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PASE need know the prior knowledge of flow size to ap-

proximate Shortest Job First (SJF) discipline. PIAS improves

pFabric[6] by a dynamic priority assignment without the prior

experience, which approximates Least Attained Service (LAS)

according to the flow packets that have been already sent so far.

Although some of them substantially improve overall average

FCT. However, they do not consider the application types and

just assign priority according to flow size, which may result

in that a larger latency-sensitives flow is queued behind many

small latency-insensitive flows. Besides, flow control schemes

such as DCTCP[7], HULL[8] and D2TCP[9] try to reduce

FCT without relying on flow information by keeping low

queue occupancy using explicit congestion notification (ECN).

While these schemes generally improve latency, they are

fundamentally constrained because they can never precisely

estimate the flow rate to use so as to schedule flows to

minimize FCT while ensuring that the network is fully utilized.

Based on the analysis of current solutions, we claim that a

good datacenter transmission control scheme should meet the

following design principles:

• The low latency for the user-interactive flows and the high

throughput for the throughput-hungry flows.

• The universality for diverse network scenarios.

We argue that differentiated transmission can satisfy all

the requirements mentioned above. In this paper, we present

SmartTrans, a deep learning based latency-aware differentiated

transmission control service in datacenters, which is a potential

universal solution to simplify the transmission in the dynamic

and diverse network scenarios.

Here are three key designs of SmartTrans. First, SmartTrans

utilizes deep learning method at end hosts to predict flow

information, because the blind scheduling without knowing

flow information is likely to result in sub-optimal results. Sec-

ond, based on the obtained flow information, SmartTrans use

multilevel priority queues to execute differentiated scheduling.

Finally, SmartTrans enlarges switch buffer space to improve

the capacity of DCN.

The rest of this paper is organized as follows. In the next

section, we present the details of SmartTrans. We evaluate

SmartTrans and compare it with other state-of-the-art schemes

in Section III. Finally, we briefly conclude SmartTrans in

Section IV.

Abstract—Production datacenters generally collect diverse ap-
plications with differentiated requirements, e.g., low latency and 
high throughput. Therefore, datacenter transmission schemes 
must strive to meet these requirements. However, despite sig-
nificant efforts, prior solutions are either ineffective to satisfy 
different requirements or costly to apply. Besides, no scheme can 
accommodate to all diverse data center scenarios or dynamic 
traffic patterns. In this paper, we propose SmartTrans, a deep 
learning based latency-aware differentiated transmission service, 
including three main components. First, SmartTrans utilizes 
deep learning methods for traffic classification and flow size 
rank prediction. Second, according to the classified results of 
flows, SmartTrans adopts multilevel priority queues to execute 
differentiated scheduling. Third, SmartTrans enlarges the switch 
buffer to increase the capacity of datacenter networks (DCN), 
which effectively fights against the traffic burst and improves 
the throughput of latency-insensitive flows. We evaluate Smart-
Trans with several real workloads. Experiment results show that 
SmartTrans achieves both the low average flow completion time 
(FCT) for latency-sensitive flows and the high throughput for 
latency-insensitive flows.

Index Terms—flow scheduling, data center, deep learning, 
latency, throughput

I. INTRODUCTION

There are a large number of applications in contemporary

datacenters[1]. Traffic in the datacenter is usually a mix

of diverse flows with different requirements which consist

of the latency-sensitive traffic, e.g., online gaming and web

search, and the throughput-oriented traffic such as Hadoop,

MapReduce or virtual machine migration[2]. To guarantee

high-quality access to the variety of applications and services

with the appropriate performance, it is necessary to take

advantage of all limited resources in datacenters. In modern

datacenters, for satisfying the low latency requirement of some

applications, network devices in datacenters are designed with

the shallow buffer to reduce the maximum queuing delay

that packets may suffer from. However, as other applications

require the high bandwidth, DCN need a large capacity to

absorb the traffic burst and avoid the packet drop.

To optimize the performance of datacenter, many schemes

have been proposed. Some of them use policies that approx-

imate or implement well-known disciplines to minimize the

average FCT, e.g., PDQ[3], PASE[4], and PIAS[5]. PDQ, and
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II. DESIGN OF SMARTTRANS

We show the details of our design in this section. There are

two main parts of SmartTrans: a deep learning-based method

to predict flow information and multilevel priority queues to

execute differentiated scheduling.

