
Evaluation of Centralised vs Distributed
Collaborative Intrusion Detection Systems in

Multi-Access Edge Computing
Rahul Sharma1, Chien Aun Chan2, Christopher Leckie1

1School of Computing and Information Systems
2Department of Electrical and Electronic Engineering

The University of Melbourne, Australia
Email: {rahuls2, chienac, caleckie}@unimelb.edu.au

Abstract—With the rapid adoption of next generation net-
working architectures in 5G, like Multi-Access Edge Computing
(MEC), there is a shift in the core processing capabilities to the
edge of the network. This helps facilitate higher bandwidth and
ultra-low latency responses, but can increase the attack surface
for cyber-attacks like Denial of Service (DoS) and Distributed
Denial of Service (DDoS). To safeguard these architectures with-
out degrading performance, we require mechanisms capable of
detecting these attacks in near-real time. Collaborative Intrusion
Detection Systems (CIDS) are a popular choice for detecting
sophisticated coordinated attacks in large complex networks,
and a prime candidate for use in this context. However, finding
the right CIDS deployment model is not straightforward, with
each model presenting its own set of challenges like accuracy
as well as network and computational overhead. In this paper,
we focus on evaluating two CIDS models - a centralised vs
a distributed approach using Distributed Hash Tables (DHTs),
based on their detection accuracy, CPU and memory usage, and
data transmission overhead. We assess each approach through
experimentation with a real-world worm dataset to understand
the complexities involved in developing an efficient intrusion
detection solution for MEC.

Index Terms—5G, Multi-Access Edge Computing, Cybersecu-
rity, Intrusion Detection, DHT

I. INTRODUCTION

The growth in data from Internet of Things (IoT) sensors
and controllers has created demand for high-performance com-
pute and storage environments to offload data processing from
centralised servers. Cloud computing is a primary candidate
for these use cases, but falls short in real-time applications
demanding ultra-low latency access, high-bandwidth, context
and location awareness [1].

These requirements have motivated the introduction of
MEC, deemed capable of meeting the demands of these real-
time applications. Edge Computing covers a broad range of
techniques, designed to move compute and storage capabilities
from centralised data centers (public and/or private) to the edge
of the mobile network [2] [3]. This architecture facilitates data
processing closer to end users, reducing response times and
leveraging a heterogeneous set of edge servers. Major cloud

and telecommunication providers are starting to rollout these
service offerings as part of their portfolio, for instance Google
provides Edge TPU [4], Microsoft has Azure IoT Edge [5],
and Amazon Web Services (AWS) launched AWS Wavelength
[6] for edge computing.

However, attacks targeting edge computing infrastructure
have also risen dramatically in recent years [7]–[10]. For
instance, the Mirai botnet attack took control of over 65,000
IoT devices within the first 20 hours of its release in August
2016 [7]. These compromised devices were used as part of a
botnet to launch DDoS attacks on edge servers, affecting over
178,000 domains [8]. Following this, variations of Mirai such
as IoTReaper and Hajime were identified, which reportedly
affected more than 378 million devices in 2017 [7].

To prevent exposure to such attacks, it becomes crucial for
MEC to leverage intrusion detection mechanisms for iden-
tifying anomalous behavior in near real-time [1] [11]. Most
of the current IDS solutions propose deployment in the core
backbone network, with edge-focused solutions still being in
their infancy. Looking at the complex attack surface exhibited
by MEC, it is important to identify trends between malicious
activities occurring at multiple locations, like a CIDS. For
instance, [12] proposed a Distributed Edge-based IDS for
analysing IoT application traffic from multiple edge devices
using CIDS. However, there are a range of CIDS deployment
models to choose from, ranging from a centralised processing
focus to distributed load sharing architectures. This presents a
challenge in identifying the best CIDS approach in an MEC
environment, making it crucial to understand the complexities
involved in each mechanism. Vasilomanolakis et al. [13] out-
lined some of the requirements needed when choosing between
different CIDS deployment models, such as accuracy, minimal
overhead, scalability, resilience, privacy, self-configuration and
interoperability. We use accuracy and overhead (computational
and network) as our comparison parameters due to their
importance in MEC to ensure strong security patterns without
degrading network performance. Our novel contribution is to
evaluate two CIDS mechanisms, namely a Centralised CIDS
architecture versus a purely Distributed CIDS architecture toISBN 978-3-903176-28-7 © 2020 IFIP

343

detect coordinated attacks using a real-world worm dataset,
addressing the following questions:

• How does a Centralised CIDS compare against a purely
Distributed CIDS in evaluating intrusion detection accu-
racy in MEC?

