning methods are according to an ε-greedy policy with
ε = 0.1. The performance measure is the Hamming distance
to the policy derived from average-cost value iteration. As
presented in Figure 2, Q-learning with γ = 0.45 has a trend to
converge, while Q-learning with γ = 0.85 shows a fluctuation
with a slower convergence. VIRU shows a significantly faster
convergence compared with the Q-learning methods. Note that,
discounted Q-learning with an overly small discount factor
(e.g. γ = 0.45) may not have the same convergence as an
average-cost algorithm.

B. Performance of VIRU on Trace Data

We run the VIRU algorithm with change cost = 100, and
show the demand and allocation curves in Figure 3 in an active
period between t = 50000 and t = 58000 (in seconds). We
observe that the allocation curve does not follow every jump
on the demand curve, nor does it stay at a high value and fail
to react to the demand change. A balance was struck between
the frequency of reconfigurations and the resource wastage.

Next, we study the effect of change cost λ on the number of
reconfigurations in the whole time interval. Applying different
change cost to the demand curve, there is a reduction of
number of reconfigurations as change cost increases (Figure 4).
As change cost goes from 20 to 200, the number of reconfig-
urations decreases from 462 to 283.

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

No
rm

al
ize

d
Re

so
ur

ce
 U

sa
ge Demand

Allocation

Fig. 3. Demand and allocation curves from time 50000 to 58000.

20018016014012010080604020
Change Cost

300

350

400

450

Nu
m

be
r o

f C
ha

ng
es

Fig. 4. Number of reconfigurations vs. change cost.

C. Online Solution vs. Offline Solution

We take the trace data from t = 50000 to t = 58000 (in
seconds), and compare the performance of online and offline
algorithms in Figure 5. The online solution curve connects the
data points of change costs from 500 to 20 with an interval
of 20. The first online data point annotated with 500 means
that the algorithm using change cost = 500 has a total cost
of 40576, and it reconfigures the allocation 20 times in this
time interval. Similar rules applied to the following points with
change cost 480, . . . , 20. While the offline curve is strictly
decreasing, the online curve fluctuates since the algorithm may
not be converged completely before the analyzed time interval.
We also find that with change cost = 20, the online and offline
curve arrive at the same point, because it follows every jump
(83 times in total, see Table I) that the demand curve has.
The offline solution is obtained from Algorithm 1. It serves as
an absolute lower bound of online solution for it is computed
using the knowledge of future demands. Moreover, this lower
bound is not always achievable since the offline algorithm
seeks a local solution between time 50000 and 58000, ignoring
data which lies out of the time period, while VIRU seeks a
global solution considering all data points. For example, the
(0, 56000) point on the offline curve is not achievable, since
forcing no reconfiguration will keep the online solution on the
max allocation of 20 for all time, and thus the total cost will be
8000× 20 = 160000 instead of 8000×maxt{d(t)} = 56000.
That being said, the worst performance of online solution in
the figure still achieves 76.8% utilization of resource at change
cost = 500.

D. Changing λ to Achieve R

VIRU (Algorithm 3) can be directly applied when an esti-
mate of change cost is available. However, in some situations,
it could be too expensive to estimate such a cost caused by
state replication, policy reconfigurations etc., or the cost itself
could vary over time that an accurate estimate is difficult to

276

0 20 40 60 80
Number of Reconfigurations

20000

30000

40000

50000

60000
To

ta
l C

os
t

500

20

Offline Solution
Online Solution

Fig. 5. Online algorithm vs. offline algorithm (online algorithm annotated
with change cost).

obtain. In the case where we do not have an estimate of λ but
we do have a target reconfiguration rate R, the way we control
our algorithm over time is to tune the change cost λ according
to the target rate and current rate. In this experiment, we set
the target reconfiguration rate R to 5 reconfigurations per 600
seconds, and we measure the actual number of reconfigurations
in a window of 600s. The change cost is updated by the
following simple, heuristic function:

λ(t+ 1) = max{140, λ(t) + β · (R−Rt)}

where β is set to −1, and Rt = 1
600

∑t
τ=t−599 δ(τ). We call

this variation of algorithm VIRU with varying λ (vVIRU).
Again, we take the data from time 50000 to 58000 and show
the number of reconfigurations in the last 600s in Figure 6,
7, comparing two curves with λ = 0 and varying λ. We find
that using the simple updating rule, the reconfiguration rate
is pulled towards the target rate R = 5, and the number of
reconfigurations exceeding 5 per 600s decreased from 4817
times to 1023 times. Furthermore, vVIRU still achieves 82.6%
resource utilization (see Table I). It is clear that even with a
naive control approach, the reconfiguration rate can be tuned
as desired. One is free to tune the algorithm parameters, or to
devise a more sophisticated algorithm accordingly to achieve
better performance.

