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Abstract—Intrusion detection through classifying incoming
packets is a crucial functionality at the network edge, requiring
accuracy, efficiency and scalability at the same time, introducing
a great challenge. On the one hand, traditional table-based switch
functions have limited capacity to identify complicated network
attack behaviors. On the other hand, machine learning based
methods providing high accuracy are widely used for packet
classification, but they typically require packets to be forwarded
to an extra host and therefore increase the network latency.
To overcome these limitations, in this paper we propose an
architecture with programmable data plane switches. We show
that Binarized Neural Networks (BNNs) can be implemented
as switch functions at the network edge classifying incoming
packets at the line speed of the switches. To train BNNs in a
scalable manner, we adopt a federated learning approach that
keeps the communication overheads of training small even for
scenarios involving many edge network domains. We next develop
a prototype using the P4 language and perform evaluations. The
results demonstrate that a multi-fold improvement in latency and
communication overheads can be achieved compared to state-of-
the-art learning architectures.

I. INTRODUCTION

Edge networking attracts significant research interest with
the rapid growth in the amount of mobile devices. Meanwhile,
more security threats emerge in edge networking scenarios
such as the botnet [1] where a hijacked edge device may
infect more devices across different edge domains to conduct
large-scale attacks. Therefore, it is necessary to deploy firewall
functions and other security mechanisms at the network edge
to identify harmful traffic flows from normal ones [2].

Machine learning algorithms such as neural networks are
widely adopted for classifying incoming packets. Taking the
values of packet header fields and flow statistics as input
features, these algorithms are able to learn the pattern of
attacks from collected network traces and make predictions
for future inputs with high accuracy. However, traditional
switches at the network edge only support relatively simple
functions such as specific packet header fields matching and
table lookup. Therefore, an unknown packet incoming to a
switch has to be forwarded to a remote server or host where the
learning algorithms run. The delay incurred makes it unlikely
to process packets at a high speed. In addition, a large number
of flow rules will be generated in this procedure and have to
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be stored in the switches, whose memory is usually limited
and becomes another bottleneck [3].

The development of Software Defined Networking (SDN)
and the programmable data plane concept in recent years bring
new opportunities towards addressing the above challenges.
SDN separates the control and data planes of a network,
enabling an external network entity, known as the controller,
to manage the data plane switches in a programmable manner.
Furthermore, SmartNIC products and P4 language [4] enhance
the capability of the switch itself, which is now capable of
offloading services that are traditionally run in remote servers
with general (and powerful) CPUs [5].

Binarized Neural Network (BNN) [6] can be used to deploy
machine-learning-based packet classification in the form of
in-network services inside the switches. BNN compresses all
the weights of a neural network into single bits, therefore
significantly reducing the computation and memory require-
ment of performing the inference to a level that a data plane
switch may afford. It also converts all computations (e.g., real-
valued dot production and activation functions) into bitwise
operations, which are supported by typical programmable data
plane switches.

While the use of BNNs can expedite the inference process
by enabling the offloading of it directly on the data plane
switch level, there still exist challenges about the training
process of these learning models. It is unclear how to train the
BNNs in a scalable manner e.g., in large networks with many
interconnected edge domains, many gateways and switches.
When a new attack pattern appears only in specific domains,
other gateways should also be informed, even if the attacker’s
packets do not go through them, so as to make more efficient
training decisions in future. Meanwhile, the communication
overheads either among gateways or between the gateways
and the cloud being responsible for the training should also
be considered. Even worse, it is possible that edge domains are
controlled by multiple parties who do not want to share their
network traces with others for training, since the information
leak itself is another security threat.

Federated learning [7] is a technique suitable for online
training in this scenario, which aggregates local weight updates
from each gateway without asking their collected packets,
and then calculates new model parameters for gateways. We
explore a novel way of combining federated learning and BNN
to set up a scalable packet classification architecture with high
performance and low costs while preserving the privacy of
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network traces.
Specifically, we make the following contributions:
• We propose a learning framework for packet classification

combining BNNs and federated learning achieving high
accuracy with low memory and communication costs. To
the best of our knowledge, this is the first work combining
these concepts together.

• We design an architecture based on programmable net-
work switches for providing security service to multi-
party edge device owners while performing packet clas-
sification at the line speed of the switches and updating
learning models in a scalable manner.