• How do these architectures compare in utilising CPU and
memory usage?

• Which of the two CIDS architectures incur lower data
transmission overhead to share relevant information be-
tween peers in practice?

To address these questions, we implement a Centralised
CIDS architecture having edge processing units, that filters and
forwards alerts to a central correlation unit. This central unit
tracks the frequencies of requests arising from a specific source
within a given time frame to verify attacks. For our distributed
CIDS architecture, we leverage DHTs for their fault tolerance
through Peer-to-peer (P2P) communication and focused data
sharing capability using a publish-subscribe model. These
nodes form an overlay network to reduce the data transmission
overhead. Each node runs a DHT instance in a trusted envi-
ronment, tracking the frequencies of requests from specific
sources by ingesting identified alerts as a single dimensional
correlation query entry for sharing amongst peers. Nodes can
identify malicious traffic from the same source and attain a
global view of other nodes who observe malicious traffic from
the same source through their subscription capability, thus
validating the identified attack.

To evaluate the detection accuracy and performance of these
models, we perform an empirical analysis using a large real-
world worm dataset, namely - “Three days of Conficker” [14].
This dataset has been collected by the Center for Applied
Internet Data Analysis (CAIDA), tracing the presence of
Conficker A and B attacking specific services that have been
anonymised. Our contribution demonstrates the effects on de-
tection accuracy, CPU and memory use, and network overhead
in detecting Conficker A using different CIDS architectures for
alert correlation in an MEC environment.

This paper is structured as follows. Section II addresses
related work of intrusion detection starting from traditional
networks, and its progression towards edge computing. Section
III discusses our implementation methodology for Centralised
and Distributed CIDS in MEC. In Section IV, we present
the results of our evaluation of the two approaches through
deployment on virtual machines, and conclude in Section V.

II. RELATED WORK

In this section, we review related work on CIDS and its
current outlook from the perspective of MEC.

A. Traditional Collaborative Intrusion Detection Deployment

Collaborative Intrusion Detection Systems have been an ac-
tive area of research for addressing coordinated attacks across
multiple heterogeneous networks [15]–[17]. Where traditional
IDSs are limited to the scope of their own network, a CIDS
leverages a global view across multiple networks by scaling
and sharing context between peers. Hence, a CIDS can extend

its detection range across multiple networks, enabling them
to make better decisions. There are different classifications of
CIDS based on their communication architecture [16], such
as:

• Centralised CIDS: These comprise multiple monitoring
nodes that forward alerts to a central processing unit for
aggregation and analysis.

• Hierarchical CIDS: These maintain a multi-layered ar-
chitecture, with each layer filtering alerts, and transmit-
ting relevant data only to the layer above. This data moves
up the hierarchy until it reaches the central processing
node for aggregation and processing.

• Distributed CIDS: Data filtering, detection, and process-
ing tasks are shared between all peers in a decentralised
manner.

LarSID [17] is a general-purpose Collaborative Detection
scheme to share suspicious evidence with peers. It focuses
on identifying worm outbreaks and detection of large scale
stealthy coordinated scans across multiple nodes, using a
modified Pastry DHT [18] [19] as its decentralised data sharing
mechanism. It leverages a publish-subscribe mechanism where
each node acts as a monitor that filters and evaluates traffic.
Every node maintains a watchlist for its local subnetwork,
subscribing and correlating messages that are shared by other
nodes, and generating notifications for peers to describe any
identified malicious traffic. Through experimentation, they
demonstrated that a distributed architecture fares better than a
centralised one, as it alleviates potential bottlenecks through
decentralisation of the consensus-based decision-making pro-
cess.

Split-and-Merge [16] uses a Centralised CIDS solution to
track network trends and note changes in port usage using a
modified Z-score that has outlier resistant properties [20]. It
maintains local detection modules that are distributed across
networks to analyse traffic and forward alerts to a central
controller for aggregation. This central controller analyses all
incoming packets to confirm malicious traffic and notifies the
local detection modules to update their baseline evaluation of
the port specific features used for anomaly detection. This
setup works well in identifying attacks with high accuracy,
but the central module still presents a bottleneck as its absence
decouples the local detection modules, thus losing its global
view of the network.