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

8

10

12

14

Nu
m

be
r o

f R
ec

on
fig

ur
at

io
ns

 in
 6

00
s

Fig. 6. Number of reconfigurations
in 600s with λ = 0.

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

8

10

12

14

Nu
m

be
r o

f R
ec

on
fig

ur
at

io
ns

 in
 6

00
s

Fig. 7. Number of reconfigurations
in 600s with varying λ.

E. Performance Comparison

This section presents the comparison of different autoscaling
policies, namely, (i) A threshold-based policy available in
Amazon EC2 [13], (ii) A target-tracking based policy available
in Amazon EC2 [13] (iii) A Q-learning based policy adapted
from [12], and (iv) vVIRU algorithm from section VI-D
(since we do not model change cost explicitly). The threshold-
based and target-tracking algorithms are implemented ac-
cording to Amazon’s descriptions. We adopt the formulation

TABLE I
PERFORMANCE OF 4 AUTOSCALING POLICIES.

Policy #Reconf. Total Cost Utilization (%)
Demand 83 27569 100.0
vVIRU 37 33372 82.6
Threshold-based 44 54210 50.1
Target-tracking 83 54234 50.8
Q-learning 201 28402 97.1

and algorithm parameters from [12] but we also modify the
parameters that are specific to the data traces. To make the
algorithms directly comparable, we add an additional rule
that the allocation must match or exceed the demand. The
key performance measurements are listed in Table I, and the
demand and allocation curves are depicted in Figure 8, 9, 10,
11.

We observe that the threshold-based and target-tracking
policies behave conservatively, keeping the resource allocation
at a high level. The target-tacking policy achieves marginally
better utilization rate than the threshold-based policy but it
incurs more reconfigurations. vVIRU demonstrates its su-
periority in terms of both number of reconfigurations and
utilization rate compared with threshold-based and target-
tracking policies. The Q-learning based algorithm does not
aim to reduce the number of reconfigurations. It only penalizes
adding more resources, and hence the allocation curve tries to
match the demands most of the time. The spikes in Figure 11
are due to the slow convergence of Q-learning. It is clear
that even though Q-learning based policy reduces the resource
wastage, it reconfigures the resource allocation significantly
more often than our algorithm, and in real cloud operations, an
ε-greedy based policy could be too expensive to be applied due
to the unaffordable cost of exploration in the training phase.

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

8

No
rm

al
ize

d
Re

so
ur

ce
 U

sa
ge Demand

Allocation

Fig. 8. VIRU

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

8

10

No
rm

al
ize

d
Re

so
ur

ce
 U

sa
ge Demand

Allocation

Fig. 9. Threshold-based

277

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

8

10
No

rm
al

ize
d

Re
so

ur
ce

 U
sa

ge Demand
Allocation

Fig. 10. Target-tracking

50000 51000 52000 53000 54000 55000 56000 57000 58000
Time/s

0

2

4

6

8

10

No
rm

al
ize

d
Re

so
ur

ce
 U

sa
ge Demand

Allocation

Fig. 11. Q-learning

VII. RELATED WORK

The application of reinforcement learning to autoscaling in
data centers has been extensively studied. Different combina-
tion of metrics such as the demand at current time, demand
at previous time, response time etc. are used to represent the
system state. Tesauro et al. [14] proposed a horizontal scaling
algorithm in which both SARSA and queuing model were
employed in a hybrid way. A neural network is implemented
to maintain the state values. To speed up the convergence of
RL, Dutreilh et al. [12] gave an initial approximation of the
Q-function for faster convergence. There is also research [11],
[15]–[17] for vertical scaling . In [15], simulated experiences
is used for value function estimation in order to reduce
the training time, while in [16] from the same authors, a
distributed learning mechanism was used to facilitates the VM
resource provisioning. Parallelism is utilized in Q-learning
[11] to accelerate the learning, where each agent can learn the
value of unvisited state from its neighbors. All these papers
use a discounted cost function. However, we abandoned the
discount factor and adopted an average-cost method instead
since the autoscaling problem can be naturally cast as an
average-cost problem and it is not clear what discount factor
should be used. A discount factor is expedient for speeding up
convergence rather than desired. A model-based approach is
adopted in [15] to address scalability and adaptability issues.
As in [12] we use a model-based RL because such approach is
more data efficient and converges much faster compared with
model-free methods. Other techniques for autoscaling include
threshold based techniques [18], time series analysis [19], [20]
and queuing theory [21], [22] based techniques.