A. Flow Classification and Flow Size Prediction at End-host

For differentiated scheduling, datacenters need to know the

information of flows. Different from the previous works which

assume flow information as a prior, SmartTrans use deep

learning method to predict flow information. It considers flow

type firstly to ensure low latency of key applications and flow

size secondly for optimizing average FCT.

Notice that SmartTrans predicts which rank or interval the

flow size belongs to instead of the accurate flow size. There

are two reasons: 1). It is difficult to predict the accurate flow

size, we have used a regression model to predict the size and

find that the error is huge. Increasing the hidden size or layer

number can help a bit, but the cost is expensive 2). There

are limited number of queues in the modern switch, it is not

necessary to know the accurate flow size. We just need to know

which queue the flow belongs to according to its size. So we

convert the regression problem to a classification problem.

Fig. 1. Traffic classification and flow size prediction architecture.

The architectures of the traffic classification and flow size

rank prediction neural network (TCFSNN) used in SmartTrans

are shown in Fig. 1. Because of the sequential relationship

between packets, SmartTrans chooses the recurrent neural net-

work (RNN) model which commonly used in natural language

processing. We can regard flow as a language with only 256

vocabularies as flow is made up of bytes and each byte can

be translated as a number in 0∼255. In SmartTrans, each flow

is treated as a communication conversation and each byte is

a word between applications. Several words form a sentence

which describes some meaningful information, such as four

bytes of IP address. When SmartTrans finds a flow, it copies

the first three IP packets of this flow and then lets the flow

go. Copied packets are fed to TCFSNN to get the prediction

of flow type and flow size rank. Note that TCFSNN uses

copied packets to make prediction, it does not block the normal

process of flows.

Here we detail the design of TCFSNN. There are one

embedding layer, two bidirectional GRU layer and one full

connect layer in TCFSNN. It converts the copied packets

to digits and combines every four digits into a group to

extract information such as IP address efficiently. Since the

ordinary RNN suffers from the gradient vanishing, we use

an improved RNN optimization: the Gated Recurrent Unit

(GRU)[10], which adopts a gating mechanism to retain long-

term memory during propagation. There are two gates in GRU,

where z and r denote the update and the reset gates. The output

of GRU ht at time t is a linear interpolation between the

previous output ht−1 and the candidate activation ĥt, which

can be expressed as

ht = (1− zt)ht−1 + ztĥt (1)

where an update gate zt decides the values that the unit updates

at time t, and controls the keeping of the old memory and the

adding of the new memory. zt updates according to

zt = σ(Wzxt + Uzht−1) (2)

Where W and U represent the trainable parameters of this

gate. The calculation of the candidate ĥt is similar to that of

the traditional recurrent unit

ĥt = tanh(Whxt + Uh(rt � ht−1)) (3)

Where reset gate rt determines how the previous memory state

affects the present candidate state. rt computed similarly to the

update gate
rt = σ(Wrxt + Urht−1) (4)

TCFSNN uses the focal loss that is employed to solve the

problem of the imbalance multi-classification problem while

training neural networks, because the number of the small flow

is much more than the large flow in datacenters. The main

idea of the focal loss is to focus more on hard-to-distinguish

samples and reduce the impact of simple samples. The focal

loss for K-classification can be simply calculated as

FL(yl) = −α(1− softmax(yl))
γ log(softmax(yl)) (5)

where l is the true label, α is the weight assigned to the class,

and γ is the focusing parameter.

By leveraging the TCFSNN, SmartTrans can get flow in-

formation instead of assuming it as a prior. Although the

prediction is not absolutely right, it also benefits the scheduling

and indeed improves the performance of SmartTrans as the

experiments in Section III shows.

B. Multilevel Priority for the Differentiated Transmission

SmartTrans leverages the multilevel priority both at end-

hosts and switches for the differentiated transmission to ensure

the user experience while optimizing average FCT of all flows.

The multilevel priority means that it uses multiple factors

instead of one to determine the priority of flows, since one-

dimension scheduling may lead to a sub-optimal result.