B. Intrusion Detection in Edge Networks

The authors of [9] proposed a six-layer edge computing
intrusion detection model, with each layer undertaking specific
roles in the architecture. It utilises detection modules in the
edge nodes, which are responsible for identifying attacks and
monitoring the underlying state of its host. The logs and
metrics generated at this layer are forwarded to a cloud server
for analysis to generate reports and derive insights. The cloud
layer is also responsible for orchestration and management
of edge nodes to facilitate intrusion forensic investigation.
This deployment setup uses a hybrid approach to intrusion

344

Fig. 1. Centralised CIDS Architecture

detection, where dependence on a cloud data center is key for
orchestration and data sharing.

In [21], the authors proposed a three-layered framework for
Distributed Intrusion Detection Systems using Edge Comput-
ing, coordinating between edge nodes and a cloud data center.
They use a filter layer for an IDS to inspect traffic and reduce
false alarms while coordinating with peers. These IDS further
communicate with the Edge layer to analyse shared data using
appropriate algorithms selected locally. The edge nodes sift
through all the data and forward computationally expensive
operations to a cloud data center for analysis if needed. This
architecture results in sharing large volumes of data between
the edge layer and the cloud data center, which adds an
additional communication burden that introduces delays in
response based on the geolocation of these individual layers.

Looking at these hybrid IDS models in edge computing,
we can observe a trend in utilising both edge nodes and
cloud data centers. However, it also presents an increase in
the communication overhead to share information back and
forth between these layers, while increasing response time
[22] [23]. This becomes an issue when trying to perform real-
time intrusion detection. To address these issues, we focus on
removing the cloud data center dependency for orchestration
and load sharing by evaluating the detection process in the
MEC directly.

III. CIDS ARCHITECTURES

In this section, we give an overview of the reference
architectures (i.e., Centralised and Distributed CIDS) that are
the basis of our study.

A. Centralised CIDS Architecture

Our Centralised CIDS comprises two components - local
filtering nodes (LFi) and a centralised processing node (CP)
as seen in Figure 1. Local filtering nodes are deployed across
multiple MEC nodes, and used as a pre-filtering module to

scan network traffic in the local subnet of where it is deployed.
They filter network traffic, extracting TCP packets containing
the SYN flag (packets initiating connection) and forward that
information to the central processing node.

Algorithm 1: Centralised CIDS Processing
// Local Filtering Module
while Incoming Network Traffic do

if pkti.hasTCP && pkti.flags == ”SYN” then
filtered data←− pkti;
send data(filtered data);

end
end

// Central Processing Module
while Incoming Filtered Data do

Queue←− filtered data;
end

// Aggregation Logic Running In Separate Thread
Function data_aggregator():

pkti ←− Poll(Queue);
if pkti.src ip != watch list {src ipi} then

watch list {src ip} = 1 ;
else if pkti.src ip == watch list {src ipi} then

watch list {src ip} += 1 ;
end
if watch list {src ip} % threshold == 0 then

Log ←− pkti.src ip
end

End Function

The central processing node inserts received packets into
a queue, popping them sequentially for aggregation. It first
checks if the source IP address of that packet exists in the
watch list of the central processing node. If it is present, we
increment a counter against that source IP in the watch list,
indicating the amount of traffic received from that source. If
the source IP address is not present, we add it to the watch
list. We use different thresholds in our experiments, namely
2, 3, or 5, to keep track of the frequency of packets incoming
from the same source IP address. If the number of incoming
packets is equal to a multiple of the threshold then we log the
traffic as an alert for intrusion prevention or other mitigation
actions. Our watch list is empty initially and is refreshed every
10 mins, thus, reducing the overall memory requirements of
the centralised architecture, while keeping focus on current
traffic patterns.

B. Distributed CIDS Architecture

For our distributed architecture, we use an Opensource DHT
called OpenDHT [24] based on Kademlia [25] similar to the
model used by [17]. Here, each edge server runs a DHT node
in a trusted environment, connecting with peers through the
formation of an overlay network using P2P communication as
seen in Figure 2.

345

Fig. 2. Distributed CIDS Architecture

Similar to our Centralised CIDS, each DHT node scans the
network traffic in the local subnet of its deployment, extracting
TCP packets containing the SYN flag. Each node checks if the
source IP address of that packet exists in its local watch list.
If the source address is not present, the edge node creates an
entry in its watch list and inserts data about the packet as
a single dimensional key <Key,Value> format in our DHT
network. Each key can record multiple value entries for a
fixed period of time (default of 10 minutes in our tests),
presenting a global view of any and all updates of a referenced
correlation query key. Some of the main benefits of using a
DHT are that it transmits referenced data only, reducing the
network overhead. However, these references are based solely
on a single dimensional key in OpenDHT. Hence, we use
source IP address as this key, similar to the approach taken
by [17]. OpenDHT provides a callback functionality called
LISTEN which allows nodes to trigger an automatic callback
against a key whenever an update is registered against it.
This enables a publish-subscribe model, where nodes directly
subscribe on certain keys and the DHTs publish all updates
to the subscribers of a key. In our experiments, every time a
packet from a source is observed for the first time within a
10 minute interval, we set a callback on that source IP in the
DHT network.