VIII. CONCLUSION

In this work, we present a model-based, average-cost re-
inforcement learning algorithm and its extension for resource
autoscaling in clouds. Our goal is to restrict the reconfigura-
tion frequency while still achieving good resource utilization

(VIRU) even when the change cost is hard to model (vVIRU).
Theoretically, we exploit the structure of the optimization
problem and improve the computational cost of a standard
value iteration algorithm by a factor of |S|. Moreover, we
prove the convergence bound of the proposed VIRU algo-
rithm. Experimentally, we show the convergence rate of VIRU
and compare vVIRU with a threshold-based policy, a target-
tracking policy and a Q-learning policy that are either used
by real-world vendors or popular in literature. Results demon-
strate our algorithm’s superiority over other methods in terms
of both resource utilization and reconfiguration frequency.

REFERENCES

[1] S. Dutta, S. Gera, A. Verma, and B. Viswanathan, “SmartScale:
Automatic Application Scaling in Enterprise Clouds,” in IEEE Fifth
International Conference on Cloud Computing, 2012.

[2] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of Resource
Provisioning Cost in Cloud Computing,” IEEE Transactions on Services
Computing, 2012.

[3] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella, “
ElastiCon: An Elastic Distributed SDN Controller ,” in ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems
(ANCS), 2014.

[4] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai, “Optimal
Autoscaling in a IaaS Cloud,” in International Conference on Autonomic
Computing, 2012.

[5] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the
Cloud using Predictive Models for Workload Forecasting,” in IEEE 4th
International Conference on Cloud Computing, 2011.

[6] C. Bunch, V. Arora, N. Chohan, C. Krintz, S. Hegde, and A. Srivastava,
“A Pluggable Autoscaling Service for Open Cloud PaaS Systems,”
in IEEE/ACM Fifth International Conference on Utility and Cloud
Computing, 2012.

[7] D. J. White, “Dynamic programming, markov chains, and the method
of successive approximations,” Journal of Mathematical Analysis and
Applications, vol. 6, no. 3, pp. 373–376, 1963.

[8] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[9] “Amazon ec2 instance types - amazon web services.” [Online].
Available: https://aws.amazon.com/ec2/instance-types/

[10] “Google cluster data,” Dec 2017. [Online]. Available:
https://github.com/google/cluster-data

[11] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning
towards automating resource allocation and application scalability in
the cloud,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 12, pp. 1656–1674, 2013.

[12] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic resource
allocation in clouds: towards a fully automated workflow,” in ICAS 2011,
The Seventh International Conference on Autonomic and Autonomous
Systems, 2011, pp. 67–74.

[13] “Amazon ec2 autoscaling.” [Online]. Available:
https://aws.amazon.com/ec2/autoscaling/

[14] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid
reinforcement learning approach to autonomic resource allocation,” in
Autonomic Computing, 2006. ICAC’06. IEEE International Conference
on. IEEE, 2006, pp. 65–73.

[15] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: a reinforcement
learning approach to virtual machines auto-configuration,” in Proceed-
ings of the 6th international conference on Autonomic computing.
ACM, 2009, pp. 137–146.

[16] J. Rao, X. Bu, C.-Z. Xu, and K. Wang, “A distributed self-learning
approach for elastic provisioning of virtualized cloud resources,” in
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2011 IEEE 19th International Symposium on.
IEEE, 2011, pp. 45–54.

[17] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in Global
Communications Conference (GLOBECOM), 2015 IEEE. IEEE, 2015,
pp. 1–6.

278

[18] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scal-
ing for cloud applications,” in Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012). IEEE Computer Society, 2012, pp. 644–651.

[19] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services.” in NSDI, vol. 8, 2008, pp. 337–350.

[20] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation
for shared data centers using online measurements,” in International
Workshop on Quality of Service. Springer, 2003, pp. 381–398.

[21] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth, “Efficient pro-
visioning of bursty scientific workloads on the cloud using adaptive
elasticity control,” in Proceedings of the 3rd workshop on Scientific
Cloud Computing. ACM, 2012, pp. 31–40.

[22] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS), vol. 3, no. 1, p. 1,
2008.

