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Abstract—As communications evolve to give space to new
applications, such as augmented reality and virtual reality, new
paradigms arise to provide essential characteristics like lower
latency levels, mobility support, and location awareness. Such is
the case of Fog computing, which extends from the well-known
Cloud computing paradigm by bringing processing, communi-
cations, and storage capabilities to the edge of the network. By
offering these novel features, also new challenges emerge that call
for the design and implementation of orchestration mechanisms
to deal with resource management. One of these mechanisms is
related to the service placement, which consists in the selection of
the appropriate execution node for the applications according to
a specific optimization objective. In this paper, an Integer Linear
Programming model for service placement aimed at latency
reduction of popular applications is proposed. Furthermore, a
heuristic based on the PageRank algorithm, called Popularity
Ranked Placement, is also introduced. Simulation results show
that the heuristic has lower execution times and is able to better
balance the load in the network nodes, while being close to the
ILP-based solution latency levels.

I. INTRODUCTION

The global IP traffic is expected to triple by 2022 [1], and

82% of this traffic will correspond to IP video traffic. Virtual

Reality and Augmented Reality are predicted to increase their

traffic 12 times, and Internet video-to-TV will increase three

times [1]. With this massive amount of data, a rapid exhaustion

of the infrastructure resources, and, therefore, a decrease in

the quality of the communications is foreseeable. Given the

predominance of streaming video in the predictions of the IP

traffic, latency becomes one key aspect to consider to meet

delivery constraints of applications.

To improve latency levels it is necessary to design and

implement smart service placement mechanisms that select the

optimal location among the different possibilities in order to

enhance the QoS (Quality of Service).

The decentralization of the Cloud, by bringing the services

and applications towards the end-user IoT (Internet of Things)

devices and near-user edge devices in order to provide lower

latency levels, mobility support, and location awareness, led to

the advances in newer paradigms such as Fog computing [2].

Fog computing extends the Cloud paradigm, being located

between the dense IoT environment and the Cloud. The Fog
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nodes (e.g., gateways, switches, servers) can be organized into

clusters/communities, supporting federation [3], providing a

higher level of organization in a complex and dense environ-

ment.

Given its distributed and heterogeneous nature, the Fog

requires new mechanisms to automate the management of

the resources. The design of a hierarchical architecture that

incorporates a Cloud-based repository for the services and a

Fog-based deployment was already proposed [4][5]. In such

solutions, an orchestrator is assigned with the task of managing

the resources of the network efficiently. Nevertheless, in more

decentralized scenarios, like the Fog, more complex managing

approaches are required. Within the many tasks of the orches-

trator, there is a set of Planning Mechanisms that must be

implemented, including those related to Service Placement.
Only bringing the service instances to the edge of the

network is not enough, since the perimeter of the Cloud can be

broad, and in a dense environment such as the Fog, there could

be multiple choices to place the service instances. Thus, it is

relevant to select a metric that allows to guide the placement

process. The popularity of the applications (and ultimately, of

the services) seems to be a good option since it would lead

the placement of the most popular applications towards the

locations where the most data and service-hungry users are

stationed, i.e., at the edge of the network. The popularity can

be measured by the number of requests for a given application.

On the other hand, popularity as a metric is not enough

to guarantee the QoS requirements for the applications at

the communication infrastructure level, since it does not take

into consideration the current status of the network. Thus,

combining the popularity of the applications with a network

metric, such as the propagation delay, will lead to a context-

aware orchestrator regarding the service placement.

This paper presents an ILP (Integer Linear Programming)

formulation to find the optimal solution for service placement

based on popularity aimed at the reduction of latency in Fog

environments. Furthermore, a heuristic called PRP (Popularity

Ranked Placement) based on the PageRank algorithm [14] is

proposed to offer an option close in quality to the optimal

solution, while being significantly less time-consuming. Both

approaches are evaluated via simulation.