• We develop a prototype of the proposed architecture in
P4 language and evaluate its performance and costs in
a network testbed with real devices and traffic traces.
We find that a multi-fold improvement in latency and
communication overheads can be achieved compared to
state-of-the-art learning architectures.

The remainder of this paper is organized as follows. After
discussing our contribution over related works in Section II,
we describe the main challenges of the packet classification at
the network edge and propose a system architecture in Section
III. In Section IV, we describe the learning model inference
and training mechanisms, as well as the federated learning
framework. Section V demonstrates how such architecture and
mechanisms are implemented as a prototype, and Section VI
evaluates its performance. We conclude the paper in Section
VII.

II. RELATED WORK

SDN and In-network Processing. Software Defined Net-
working (SDN) provides programmable and centralized net-
work management by separating the control and data planes.
By placing multiple controllers in different domains, SDN can
scale well in a multi-domain edge network scenario [8]. As
for the data plane, a trend is to make switches programmable,
such as the development of P4 language [4]. P4 enables in-
network processing by deploying services in switches instead
of servers. [5] investigates various in-network processing ap-
plications which show high efficiency and lower costs com-
pared to traditional methods. [9] adopts such approach at the
network edge.

Learning Methods. Machine learning has been widely
used for packet classification and intrusion detection such as
approaches in [10] [11] promising high accuracy. However, a
remote host or server is typically required to run the learning
algorithm, introducing additional latency and preventing pack-
ets from being processed at the line speed of the switches. This
is true even for the SDN-based learning methods [12] where
learning is performed in the control plane (SDN controller)
and the data plane (switches) only plays the role of flow table
storing and matching. To overcome this limitation, we seek
for a data plane-compatible algorithm for higher processing
speed.

Binarized Neural Networks. BNN is a type of neural
network with only binary weights and activation functions [6],

the inference process of which can be converted into bitwise
operations. [13] demonstrates that BNN can achieve much
faster speed and cost less memory while maintaining a high
level of accuracy. Such features make it suitable for embedded
devices with limited capacity [14]. [15] and [16] attempted to
implement BNN in smart network devices. We make similar
attempts while also performing realistic networking tasks, i.e.,
packet classification. In addition, we propose an online training
scheme, which is scalable by adopting federated learning
techniques.

Distributed / Federated Learning. For better scalability,
neural networks can be trained in a distributed manner. Fur-
thermore, the concept of federated learning is proposed [7],
which keeps the training data locally to preserve privacy. Fed-
erated learning has been applied for the security issue in edge
scenarios, e.g., IoT [17] and mobile networks [18]. Reducing
communication overhead is a major concern in distributed and
federated learning. One promising approach is to quantize
or binarize the weight updates, such as SignSGD [19]. The
distributed learning procedure also shows good compatibility
with programmable data plane devices. [20] and [21] propose
in-network methods for accelerating the aggregation phase of
distributed training. In this paper, we explore methods for
effective intrusion detection at the network edge by combining
the advantages of federated learning, BNN and programmable
data plane.

III. SYSTEM ARCHITECTURE

In this section, we describe the architecture design of the
proposed system for network security. The system consists of
a central cloud and several edge network domains. For each
domain, there is a gateway node responsible for forwarding
packets from and to the devices of that domain. It also
performs packet classification to identify attacks from normal
traffic flows. Each gateway is SDN-enabled with separated
control and data plane i.e., an edge controller and a switch.
Both planes are programmable. Previous works have shown
the feasibility and benefits of this type of gateway design
and implementation for edge networking scenarios [9]. In this
work, we make a step further and propose specific mechanisms
for effective packet classification achieving high accuracy
with low memory and communication costs. We first list a
number of challenges we need to address before presenting
the proposed mechanisms.

A. Challenges

A high-performance architecture for packet classification at
the network edge has multiple requirements:

1) High Accuracy & Low False Alarm Rate. The
gateway should be capable to identify attacks from
normal flows. Besides, the false alarms (normal packets
incorrectly classified as attack packets) must be kept to
a low rate, otherwise normal packets may be blocked
and network functions will be hampered.