We use different thresholds in our Distributed CIDS archi-
tecture, namely, 2 or 3. These thresholds are used to identify
relevant source IP addresses to insert into the DHT, and
also form a consensus to validate a source IP address to be
malicious. For instance, if the source IP of the packet being
analysed exists in the watch list of our edge node, we update
a counter against that source IP address in the watch list and
verify if the frequency of packets observed from this source
is equal to a multiple of our threshold. If so, we insert data
about this packet into the DHT network using the source IP
as our single dimensional key.

Algorithm 2: Distributed CIDS Processing
// Local DHT Node Entry Point
while Incoming Network Traffic do

if pkti.hasTCP && pkti.flags == ”SYN” then
Queue←− pkti;

end
end

// Aggregation Logic Running In Separate Thread
Function data_filter():

while true do
pkti ←− Poll(Queue);
if pkti.src ip != watch list {src ipi} then

watch list {src ip} = 1 ;
DHT ← PUT (pkti.src ip, {Msg})
LISTEN(src ip)

else if pkti.src ip == watch list {src ipi} then
watch list {src ip} += 1 ;

end
if watch list{src ip} % threshold==0 then

DHT ← PUT (pkti.src ip, {Msg})
end

end
End Function

// Track Consensus Using Callback
Function listen_callback():

while true do
pi ←− callback response
if ”expired”! = pi.status then

if node! = pi.current node then
if pi.src ip! = peers[src ip] then

if len(peers) >= threshold then
Notify(peers[src ip])

end
end

end
end

end
End Function

IV. EVALUATION

The experiments in our evaluation aim to compare the
data transmission overhead, detection accuracy, and CPU
and memory usage of our two CIDS models in an MEC
environment. The evaluations are performed using different
detection thresholds to measure the frequency of packets from
the same source IP arriving at edge nodes and capture node
performance metrics across multiple time frames.

A. Experimental Dataset

We compare the performance of our two approaches out-
lined in Section 3 using a real-world worm dataset called
“Three Days of Conficker” [14] made available by the Center
for Applied Internet Data Analysis (CAIDA). It is composed

346

of a network telescope having a /8 globally routed network
space carrying versions A and B of the Conficker worm
across 3 days. The first day (i.e. 21st November 2008) captures
the initial presence of Conficker A, the second day (on 21st

December 2008) reflects the presence of only Conficker A,
and on the third day on 21st January 2009, both Conficker A
and Conficker B are active.

The packets contain anonymised destination IP addresses,
with the majority of the traffic targeting 445/tcp [26] [27], both
in terms of the number of packets and the source IP addresses
observed. In our experiments, we use a sample of the first day
containing the initiating phase of the Conficker Worm A to
understand the effectiveness of both our CIDS mechanisms
in identifying its outbreak. Our data comprises 16,358,338
raw packets, out of which 4,204,248 packets are used to
initiate a TCP connection. From these, we extract the TCP
SYN messages sent as part of the TCP 3-way handshake to
focus the scope of our attack pattern. During analysis of these
packets, we capture the corresponding 5 tuples for aggregation
purposes within our respective approaches.

B. Centralised CIDS Setup

We simulate our MEC setup using virtual machines (VMs)
running in a single data center. For the Centralised architec-
ture, we deployed our local filtering module on 5 VMs and
used 1 VM as our central processing node. The local filtering
nodes read data from the Conficker worm dataset, and filter
traffic for TCP SYN messages. We recover the 5 tuples from
these filtered SYN packets and forward this payload to the
central processing node for aggregation.

The central node inserts incoming http packets into a queue
and polls it in a separate thread to ingest and filter data
concurrently. The filtered information is forwarded to the
aggregation logic to track all source IPs observed. The results
of the analysis are logged in a MySQL database for the first
and nth multiple of occurrence of a source IP within a given
timeframe (we use a 10 minute window), constantly refreshing
memory after this time.

If the source IPs are observed only once within a specific
timeframe, we treat it as suspicious, but if multiple requests are
aggregated and it crosses the threshold on requests observed as
alerts - those source IPs are mapped as malicious. This is used
to validate malicious traffic originating from specific sources,
and an alert notification can be created to initiate intrusion
prevention and other mitigation procedures.