[23] P. J. Schweitzer and A. Federgruen, “Geometric convergence of value-
iteration in multichain markov decision problems,” Advances in Applied
Probability, vol. 11, no. 1, pp. 188–217, 1979.

[24] G. E. Cho and C. D. Meyer, “Comparison of perturbation bounds for
the stationary distribution of a markov chain,” Linear Algebra and its
Applications, vol. 335, no. 1-3, pp. 137–150, 2001.

IX. APPENDIX: PROOF OF CONVERGENCE (OUTLINE)

In this section, we present an outline of the proof of
Theorem V.2. We use simplifying assumptions listed below:

1) The Markov chain we consider has only one ergodic
class, with possible transient states.

2) limt→∞ Pr [Pt(i, j) 6= 0 ⇔ P (i, j) 6= 0] = 1. This
assumption ensures that eventually the estimated Markov
chain has an identical connectivity structure as the true
Markov chain.

3) The policies throughout this proof are always determin-
istic. Ties can be broken arbitrarily.

In an average-cost value iteration, the optimal average cost
is defined as

J∗ = min
π

∑
u,d∈S

µπ(u,d)cπ(u,d)

= min
π
µπ · cπ

where µπ(u,d), cπ(u,d) denote the stationary distribution
and the cost of state (u,d) under policy π, respectively. The
convergence indicator is the distance between two average
costs

D = |J∗(P)− Jn(Pt)|

where Jn(Pt) denotes the estimated average cost after n
sweeps of value iteration, using the estimated transition matrix
Pt with t updates, and J∗(P) denotes the optimal average cost
J∗(P) of true transition matrix P . We break D into 2 parts:

D = |J∗(P)− Jn(Pt)|
≤ D1 +D2

where D1 , |Jn(Pt)− J∗(Pt)| and D2 , |J∗(Pt)− J∗(P)|.
Lemma IX.1 and IX.2 give bounds for the two distances

mentioned above.

Lemma IX.1. Distance D1 is bounded by

|Jn(Pt)− J∗(Pt)| ≤ C1 · rn

where C1 and r < 1, are two constants depending on the
MDP.

Proof. Please refer to [23] for the details of proof and the
values of C1 and r.

Lemma IX.2. Distance D2 is bounded by

|J∗(Pt)− J∗(P)| ≤ C2 · ‖Pt − P‖∞

where ‖ · ‖∞ denotes the infinity matrix norm, and C2 is a
constant depending on the MDP.

Proof.

|J∗(Pt)− J∗(P)| = |min
π
µ′π · cπ −min

π
µπ · cπ|

≤ max
π
|µ′π · cπ − µπ · cπ|

≤ max
π
‖µ′π − µπ‖2 · ‖cπ‖2

≤ |S| · cmax ·max
π
‖µ′π − µπ‖∞

The last inequality follows from the relationship between
2-norm and ∞-norm. cmax denotes the maximum possible
immediate cost; µ′π denotes the stationary distribution with
policy π and transition matrix Pt.

Now the problem boils down to the perturbation of sta-
tionary distribution of Markov chain. Supposing for simplicity
that time t is large enough so the condition Pt(i, j) 6= 0 ⇔
P (i, j) 6= 0 in assumption 2 is already satisfied, we only need
to consider the recurrent states of this MDP. Using conclusions
from [24], and the assumption that P does not depend on
allocation u, we have:

‖µ′π − µπ‖∞ ≤ κπ‖Pt − P‖∞

where
κπ =

1

2
max
j

{maxi6=jmij

mjj

}
.

mij denotes the mean first passage time from recurrent state
i to recurrent state j 6= i, and mjj = 1/µπ(j) for a recurrent
state j.

|J∗(Pt)− J∗(P)| ≤ |S|rmax max
π
‖µ′π − µπ‖∞

≤ |S|rmax max
π

κπ‖Pt − P‖∞

Since π is from a finite deterministic policy set, we can define
κmax , maxπ κπ < ∞. Letting C2 = |S|rmaxκmax, we arrive
at the following conclusion:

|J∗(Pt)− J∗(P)| ≤ C2 · ‖Pt − P‖∞

Using conclusions from lemma IX.1 and IX.2, we complete
the proof of Theorem V.2

Proof.

|J∗(P)− Jn(Pt)| ≤ |Jn(Pt)− J∗(Pt)|+ |J∗(Pt)− J∗(P)|
≤ C1 · rn + C2 · ‖P − Pt‖∞

279