2) Line-Speed Packet Processing. The gateway should
perform the packet classification by itself instead of
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forwarding packets to a remote host or server and
waiting for reply. This requires the classification algo-
rithm (inference process of the learning algorithm) to be
lightweight enough so that the gateway can run it locally
in real time.

3) Model Updates. An edge domain can be highly dynamic
with new devices joining the network and new traffic
flows generated over time. The gateway should be able
to use the new network traces to improve the classifi-
cation algorithm, i.e., re-train the model over time. The
training task can be offloaded to the control plane or
remote cloud server, but the updated model must be
finally downloaded to the gateway data plane.

4) Scalability and Privacy. It is common in an edge
networking scenario that the amount of devices and
domains is large. A solution can hardly scale up unless
the communication overheads between the cloud server
and gateways during training can be controlled in a
reasonable manner. In addition, devices of different edge
domains may belong to different owners who are not
willing to share their network traces for training.

B. Design Choices

In order to meet all requirements above, we choose the
binarized neural network (BNN) and federated learning as
the main components of our architecture. We describe each
component in the following, as depicted in Figure 1.

Gateway Data Plane (Programmable Switches). The data
plane refers to a packet forwarding device with programma-
bility such as P4-enabled switches, SmartNICs and FPGAs. A
BNN is deployed in each gateway’s data plane for classifying
incoming packets. The data plane extracts certain bits from
incoming packet’s header as the BNN input and a binary
output (i.e., attack or normal traffic) is acquired by a series of
bitwise operations. After this inference process, the gateway
performs ordinary packet forwarding for normal traffic and
is able to send attack samples to the control plane if online
training is active. With both the classification and forwarding
functions inside the data plane, line-speed packet processing
can be achieved.

Gateway Control Plane (Edge Controllers). Each gateway
is managed by a separate edge controller with a general CPU
or GPU. The controller may be deployed locally in the gateway
or in another host within the same domain. The controller
maintains a neural network with the same structure as in the
data plane, except that the weights and activation functions
are not binarized. This neural network is used for re-training
the classification algorithm over time by performing backward
propagation with the new network traces collected by the data
plane. The controller also keeps an API writing weight values
to the data plane, and an API communicating with the cloud
server for federated learning. The detailed methods will be
introduced in the next section.

Cloud Server. For scalable training of the classification
algorithm, a federated learning technique [7] is deployed in
the cloud server. The federated learning can be regarded as a
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Fig. 1. An architecture deploying BNN and federated learning for network
security at the edge.

service provided by the cloud, and each gateway can choose
whether to subscribe to this service, decided by its owner. Each
gateway subscribing to the service, after each epoch of local
training, it sends the local updates to the cloud that acts as
the aggregator. When the aggregator receives messages from
all the gateways, it calculates the new model weights based
on the local updates and broadcasts the new model weights to
the gateways.

The procedures of BNN inference in the data plane, model
training in the control plane and weight aggregation in the
cloud as well as the implementation details of these mecha-
nisms will be described in the next sections.

IV. PROBLEM DEFINITION & SOLUTION

In this section, we formally define the packet classification
problem at the network edge and describe how we adopt BNN
and federated learning techniques to solve it.

A. Problem Formulation

We consider a system of a cloud server c and N edge
network domains. Each domain contains a gateway which
is the pair of a data plane switch and its edge controller
(collocated with the switch or hosted in a different device
within the same domain). The set of all gateways is denoted
by N.

A data plane switch is able to parse headers of different
protocols contained in a packet and determine where the
packet should be forwarded (or blocked) according to specific
header fields, which can be regarded as packet-level features.
The switch may also use flow-level features such as the
packet/byte count of a flow to make appropriate forwarding
decisions. It is straightforward to represent both types of
features by a bit string. Therefore, given a group of features
supported by the gateway, we can concatenate them with a
fixed sequence to get a 1D vector. Each element of the vector
is binary, i.e., either −1 or +1. We denote this vector as x0,
which is the input for the packet classification.

The purpose of packet classification is to find a function ŷ =
fn(x0) at each gateway n ∈ N, where ŷ is a 1D binary vector
indicating the prediction of the packet type. For example, as
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Algorithm 1 Inference Process
Input:
x0: binary input sample
W b

n,l: binary weights of layer l in gateway n’s data plane
Output:
y: binary prediction

1: for l = 1 : L− 1 do
2: xl ← sign(XnorDotProduct(xl−1,W

b
n,l))

3: end for
4: y ← sign(XnorDotProduct(xL−1,W

b
n,L))

a simple case, ŷ has only one binary element, taking value of
+1 if the incoming packet belongs to a normal traffic flow, or
−1 if it belongs to an attack.