C. Distributed CIDS Setup

Similar to the Centralised setup, we deploy instances of
our DHT on 6 VMs, with each VM running our processing
logic. The DHTs form an overlay network routed via a private
namespace, dynamically registered via peers. We start the
process by reading the network data from our worm dataset,
filtering on the TCP SYN messages. Similar to the centralised
approach, we use the first and nth multiple of occurrence of
our source IPs in each 10 minute window, inserting them into
the local DHT node.

The DHT creates a hash of the entry based on the Key
(source IP address in our case) used to decide the placement of
our <Key, Value> pair across one of the nodes in the overlay
network. Any subsequent values published for this Key will be
hashed and placed in the same location as the original entry
using the Key as the single dimension namespace across the
entire overlay network.

For our workflow, we set a callback for every new source
IP inserted into the local DHT node. This enables each local
node to track updates on that source IP as flagged by other
peers, leveraging the distributed nature of the architecture. It
also allows nodes to gain a global context on that source IP
address with minimal data transmission and delay.

If multiple nodes identify the same source IP address to
be suspicious then we can validate the malicious nature of
traffic originating from that source. However, picking the right
threshold value to enable this is not an easy problem to
address, so we evaluate with varying thresholds to observe the
affects on the detection process for validating malicious source
IPs. The consensus based detection process can be used to ini-
tiate global and local mitigation procedures to limit the impact
of the identified malicious traffic on our services/destinations.
The distributed nature of the DHTs allows us to share our
load across multiple heterogeneous nodes, irrespective of their
physical configuration, which is a key aspect of MEC.

Currently, the DHT is configured to store data for a limited
period of time only to save space as edge nodes are often
resource constrained. When a value expires due to the retention
time limit, it is promptly deleted from the overlay network.
Nodes subscribed to this key will receive a notification with
an expired tag in the payload, enabling us to keep track of the
data ingested into the network and log its entire lifecycle.

During callback responses, we filter out messages inserted
into the DHTs by the same nodes to avoid false aggregations
and keep track of all MEC nodes in the network reporting
the same source IP to be suspicious. If we reach a consensus
(equal to or above a threshold) from peers about a source
IP address being malicious, we trigger custom notifications to
notify peers (both new and old) confirming the source IP to be
malicious. This provides a more fine-grained control towards
coordinating the sharing of information between peers.

D. Data Transmission Overhead

In our experiment, we tracked the amount of data trans-
mitted across our components to identify the total network
overhead involved. Each transmitted message is composed of
732 Bytes including its HTTP headers, with the Centralised
CIDS transmitting a total of 3,520,892 messages and each filter
node transmitting an average of 704,178.4 messages to the
central processing node. Similarly, the Distributed approach
transmitted a total of 1,000,191 messages with each node
transmitting an average of 166,698.5 messages for suspicious
IP addresses for ingestion into the DHT, with approximately
27,624 messages sent out as notifications to peers to validate
malicious source IP addresses when using a threshold 3, and
134,567 messages when using a threshold 2.

347

TABLE I
DATA TRANSMISSION BETWEEN DIFFERENT CIDS MODELS (IN GB)

CIDS Mechanism Data Transmitted (in GB)
Centralised CIDS 2.5

Distributed CIDS (Threshold of 2) 1.5
Distributed CIDS (Threshold of 3) 1.4

As shown in Table 1, the Distributed CIDS requires far less
data transfer (i.e., a 40% reduction compared to the Centralised
CIDS), as it only transmits data when ingesting it into the DHT
or when receiving updates via callbacks. Using its publish-
subscribe mechanism, only subscribed nodes receive updates,
hence reducing unnecessary publish messages to all peers. If
an attack is distributed across multiple nodes the DHT helps
validate malicious traffic with less network overhead, enabling
edge nodes to perform intrusion prevention/mitigation proce-
dures faster. The Centralised CIDS, however, requires all alerts
to be forwarded to a centralised processing node, resulting in
significantly more data transfer.

In private networks, organisations may focus more on
security as opposed to network overhead. This makes the
Centralised CIDS an ideal choice due to the ease in securing
such architectures, albeit at the cost of fault tolerance, as the
centralised processing node is required to be online at all times
for this to work. The Distributed CIDS, on the other hand,
provides a more fault tolerant approach with less network
overhead, but may require additional measures in place to
secure the distributed deployment.