In SmartTrans, two factors are taken into account:

• Flow Type: Different applications have distinct require-

ments, thus datacenters had better offer service by flow

type. Compared to the equal treatment of all flows, it is

a better approach that lets latency-insensitive flows give

way to latency-sensitive flows. However, same minimum

RTO (minRTO) for all flows will lead to timeout and

trigger retransmission for flows that make way. Thus,

SmartTrans allows the network operator to set differ-

ent minRTO values according to application types. In
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Fig. 2. Multilevel Priority Queues. Applications in different RTO rank have
different delay-tolerance and minRTO. Each RTO rank has one or more size
rank to optimize FCT. Each square in size rank represents a flow which is
tagged with RTO rank and size rank.

SmartTrans, each minRTO value represents an RTO rank

and applications which have the same minRTO belong to

same RTO rank. RTO rank 1 has the minimum minRTO

and flows in RTO rank 1 have the least delay tolerance

and have a higher priority. SmartTrans regards the flow

type as the most significant factor to assign priority.

• Flow Size: Flow size is an important factor affecting

FCT. When an elephant flow is queued in front of mice

flows, mice flows’ FCT will increase sharply and even

lead to timeout. Therefore, SmartTrans takes flow size

as the second factor for determining priority to optimize

the average FCT. As Fig. 2 shows, a RTO rank includes

one or more size ranks in the switch. Each size rank is

a priority queue and one or more priority queues form a

RTO rank.

In SmartTrans, hosts keep multilevel priority queues as well

as network switches. TCFSNN gives the host the type and

size rank information of every flow, then the host tags this

information on DSCP filed of every packet in flow and places

packets to the corresponding priority queues according to the

type and size as Fig. 2 shows. Switches in DCN have the same

config of multilevel priority as host. When switch receives a

packet, it gets the flow information from DSCP field of the

packet and places the packet to the multilevel priority queue

according to the information. Considering that TCFSNN needs

time to calculate, packets are given the highest priority before

TCFSNN outputs the result.

We introduce that how SmartTrans determine the thresholds

between different size rank when a RTO rank has more than

one size rank. SmartTrans leverages existing optimization

software to derive the thresholds numerically.

1) Problem Formulation: We assume that there are K

priority queues and each one is denoted as Qi, 1 ≤ i ≤ K,

where Q1 has the highest priority. We denote the percentage

of flows in Qi as θi and the cumulative density function of

flow size distribution as F (x). Let αi = F−1(
∑i

l=1 θl) denote

the size rank threshold for Qi and Qi+1, 1 ≤ i ≤ K − 1,

where F−1(x) is the inverse function of F (x). Denote the

E[Si] =
∫ Ci

Ci−1
F−1(x)dx as the average size of a given flows

in the queue Qi, where Ci =
∑i

l=1 θl is the cumulative sum of

θ. Thus, given the flow arrival rate as λ, then the flow arrival

rate to Qi is λi = λE[Si].
The service rate for a queue depends on whether the queues

with higher priorities are all empty. Thus, the highest priority

queue Q1 has the capacity μ1 = μ where μ is the service rate

of the link. The fraction of time that Q1 is idle is (1 − ρ1)
where ρi = λi/μi is simply the utilization of Qi. Thus, the

service rate of Q2 is μ2 = (1−ρ1)μ since its service rate is μ
given that Q1 is empty. Thus, we have μi =

∏i−1
j=0(1− ρj)μ

with ρ0 = 0. Thus, Ti = 1/(μi − λi) which is the average

delay of Qi assuming M/M/1 queues.

For a flow fi in Qi, it experiences the delays in different

priority queues up to the i-th queue. So the average FCT

for T (fi) is upper-bounded by:
∑i

q=1 Tq . Thus we have an

optimization problem of choosing an optimal set of θi to

minimize the average FCT of flows on this bottleneck link.

The problem can be formulated as:

min
{θi}

K∑
l=1

(
θl

l∑
q=1

Tq

)

s.t.

l=K∑
l=1

θl = 1

θi ≥ 0, i = 1, ...,K

(6)

2) Solution Method: Since there are generally often less

than 8 priority queues in modern switches, the problem can

be solved numerically and quickly with existing optimization

software. We use a global optimization toolbox available in

SciPy. For 4, 8-queues cases, the problem is on average solved

in 12s, 30s respectively on a modern PC with i5-6400 CPU. In

summary, given flow arrival rate λ and flow size distribution

F (x), we can compute the thresholds relatively quickly.