B. Inference: Binarized Neural Networks

To achieve line-speed packet processing, we require that an
incoming packet is classified directly in the gateway instead of
forwarded to the edge controller or any other remote server. In
other words, each gateway n executes fn(x0) in its data plane
independently without help from either its edge controller or
gateways of other domains.

Neural network is one of the most popular methods for
packet classification. However, it requires a large amount
of dot product operations on real-valued vectors, as well as
activation functions which are usually non-linear. Originally
designed for packet forwarding, most data plane devices do
not support these operations. To overcome this difficulty, we
deploy BNN [6] that has weights of only binary (+1 or −1)
values and sign function as the activation function. More
specifically, consider a neural network with L fully-connected
layers. We denote the neuron weights of layer l by a 2D vector
W b

n,l and denote the input of this layer by xl−1. Then, the
output of layer l is:

xl = sign(xl−1 ·W b
n,l) (1)

If both xl−1 and W b
n,l are binary vectors, this operation

is equivalent to the Hamming weight of two bit strings’
XNOR. Similarly, the whole inference procedure of L layers is
described in Algorithm 1. In the next section, we will demon-
strate how we implement it completely in a programmable
data plane device.

C. Training: Federated Learning Technique

To classify packets with high accuracy, a neural network
needs to be trained in order to get optimal weights. Although
BNN is efficient when performing the inference, it cannot
be trained directly because gradients cannot be calculated
from binary functions. We adopt a similar method as [6],
which keeps the real-valued weights denoted by Wn. When
calculating the loss function by forward propagation, binary
weights are used. However, during the backward propagation
as the next step, real-valued gradients are calculated and
applied for the weight update. In our approach, we store Wn

and perform the backward propagation in the edge controller

Algorithm 2 Training Process
Input:
Xn, Yn: batch of inputs and labels trained at gateway n
L(Ŷn, Yn): loss function
W t

n: real-valued weights in gateway n’s control plane
W b,t

n : binary weights in gateway n’s data plane
δt: learning rate

Output:
W t+1

n ,W b,t+1
n : updated weights of each gateway

1: for n ∈ N do
2: Ŷn ← ForwardPropogation(X,W t

n,W
b,t
n )

3: gn ← BackPropogation(L(Ŷn, Y ),W t
n)

4: end for
5: (At the cloud) ∆W ← δtsign[

∑N
n=1 sign(gn)]

6: for n ∈ N do
7: W t+1

n ←W t
n + ∆W

8: W b,t+1
n ← sign(W t+1

n )
9: end for

of the gateway n, leaving the data plane for binary forward
propagation only. Besides this one-time training, it is also
possible for the data plane to report the inference results of
incoming packets to its controller in real time, so that training
can be performed again over time in the controller to improve
the classification accuracy.

[13] suggests that replacing the output layer with real-
valued weights and activation functions during the forward
propagation will positively impact the accuracy in practice.
Such improvement is also possible in our architecture. The
data plane can send to the controller the output bit string of
its BNN’s last hidden layer and make the controller finish the
calculation of the output layer using the real-valued weights.
The details of the interaction between control and data planes
will be described in the next section.

So far, we have discussed the BNN training within one edge
domain. In a network with N domains, each domain’s gateway
may receive different packet samples. In order to learn more
comprehensive attack patterns, we adopt federated learning [7]
across all domains by connecting all gateway controllers to a
cloud server. In federated learning, each gateway calculates
the weight gradients with a batch of local input samples and
sends the local updates to the cloud. Receiving updates from
all gateways, the cloud will aggregate them and announce new
weight values.