The paper is structured as follows. Section II presents a
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TABLE I
CHARACTERISTICS FROM RELATED WORK

Work Optimization Goal Approach Environment Simulator

Skarlat et al. [6] Maximize resource usage ILP Fog iFogSim

Skarlat et al. [7] Maximize resource usage ILP + Genetic algorithm Fog iFogSim

Wang et al. [8] Minimize cost Linear programming + Heuristic Mobile micro-clouds Unspecified

Taneja and Davy [9] Maximize resource utilization Module mapping algorithm Cloud/Fog iFogSim

Lera et al. [10] Maximize availability 2-phase placement / communities Fog YAFS

Guerrero et al. [11] Minimize distance Decentralized placement Fog iFogSim

Mahmud et al. [12] Maximize QoE Fuzzy logic Fog iFogSim

Brogi and Forti [13] Maximize QoS Mathematical model Fog FogTorch

selection of related work on service placement. Section III

depicts the ILP model regarding service placement for latency

reduction. Section IV defines a heuristic based on the PageR-

ank algorithm. Section V depicts the evaluation process and

setup, while Section VI presents the results and their respective

analysis. Finally, Section VII concludes the paper and shows

the road-map for future work.

II. RELATED WORK

Although the placement problem has been vastly addressed

in the past for Cloud environments [15][16][17][18], new

strategies are required for the Cloud/Fog continuum [19].

Skarlat et al. [6] analyze the placement of IoT services in

the Fog, according to their QoS requirements. They define an

ILP model aimed at maximizing the utilization of the Fog

landscape, while also keeping the resource usage constraints.

Evaluation is carried out using iFogSim [20]. On another

work, Skarlat et al. [7] present a heuristic based on a genetic

algorithm to solve the service placement problem. The main

purpose of this work is to maximize the number of services

placed, and the usage of Fog devices. Once again, iFogSim is

used as an evaluation tool. The proposed solutions are com-

pared with a First Fit greedy approach. The genetic algorithm

provided lower deployment delay by exploiting more Cloud

resources.

Wang et al. [8] introduce an optimization approach and a

heuristic for online scenarios. Both approaches are evaluated

using simulations. Their proposal is O(1) competitive for a

broad family of cost functions, meaning its competitive ratio

is given by a constant. Taneja and Davy [9] describe a Module

Mapping algorithm aimed at the optimization of resource

utilization for Cloud/Fog scenarios. The solution is compared

with placing the applications entirely in the Cloud, and it is

carried out by simulation using iFogSim. Response times and

network usage are reduced when using the Fog compared with

a Cloud-only approach.

Lera et al. [10] present a solution for service placement

aimed at improving the availability by placing as many inter-

related services as possible within the proximity of the user.

The proposal is compared with an ILP approach by means

of simulation using YAFS [21], and showed improved QoS

and availability. Guerrero et al. [11] propose to place popular

services closer (according to the hop-count) to the users. The

decision is made in a decentralized fashion by each of the

devices. Simulation (using iFogSim) showed that more popular

applications had lower latency while less popular applications

were affected by a larger delay.

Mahmud et al. [12] use fuzzy logic to place applications in

the Fog, with the objective of maximizing the QoE (Quality

of Experience). Experimental evaluation is performed using

iFogSim. Results show a reduced deployment time and im-

proved QoE. Brogi and Forti [13] propose a model for the

deployment of IoT applications in the Fog. Authors also

introduce a tool, FogTorch, in which the model is prototyped.

The works reviewed in this section are summarized in

Table I. It is noticeable that all works use simulation for the

validation, varying the tool used (mostly iFogSim, but also

YAFS and FogTorch). It is also relevant to notice the use of

mathematical programming techniques, like ILP, in the design

of models to find the optimal location for services.

The work presented in this paper uses two metrics to guide

the service placement process: (1) the number of requests

of the applications, as an upper-level metric to measure the

popularity of the applications, and (2) the propagation delay

as a network-level indicator of the status of the communication

links. Both metrics can change during time, adjusting them-

selves to reflect the current conditions of the network and the

users’ demands, unlike other metrics used in related works,

such as hop count. Thus, the proposed mechanisms can be

executed in different time windows to re-adjust the placement

of the existing services and to satisfy the new users’ demands.

The service placement mechanisms proposed are described in

the following sections.

III. AN ILP MODEL FOR SERVICE PLACEMENT

This section introduces an ILP model to maximize the place-

ment of popular applications while minimizing the latency for

final users in Fog environments.