III. EVALUATION

In this section, we design experiments to evaluate Smart-

Trans’s performance and compare it with other schemes.

A. Traffic Classification and Flow Size Prediction

We design experiments to evaluate the accuracy and effi-

ciency of the traffic classification and the flow size prediction.

However, it is hard to find a DCN dataset that could provide

both enough application types and flow numbers. Hence, four

different datasets are used in this experiment, one for flow

classification and three for flow size prediction. In the flow

classification experiment, we refine data from a real-world

public dataset, UNB CIC VPN-nonVPN dataset [11]. There

are about 20M flows in our training set. Several common flow

types are selected such as FTP, P2P, Browsing, Email, Spotify

and Youtube in flow classification experiments.

Flow size prediction is performed with three public datasets

of real traffic from two universities[12] and an academic

building dataset at Dartmouth College. Each dataset consists of

packet trace for more than 3 million flows. We train 10 epochs

in our experiments and apply the 5-fold cross-validation for

the dataset. F1-score is used to estimate our methods, where

F1-score is:

F1− score =
2× Precision×Recall

Precision+Recall
(7)
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Fig. 3. Traffic distributions used for evaluation.

TABLE I
TRAFFIC CLASSIFICATION RESULT

Protocol
Metrics

Precision(%) Recall(%) F1-Score(%)

Browsing 99.57 99.88 99.72
Email 99.87 100 99.94
FTP 99.35 100 99.67
P2P 100.00 99.77 99.88

Spotify 99.09 100 99.54
Youtube 100 98.34 99.16

Where Precision refers to the fraction of relevant instances

among the total retrieved instances. Recall refers to the

fraction of relevant instances retrieved over the total relevant

instances.

Table I shows the Precision, Recall and F1 score of the

traffic classification experiment. We find that SmartTrans

achieves nearly perfect classification of all kinds of flows. The

impressive performance of TCFSNN is owing to the ability of

deep learning methods to deal with complex sequences. Then

we evaluate the performance of SmartTrans for predicting flow

size rank in different scenarios. Lets K denotes the number of

priority queues. We vary the thresholds from 10KB to 10MB

when K = 2. The predicted result shows that it achieves nearly

98% accuracy in the test case, because the network only needs

to predict whether the flow is elephant or mice flow. Next, we

show the predicted result of K = 4 in Table II. As K increases,

predict accuracy shows a downward trend, because it is getting

closer to predicting the actual flow size, rather than the interval

where the flow size is. However, it is also acceptable and could

get considerable gain when K is not large. Considering that

modern datacenter switches typically have eight queues, the

accuracy is acceptable when K ≤ 8. We also find that it always

has an excellent performance on predicting the elephant flow,

because the number of the elephant flow is less than the mice,

which makes it easier to find consistent features.

B. Large Scale Simulation Setup

In this part, we test SmartTrans under datacenter topol-

ogy by NS3 simulation. Our NS-3 based implementation of

TABLE II
FLOW SIZE PREDICTION RESULT WITH K=4

FlowSize
Metrics

Precision(%) Recall(%) F1-Score(%)

(0, 10KB] 95.99 87.31 91.45
(10KB, 5MB] 90.36 97.02 93.57
(5MB, 10MB] 99.26 100 99.63

(10MB, ∞) 100 100 100

SmartTrans[13] has been open sourced to GitHub. We run the

experiments on a DELL EMC PowerEdge R840 server.

Experiment Setting: We evaluate the performance of

SmartTrans with the 8x8 leaf-spine topology. This topology

has 8 leaf switches, 8 spine switches and 128 hosts. Each leaf

switch is connected to 16 hosts and 8 spine switches using

10Gbps links, thus forming a 2:1 oversubscription network.