Scalability of federated learning is one of our main con-
cerns. With a large number N of domains, the communication
overheads between controllers and the cloud are not negligible
if each controller reports all its real-valued weight updates in
every learning batch. To save bandwidth, we take another bi-
narization approach, SignSGD [19]. According to this method,
each gateway now reports the 1-bit sign of local updates. Then,
the cloud will have a “majority vote” and announce the result,
which are also single bits. More specifically, we denote a
local update of gateway n by gn, then the new weights after
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Fig. 2. P4-based prototype of the proposed gateway in one domain.

communicating with the cloud are calculated by:

W t+1
n = W t

n + δtsign[
N∑

n=1

sign(gn)] (2)

where δt is the learning rate. Both down-link and up-link
messages during federated learning are compressed to single
bits, while the convergence persists as proven in [19]. The
complete BNN federated learning process is described in
Algorithm 2.

Intuitively, SignSGD is expected to cooperate well with
BNN because W b

n will not change unless the update to Wn

is large enough, i.e., from a negative value to a positive one
or the other way around. Updates without impact on W b

n will
become a waste of resources. On the other hand, (2) appears
to be a suitable way of updating. We will further show the
efficiency of this proposed method in the evaluation section.

V. IMPLEMENTATION

In this section, we develop a prototype of the proposed
architecture. Among various available programmable data
plane methods, we choose the representative P4 language [4]
to implement our system. P4 is capable of achieving rela-
tively complicated logic of packet header parsing and stateful
processing, and it can be compiled for various targets, i.e.,
different types of software/hardware switches.

A. P4 Data Plane

The data plane device (gateway) in each domain runs a
P4 program which is the key component of our proposed
architecture. It is responsible for the following functionalities.

Feature Extraction. Protocol-independence is one of the
most significant features of P4. By defining different network
protocol headers in a P4 program, the data plane device is
able to extract any header fields (e.g., fields of IP, TCP and
even application layer protocols like HTTP) from an incoming
packet and interpret them as bit strings. We concatenate several
such strings together as the input of the BNN. Moreover,
P4 also provides multiple ways (e.g., meters, counters and
registers) to extract flow-level statistics. Such features can be
used as the input of the BNN in the same way.

// an example of 120-bit input and 120 neurons in each layer
control MyIngress(...) {
register<bit<120>>(1024) weights;
bit<120> Input = 0;
bit<120> NextLayerInput = 0;
bit<1> Activated;

action Activation(bit<120> NeuronInput){
bit<8> popcnt = ... // calculate Hamming weight
Activated = popcnt>60;
NextLayerInput = NextLayerInput<<1 + (bit<120>) Activated;

}

action LayerProcess(bit<10> IndexOffset){
bit<120> weight = 0;
weights.read(weight, (bit<32>)IndexOffset+0);
Activation(˜(weightˆInput));
weights.read(weight, (bit<32>)IndexOffset+1);
Activation(˜(weightˆInput));
... // process all neurons in the same way
}

apply{
...
// a function extracting header fields and statistics
BuildInput();
LayerProcess(0); // first layer processing
Input=NextLayerInput;
NextLayerInput=0;
LayerProcess(120); // second layer processing
Input=NextLayerInput;
NextLayerInput=0;
LayerProcess(240); // third layer processing
...

}
...

}

Fig. 3. Implementing BNN with P4 codes

BNN Implementation. We use a register to store each BNN
neuron’s weight as a bit string. The registers are stateful so that
they can be written and read dynamically. When processing
each layer, bitwise XNOR operations are performed between
the input bit string and every neuron in the layer. The activation
function can be realized by calculating the Hamming weight of
the XNOR output. Although P4 does not provide built-in func-
tions for it, there are various works [22] providing algorithms
that enable fast calculations, and the parallel algorithm among
them can be easily implemented in P4. Figure 3 roughly shows
how BNN can be implemented using the P4 grammar and data
structure. In addition, we also implement the same logic in C
language for supported devices.

Packet Forwarding. The BNN can coexist with layer-2/3
or any custom packet forwarding mechanism in the same P4
program. In this prototype, we consider a simple case where
a packet from the flow regarded as an attack will be directly
discarded. We combine the BNN with a flow table matching
the incoming packet’s 5-tuple. If the packet hits an entry in the
flow table, it will be processed accordingly without being sent
to the BNN. Otherwise, the BNN performs inference and adds
a new entry to the table. In both cases, line-speed processing
is achieved, and this method further improves the efficiency
as well as reduces computation costs. The whole workflow of
the data plane is depicted in Figure 2.