E. Accuracy Model

We deployed our two models using different threshold
values to identify changes in detection accuracy. For instance,
we ran our Centralised CIDS implementation with 2, 3 or 5
as our thresholds, i.e., whenever it observed frequencies of
alerts originating from the same source IP more than these
set thresholds within a given timeframe (10 mins) - it flagged
the source IP to be malicious. Similarly, we used a threshold
of 2 or 3 in our distributed architecture to decide when to
insert data into the DHT network and also to form consensus
between peers to validate a source IP address to be malicious.

Based on the results in Figures 3-7, we observe that the
Centralised CIDS model flagged significantly more traffic
as part of its analysis, the majority of which is targeting
port 445 used by the Conficker worm based on its attack
model [26] [27]. Similarly, the Distributed CIDS also flagged
port 445 to be the predominant port number being attacked,
although the amount of traffic captured is far less. This is
due to attacks happening on a small number of edge nodes,
less than the threshold for forming consensus to validate
malicious source IP addresses. In the Centralised CIDS, since
the traffic analysed is aggregated centrally, attacks localised
on one or more destination IP addresses on specific nodes
are identified easily. However, our distributed approach flags
suspicious IP addresses every first and the nth multiple of when

Fig. 3. Top Ports attacked as identified in Centralised CIDS (Threshold of 5)

Fig. 4. Top Ports attacked as identified in Centralised CIDS (Threshold of 3)

it is observed on a specific edge node, but these source IPs
are only considered to be malicious based on a consensus.
Hence, attacks localised to a single or few nodes (less than the
threshold for the consensus) remain undetected. This resulted
in the identification of fewer alerts, thus affecting accuracy.
To overcome this drawback, we need a mechanism to cater
not only for attacks that are distributed/observed in different
parts of the network, but also on localised edge nodes, while
sharing context in the form of source IPs or attack patterns
(port centric, etc) between peers.

Fig. 5. Top Ports attacked as identified in Centralised CIDS (Threshold of 2)

348

Fig. 6. Top Ports attacked as identified in Distributed CIDS (Threshold of 3)

Fig. 7. Top Ports attacked as identified in Distributed CIDS (Threshold of 2)

Similarly, we can observe that as the threshold value
decreases for both the Centralised CIDS (from 5 to 3 and
then 2) and the Distributed CIDS (from 3 to 2), the amount
of traffic identified as malicious increases, providing finer
granular detection ranges. However, this comes at a cost of
computing memory and latency, which were not major issues
in our setup given the small cluster size used.

F. CPU and Memory Requirements

For the Centralised CIDS architecture, we observe that
the CPU requirements can vary considerably based on the
threshold parameter set for confirming malicious traffic. For
instance, the centralised node has a sharp increase in CPU
and Memory usage initially and then becomes stable with
few fluctuations depending on the processing needs of traffic
crossing the set threshold of 5 in Fig 8. However, for thresholds
of 3 and 2 we observe a higher level of fluctuations, indicating
that as the threshold decreases, the CPU and Memory load
needed for processing on the underlying host increases.

Similarly, the memory usage of the central node shows a
small amount of fluctuation in the initial phase of the analysis,
followed by a stable load throughout its processing lifetime.
We also notice that the higher the threshold value used to
map malicious traffic, the faster is the saturation point, as a
threshold of 5 is more stable as opposed to threshold values of
3 and or (especially) 2. One would expect the memory usage to

Fig. 8. CPU and Memory Usage in Centralised CIDS (Threshold of 5)

Fig. 9. CPU and Memory Usage in Centralised CIDS (Threshold of 3)

fluctuate further due to the queueing mechanism used for the
staging and aggregation process. However, due to the limited
amount of data forwarded by the 5 local monitor nodes and the
faster processing capabilities present in modern architectures,
the queueing of data was a trivial compute task, completing
on an average 0.00017 msec per alert for a threshold of 5, in
0.00029 msec for a threshold of 3, and 0.00054 msec for a
threshold of 2.