The base end-to-end round-trip time across the spine (4 hops)

is 85.2μs. SmartTrans aims to be a universal scheme to

simplify traffic scheduling in diverse scenarios. So in this

part, ECMP, the widely employed load balancing scheme,

is used for load balancing. In our experiment, we simulate

two widely-used realistic DCN traffic workloads: a web-

search workload [7] and a data-mining workload [14]. Their

cumulative distribution function of flow sizes are shown in

Fig. 3. For DCTCP, we set the ECN marking threshold as

65 packets for 10Gbps links, which follows the parameter

setting as [7] recommends. We assign every port a buffer

whose size is 800 packets. There are usually eight priority

queues in the datacenter switch. Unless specified, we use the

first four queues as RTO Rank 1 which has a higher priority

for latency-sensitive flows. The remaining four priority queues

form RTO Rank 2. minRTO of flows in RTO Rank 1 and RTO

Rank 2 are set as 5ms and 10ms, respectively.

1) Average Latency-Sensitive FCT: Fig. 4(a) and Fig. 5(a)

show the average FCT of latency-sensitive flows under differ-

ent workloads and load levels. From the figures, we see that

SmartTrans delivers the best performance. By contrast, the per-

formance of PIAS is varied. SmartTrans achieves about 100%

and 30% lower FCT than PIAS for the web search and data

mining workloads. It is expected, because SmartTrans employs

the multilevel priority queues and places latency sensitives

flows in high priority queues. In both two workloads, there

are not many large flows on the same link concurrently. As a

result, PIAS does not suffer from starvation as significantly.

Hence, PIAS is up to 9.87% and 5.27% lower average FCT

compared to DCTCP respectively.

2) Overall Average FCT: We also compare the overall

average FCT of these schemes at different loads, the results

under every workload are shown in Fig. 4(b) and Fig.5(b).

As the results show, when the load is low, PIAS sometimes

performs slightly better than SmartTrans: it is within 0-

1.2%. However, SmartTrans gradually shows an advantage

than other schemes as the load increase and especially better

at heavy load. There are 11.81% and 1.16% lower overall

average FCT for SmartTrans than PIAS at 90% load in the

web search and data mining respectively. Note that although

the multilevel priority employed by SmartTrans damages the

average FCT of latency-insensitive flows, the overall average

FCT of SmartTrans is still comparable to DCTCP at low load

and much better than PIAS and DCTCP under high load.

3) Average Throughput of Latency-Insensitive Flows:
Generally, the optimization of latency-sensitive flows is at

odds with the throughput of latency-insensitive flows. To

evaluate the effect of using multilevel priority and cache on

latency-insensitive flows, we show the average throughput of
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(a) Avg. latency-sensitive FCT (b) Overall avg. FCT (c) Latency-insensitive flow throughput

Fig. 4. Simulation results of the web-search workload in the symmetric topology (normalized to SmartTrans).

(a) Avg. latency-sensitive FCT (b) Overall avg. FCT (c) Latency-insensitive flow throughput

Fig. 5. Simulation results of the data-mining workload in the symmetric topology (normalized to SmartTrans).

latency-insensitive flows in Fig. 4(c) and Fig. 5(c). The results

show that average throughput of latency-insensitive flows in

SmartTrans is comparable to PIAS at low load level and

is 9.82% and 1.97% lower than PIAS at 90% load in web

search and data mining respectively. It is expected because

SmartTrans always places latency-insensitive flows behind of

latency-sensitive flows and there are only four queues for

latency-insensitive flows compared to eight queues of PIAS.

But the loss is small and acceptable, we get a great gain

for latency-sensitive flows and a better overall average FCT.

The throughput of latency-insensitive flows is even slightly

better than DCTCP in web search and data mining workloads.

This is because we enlarge switch buffer to enhance the DCN

capacity, which could effectively fight against the burst and

reduces the packet dropping.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose SmartTrans, a deep learning

based latency-aware differentiated transmission control service

for datacenter. SmartTrans uses deep learning methods to

classify the flow type and predict the flow size while enlarging

switch buffer to offer high throughput for bandwidth-hungry

flows. Meanwhile, it uses the multilevel priority to improve

the overall average FCT. Comprehensive experiments show

that SmartTrans improves the average latency-sensitive FCT

significantly and overall average FCT slightly while offering

high throughput in all scenarios.
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