Control Protocol. We define a new layer-4 protocol for the
control plane to update the weight values of the data plane. It
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typedef bit<120> MaxInputSize;
header weightupdate_t {

bit<32> index;
MaxInputSize value;

}
...
parser MyParser(...){

...
state parse_ipv4 {

packet.extract(hdr.ipv4);
transition select(hdr.ipv4.protocol) {

17: parse_udp;
6: parse_tcp;
61: parse_weightupdate;
default: accept;

}
}

state parse_weightupdate {
packet.extract(hdr.weightupdate);
transition accept;

}
}

Fig. 4. An example of P4 header definition for weight updates

contains two header fields as shown in Figure 4, the index of
target neuron and a bit string representing the weight values
of this neuron. When the data plane device receives a packet
carrying this header from the controller, it will neither forward
this packet nor call the BNN. Instead, it writes the new weight
value to its register. This protocol can also be used by the data
plane to send the output of the BNN’s last hidden layer to the
controller during the online training process, as described in
the previous section.

B. Control Plane and Cloud Server

We deploy another host with a general CPU in the same
domain as the controller for each gateway. In order to perform
online training, each controller should hold a neural network
with real-valued (rather than binary) weights. We implement
such networks by TensorFlow [23] and use Scapy [24] for the
communications with the data plane. We also deploy a server
as the cloud for federated learning. It receives local updates
from each controller through UDP packets and conducts the
aggregation. We evaluate this prototype with different topolo-
gies, which will be described in detail in the next section.

VI. EVALUATION

In this section, we deploy the proposed architecture and
algorithms in a network testbed and evaluate them with a mix-
ture of emulations and real device experiments to demonstrate
the performance and costs in multiple aspects.

A. Testbed Setup

We set up a network testbed containing multiple desktop
computers with Linux operating system, connected through
Ethernet cables. Each domain as well as the cloud server is
represented by one computer. Each domain contains multiple
hosts and one gateway, which are deployed in a Mininet [25]
virtual network. We compile the data plane P4 program to
BMv2 [26] software switches. The BNN implemented inside

the data plane contains one fully-connected hidden layer with
120 neurons and a single-neuron output.

We consider the following publicly available datasets con-
taining network traces to train and test the packet classification
algorithm.

• CICIDS2017 [27]. This dataset has a labeled record of
multiple types of attacks and benign flows. Statistics are
summarized for each flow. We take two thirds of records
for training and the remaining for testing. We convert
the layer-4 destination port, bidirectional total amount of
packets and bytes into a 144-bit input vector to the BNN.
All these statistics can be easily acquired by a P4-enabled
switch.

• ISCX Botnet 2014 [28]. This dataset collects heteroge-
neous botnet and malware traffic in realistic scenarios as
well as non-malicious traffic. Its test set contains larger
diversity than the training set to evaluate whether an
algorithm is able to handle unknown traffic patterns. For
the evaluations, we replay the TCP and UDP flows in this
dataset to the gateway. Different from the last dataset, we
choose a very common group of packet-level features, 5-
tuple (IP addresses, layer-4 protocol and ports) and IP
packet length as a 120-bit input vector.

B. Performance of Inference

First, we concentrate on Algorithm 1 and evaluate the clas-
sification performance within the scope of one domain and one
gateway. Ignoring the federated learning method temporarily,
we conduct an offline training on the gateway’s BNN with
the complete dataset and Adam [29] optimizer. For compari-
son, we also adopt other state-of-the-art learning algorithms,
including the decision tree (DT) and linear support-vector
machine (SVM) methods implemented by scikit-learn [30], as
well as another neural network (denoted by NN) having the
same structure as our BNN except that the activation function
is non-linear (sigmoid function) and all weights are real-valued
with 32-bit precision. Comparison with this NN will indicate
if the binarization leads to performance loss.