For our Distributed architecture, we capture CPU and Mem-
ory usage metrics across all our DHT nodes for threshold
values 3 and 2. As seen in Figures 11-12 for a threshold value
of 3, the CPU utilisation has a steep increase initially but
reaches a saturation level at around 33-35%. Similarly, the
memory utilisation displays an initial steep increase following
which the usage across all nodes is stable. These metrics
indicate that the resources across all edge nodes are evenly
used with data processing and storage being offloaded in
a similar fashion. However, for a threshold value of 2, we
note that the CPU utilisation of our DHT nodes increases
slowly until it reaches a saturation point due to the constant
hashing of the single dimensional correlation queries invoked
by the ingestion and retrieval actions of our data. Since we
separate these actions into their own threads, the only compute

349

Fig. 10. CPU and Memory Usage in Centralised CIDS (Threshold of 2)

Fig. 11. CPU Usage in Distributed CIDS (Threshold of 3)

Fig. 12. Memory Usage in Distributed CIDS (Threshold of 3)

Fig. 13. CPU Usage in Distributed CIDS (Threshold of 2)

Fig. 14. Memory Usage in Distributed CIDS (Threshold of 2)

overhead involved on each node is the aggregation through
queueing and the DHT based processing, which is trivial from
a computing overhead perspective.

In contrast, the memory utilisation can vary quite signifi-
cantly as observed in Figure 14. Although most nodes store
data in a balanced fashion across the overlay network, we
observe a spike in memory usage on node 6. This is due
to constant updates being made on a particular source IP
address, prompting the DHT to position the entry on the same
node each time, resulting in additional memory usage. This
could potentially affect heterogeneous edge nodes having less
storage space by overwhelming them due to constant data
storage.

Also, we observed that the data filtering and ingestion calls
made to the DHT were completed in a few hours, but it
took the DHT days to process, store and validate informa-
tion, presenting additional overhead on resource utilisation.
This presents a major bottleneck for the scalability of this
distributed solution, as the amount of data that edge nodes
process may be significantly more. This resulted in a steep
increase in processing overhead and response latency for the
DHTs.

In order to reflect a more realistic setup for modern net-

350

works, it is important to observe these metrics when adding
additional nodes for both setups – Filtering nodes for the
Centralised and DHT nodes for the Distributed approach,
along with an increased data sample size, which we will aim to
address in future work. Since the queuing mechanism in both
approaches worked quickly with our current sample dataset, it
would be interesting to observe how these architectures would
behave under a heavier influx of data.

V. CONCLUSION & FUTURE WORK

Progression towards MEC in 5G still requires significant
planning to detect and mitigate large scale coordinated attacks
that disrupt service provisioning and usage. To understand
the key complexities involved in detecting these attacks, we
studied two CIDS architectures, namely a Centralised CIDS
and a Distributed CIDS. Through experimentation with a real-
world dataset, we observed that a Centralised CIDS displays
higher detection accuracy than a Distributed CIDS, especially
when attacks are concentrated on one or a few edge nodes.
However, accuracy may be overwhelmed by response latency
in a Centralised CIDS as the number of edge detection
nodes increases. Similarly, the Centralised CIDS has lower
CPU and memory requirements than the Distributed CIDS
at low workloads, but increases gradually as the workload
increases as observed at lower detection threshold levels. Also,
the Centralised CIDS has higher network overhead than the
Distributed CIDS, even at different thresholds. For future
work, we will evaluate the tolerance of our architectures
through stress tests, and consider how to combine the strengths
of both mechanisms to optimize the detection process in a
fault tolerant, decentralised manner, especially when attacks
are focused on one or a few nodes in an edge computing
environment.

REFERENCES

[1] H. Hui, C. Zhou, X. An, and F. Lin, “A New Resource Allocation
Mechanism for Security of Mobile Edge Computing System,” in IEEE
Access, 2019, pp. 116886-116899, Aug 2019.

[2] ETSI (2014). Mobile-edge computing — Introductory technical white
paper. [Online] Available at: https://portal.etsi.org/portals/0/tbpages/
mec/docs/mobile-edge computing - introductory technical white
paper v1\%2018-09-14.pdf

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher and V. Young, “Mobile edge
computing: A key technology towards 5G,” in ETSI white paper, 2015.

[4] Google Cloud. (2019). Edge TPU - Run Inference at the Edge [Online]
Available at: https://cloud.google.com/edge-tpu/.

[5] Microsoft Azure (2019). IoT Edge — Microsoft Azure [Online] Available
at: https://azure.microsoft.com/en-in/services/iot-edge/.

[6] Amazon Web Services, Inc. (2019). AWS Wavelength - Amazon Web
Services. [Online] Available at: https://aws.amazon.com/wavelength/.

[7] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J.
Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N.
Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in Proc. 26th USENIX Conference on Security Symposium, Vancouver,
BC, Canada: USENIX Association, 2017, pp. 1093–1110., Aug 2017.

[8] S. Weagle (2017, February 21). Financial Impact of Mirai DDoS
Attack on Dyn Revealed in New Data. [Online]. Available at:
https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-
on-dyn-revealed-in-new-data.html.

[9] F. Lin, Y. Zhou, X. An, I. You, and K. R. Choo, “Fair Resource Alloca-
tion in an Intrusion-Detection System for Edge Computing: Ensuring the
Security of Internet of Things Devices,” in IEEE Consumer Electronics
Magazine, vol. 7, no. 6, pp. 45-50, Nov 2018.

[10] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et
al.: A survey and analysis of security threats and challenges,” in Future
Generation Computer Systems, 2018, pp. 680-698, Jan 2018.

[11] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge
Computing: A Survey,” in IEEE Internet of Things Journal, vol. 5, no.
1, pp. 450-465, Sep 2017.

[12] K. Sha, T.A. Yang, W. Wei, and S. Davari, “A survey of edge com-
puting based designs for IoT security,” in Digital Communications and
Networks, 2019.

[13] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer,
“Taxonomy and Survey of Collaborative Intrusion Detection,” in Journal
of ACM Computing Surveys (CSUR), vol. 47, no. 4, 55, July 2015.

[14] The CAIDA UCSD ”Three Days of Conficker Traffic from the
UCSD Network Telescope” Dataset: http://www.caida.org/data/passive/
telescope-3days-conficker dataset.xml

[15] C. V. Zhou, C. Leckie, and S. Karunasekara, “A survey of coordinated
attacks and collaborative intrusion detection,” in Computers & Security,
vol. 29, no. 1, pp. 124-140, Feb 2010.

[16] A. Blaise, M. Bouet, S. Secci, and V. Conan, “Split-and-Merge: De-
tecting Unknown Botnets,” in the Sixteenth IFIP/IEEE International
Symposium on Integrated Network Management (IM), USA, pp. 153-
161, Apr 2019.

[17] C. V. Zhou, S. Karunasekara, and C. Leckie, “Evaluation of a Decen-
tralized Architecture for Large Scale Collaborative Intrusion Detection,”
in the Tenth IFIP/IEEE International Symposium on Integrated Network
Management (IM), Germany, pp. 80-89, May 2007.

[18] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a DHT,” in Proceedings of the annual conference on USENIX Annual
Technical Conference, pp. 10-10, May 2004.

[19] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenkar,
I., Stoica, and H. Yu, “OpenDHT: a public DHT service and its uses,”
in Proceedings of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM
’05), pp. 73-84, Aug 2005.

[20] B. Iglewicz and D. Hoaglin, “How to detect and handle outliers,” in The
ASQC Basic References in Quality Control: Statistical Techniques. [On-
line]. Available at: https://hwbdocuments.env.nm.gov/Los\%20Alamos\
%20National\%20Labs/TA\%2054/11587.pdf

[21] W. Li, Z. Liu, J. Li, and C. W. Probst, “Enhancing Intelligent Alarm
Reduction for Distributed Intrusion Detection Systems for Edge Comput-
ing,” in W. Susilo and G. Yang (eds) Information Security and Privacy,
ACISP 2018, Lecture Notes in Computer Science, vol 10946, Springer,
Cham, June 2018.

[22] Y. Wang, L. Xie, W. Li, W. Meng, and J. Li, “A Privacy-Preserving
Framework for Collaborative Intrusion Detection Networks Through Fog
Computing,” in S. Wen, W. Wu, A. Castiglione (Eds.), International
Symposium on Cyberspace Safety and Security, CSS 2017, Lecture
Notes in Computer Science, vol 10581. Springer, Cham, Oct 2017.

[23] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. letaief, “A Survey
on Mobile Edge Computing: The Communication Perspective,” in IEEE
Communications Surveys Tutorials, pp. 2322 - 2358, Aug 2017.

[24] Savoirfairelinux (2014). savoirfairelinux/opendht. [Online] Available at:
https://github.com/savoirfairelinux/opendht.

[25] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in Druschel P., Kaashoek F.,
Rowstron A. (eds) Peer-to-Peer Systems, IPTPS 2002, Lecture Notes
in Computer Science, vol 2429. Springer, Berlin, Heidelberg, Oct 2002.

[26] P. Porras, H, Saidi, V. Yegneswaran, “A foray into Conficker’s logic
and rendezvous points,” in Proceedings of the 2nd USENIX conference
on Large-scale exploits and emergent threats: botnets, spyware, worms,
and more, pp. 7-7, Apr 2009.

[27] E. Aben (2019). Conficker/Conflicker/Downadup as seen from the UCSD
Network Telescope. [Online] CAIDA. Available at: https://www.caida.
org/research/security/ms08-067/conficker.xml.

351