We measure multiple metrics characterizing the perfor-
mance of inference, calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(4)

where TP , FP , FN , TN are abbreviations denoting the
amount of true positives, false positives, false negatives, and
true negatives. We finally calculate the F-1 score defined as
the harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5)

Flow-Level Classification. Table I contains our measure-
ment of accuracy, precision and recall rates on CICIDS2017
dataset, where algorithms classify a flow based on several
statistics. We observe that the real-valued NN has the same

357



level of performance with DT. Our proposed BNN method
has only slightly lower accuracy (0.6%) after the binarization.
It also behaves better than SVM. At the same time, the BNN
compresses the memory required for weight value storage to
1/32 compared with the real-valued NN and makes it possible
to run the algorithm as a data plane switch function (at the
line speed of the switches). Besides, although DT has a good
performance here, it lacks an effectively training algorithm in
a distributed manner [18]. In contrast, we will demonstrate
how the BNN can be trained across different domains using
the federated learning framework in the next subsection.

Method Accuracy Precision Recall F1

BNN 0.983 0.966 0.963 0.965
NN 0.989 0.967 0.987 0.977
DT 0.989 0.962 0.993 0.977

SVM 0.957 0.889 0.937 0.913

TABLE I
PERFORMANCE METRICS ON CICIDS2017 DATASET.

Packet-Level Classification. While we have shown that our
method is valid when performing classification based on flow
statistics, we now concentrate on the packet-level features, i.e.,
matching on header fields, which permits the switch to react
to incoming packets in real time. This is the major use case
of the proposed method as a switch function. We measure
performance metrics on the Botnet 2014 dataset with such
packet-level features as inputs in Table II. As in the previous
table, we observe that the binarization incurs minor accuracy
loss only (1.05%). Besides, BNN behaves better than both DT
and SVM (6% and 7% more accuracy) under this setting.

Method Accuracy Precision Recall F1

BNN 0.945 0.945 0.766 0.846
NN 0.953 0.992 0.767 0.865
DT 0.900 0.735 0.767 0.751

SVM 0.890 0.700 0.763 0.730

TABLE II
PERFORMANCE METRICS ON BOTNET 2014 DATASET.

A high recall rate is especially important for packet classi-
fication, since the incorrect blockage of non-malicious traffic
(false negatives) may hamper normal network functionalities.
Therefore we also measure the precision and recall rates in
Table II and calculate the F-1 score, which shows a similar
tendency as the accuracy performance.

Moreover, by adjusting the threshold of the Hamming
weight calculated in the output layer, a tradeoff can be
achieved as depicted in Figure 5, which means that a better
(higher) recall rate can be acquired at a cost of sacrificing
some precision.

Packet Processing Latency. We next examine how the line-
speed packet classification can be achieved in our proposed
architecture. We send a subset of the Botnet 2014 dataset
containing 2000 successive packets from a host to the gateway.
As described in last section, the gateway data plane (the
programmable switch) keeps both the BNN and a flow table
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Fig. 5. The precision-recall curve.

matching the source IP addresses and TCP/UDP ports of
incoming packets. In order to measure the network latency
of every packet correctly, the switch marks the packets of
malicious flows in the DSCP field instead of dropping them.
Figure 6(a) plots the distribution of network latency of each
packet. A small portion (around 5%) of packets are processed
with a larger latency, having an order of magnitude of 10 ms.
These are unknown input samples the gateway encounters for
the first time without having a table entry, and therefore the
switch uses the BNN to process them. The remaining 95%
packets are processed with a much smaller latency (less than
2 ms), because they just require a one-time flow table match
operation.

We next focus on the latency caused by running BNN in
the control plane, which involves more complicated calcu-
lations. We deploy an alternative architecture (Scheme II in
Figure 6(b)) where the neural network is deployed in the
edge controller within the same domain. In this case, the
data plane switch has to forward an unknown packet to the
controller before making forwarding decisions. This is similar
to the traditional intrusion detection approaches. To evaluate
the performance of the two different architectures, we disable
the flow table and make the BNN to process all packets. The
box plots of latency are depicted in Figure 6(c). We notice that
both the average value and the variation of packet processing
latency are lower when deploying the BNN directly in the data
plane. Moreover, unlike the emulation environment, there is
usually also propagation delay between the data and control
planes in reality. Therefore, we introduce extra delay at the
link of the control path (the third and forth box plots). As
a result, the packet processing latency increases accordingly,
demonstrating further the efficiency of our programmable data
plane approach.

Hardware Support. The BMv2 software switch is not
designed for production-grade performance. Therefore, we
also deploy a Netronome Agilio CX SmartNIC with 10 GbE
ports. It is programmable by supporting a mixture of P4
and C codes, permitting us to further optimize the proposed
functionality by implementing the header parsing in P4 and
BNN in C to take full advantage of this high-performance
device. We will deploy such hardware in a larger scale to
have more realistic evaluations as a future work. We also make
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Fig. 6. Packet processing latency evaluations of BNN inference as a switch function in the data plane.
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Fig. 7. The (a) accuracy and (b) control message overheads during federated learning with the network scaling.

both our BMv2 and Agilio codes publicly available [31] for
the benefit of the research community.

Main Takeaways. (1) The proposed BNN method performs
packet classification with high accuracy based on both flow-
level (flow statistics) and packet-level (header fields) fea-
tures. (2) The BNN method outperforms several state-of-the-
art learning methods in accuracy and F-1 score, with only
slight performance loss during the binarization. (3) Imple-
menting BNN in the data plane as a switch function achieves
faster packet processing speed (line speed) than traditional
approaches that deploy similar functions in a remote host.

C. Performance of Federated Learning

Having shown the performance of the proposed architecture
within a single domain, we now extend the scenario to a multi-
domain network and evaluate the federated learning method
(Algorithm 2). We assume that there are N domains each con-
taining a gateway with the same P4 program. Correspondingly,
the dataset is split into N subsets, and each gateway can only
get access to one of them.

Accuracy with Distributed Training. First, we consider a
case without federated learning (denoted as local learning),
where each gateway does not connect to the cloud and is
trained based on its subset only. We evaluate the trained
BNN in each domain’s gateway with the original test set. The
average accuracy is depicted by red bars with cross texture
in Figure 7(a), which severely degrades (less than 80% in
the worst case compared with 94.5% when training with the
complete dataset). On the other hand, if the federated learning

described in Algotihm 2 is adopted during training, we can
get an accuracy (blue bars in Figure 7(a)) which is almost
as good as the offline trainig with the complete dataset. Such
conclusion holds with different N values.

Communication Overhead. Although federated learning
makes it possible to have a scalable solution for training
gateways in multiple domains, the communication overhead
of both uploading (gateways sending local updates) and down-
loading (the cloud announcing the aggregated update) will be a
problem, especially when there is a large amount of domains,
which is the reason why we apply the binarization technique
the second time during this communication. We analyze two
types of traffic overheads; between the cloud and gateway
controllers, as well as between each gateway’s control and
data planes.

When analyzing the overheads, we compare with traditional
federated learning approaches, where local updates are updated
with real values usually represented by 32 bits. Then, the cloud
will aggregate updates by calculating the average values. It
will broadcast the aggregated weight updates also in 32 bits.
It is straightforward that the SignSGD method we adopt will
significantly reduce the traffic overheads between the cloud
and each edge controller, because only a single bit for every
weight is required in our approach, leading to 1/32 up-link
traffic overhead. The same analysis can also be applied for
down-link overhead.

The control message overhead from a gateway controller to
the data plane switch updating the binarized neural weights
also decreases. Another benefit of replacing the real-valued
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weights with single bits is that the controller does not need to
send a control message if all binarized weights of the same
neuron remain unchanged after training with a new batch.
Therefore, less messages and overheads are required when the
BNN converges. In Figure 7(b), we plot the control message
overhead between all pairs of control and data planes during
the first one thousand batches of federated learning. With the
network converging quickly after training with 500 batches,
the overhead reduces to less than 0.5% compared with the
case that we use the real-valued NN and traditional federated
learning method.

Main Takeaways. The proposed architecture enabled by
federated learning leads to (1) much more accurate classifi-
cation compared with training each gateway independently,
and (2) small traffic overheads in communications between
the cloud and edge controllers, as well as between the control
and data planes.

VII. CONCLUSION

In this paper, we explored new methods for enhancing
security at the network edge with SDN and programmable
data plane. We designed an architecture running BNNs in edge
gateways as switch functions to detect attacks from incoming
packets. We also proposed a federated learning framework
for gateways of multiple edge network domains to learn new
attack patterns online and collaboratively. Evaluations on a
real prototype we developed demonstrate that our method can
achieve line-speed packet processing with high classification
accuracy and low false alarm rate. Moreover, our solution
is scalable with small communication overheads between the
control and data planes of each edge domain, as well as
between the cloud and each edge controller.
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