A lexicographic formulation of the optimization problem is

considered in this article. First, with the goal of serving the

largest number of users, the problem consists of maximizing

the selection of accepted requests, given the popularity of the

applications. Then, the second problem consists of placing the

services that belong to an application in the Fog nodes that
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minimize latency, given the selection of the requests obtained

in the first problem. The constraints from the first problem

are kept for the second in order to ensure feasibility. The goal

is to improve the QoS; hence the overall solution of solving

both problems should provide a better QoS to the maximum

amount of users.

A. Parameters and Variables

Table II summarizes the parameters and variables for the

model. Regarding the parameters, the set of entry points

from where requests are generated is labeled as GW ; these

correspond to the gateways from where clients access the

Fog environment. The instance matrix I reflects the micro-

services that compose the applications. This means that an

application can be built by the combination of a set of services.

Ia,s = 1 if service s ∈ S belongs to application a ∈ A,

and 0 otherwise. The cost matrix C contains the propagation

delay (as a component of latency) from the shortest path that

connects each pair of nodes n ∈ N and gateways gw ∈ GW .

Concerning the variables, the acceptance matrix, K is a

binary matrix that indicates which requests are accepted for

each application. Ka,r = 1 if the r-th request for application

a ∈ A is accepted, and 0 otherwise. P represents the

placement matrix, indicating the final location for the services.

The matrix relates the request per applications, and the nodes

where the services belonging to those applications are finally

placed; P a,r
s,n = 1 indicates that service s ∈ S is executed on

node n ∈ N to satisfy request r ∈ R for application a ∈ A,

and P a,r
s,n = 0 otherwise.

B. Maximizing the Placement of Popular Applications

The first step in the optimization solution is to select the

applications with the highest amount of requests, which are

considered as the most popular. Eq. (1) depicts the main

objective function of the ILP model. Since the main objective

is to maximize the selection of popular applications, the

set of requests per application is used to determine which

applications have higher priority in the selection.

max
∑
a∈A

Qa ×
∑
r∈R

Ka,r (1)

The first constraint in the model, shown in Equation (2),

is meant to ensure that the selection of applications is only

carried out when the request can be fulfilled entirely. The

constraint in Eq. (3) guarantees that the services that belong to

an application selected are executed in only one server. Eq. (4)

forces that all the services belonging to an application can be

executed before selecting it.

P a,r
s,n ≤ Ka,r ∀a ∈ A, r ∈ R, s ∈ S, n ∈ N (2)

∑
n∈N

P a,r
s,n ≤ 1 ∀a ∈ A, r ∈ R, s ∈ S (3)

TABLE II
PARAMETERS AND VARIABLES FOR THE ILP MODEL

Parameters

Parameter Description

S Set of services to be placed

N Set of nodes where the service can be executed

GW Set of gateways at the edge of the Fog

A Set of applications. An application is composed by a set of services

R Set of requests for all the applications

Qa Sum of requests for a ∈ A

Ωn CPU capacity for n ∈ N (GHz)

Φn Memory capacity for n ∈ N (GB)

ωs CPU requirement for s ∈ S (GHz)

ϕs Memory requirement for s ∈ S (GB)

I Instance matrix. An |A| × |S| matrix

C Cost matrix. An |N | × |GW | matrix

Variables

Variable Description

K Acceptance matrix. An |A| × |R| matrix

P Placement matrix. An |A| × |R| × |S| × |N | matrix

Ka,r × Ia,s =
∑
n∈N

P a,r
s,n ∀a ∈ A, r ∈ R, s ∈ S (4)

Memory and CPU restrictions are also imposed as con-

straints to the model, to enforce resource limits in the execu-

tion nodes. Eq. (5) describes the CPU constraint and Eq. (6)

does the same for the memory constraint. For both equations,

the sum of processing requirements from all services can not

surpass the available resources in the nodes.

∑
a∈A

∑
r∈R

∑
s∈S

P a,r
s,n × ωs ≤ Ωn ∀n ∈ N (5)

∑
a∈A

∑
r∈R

∑
s∈S

P a,r
s,n × ϕs ≤ Φn ∀n ∈ N (6)

While the resources of the nodes are usually fixed and well

known, an estimate is used for the resource requirements of

the services (i.e., CPU and memory). Service profiles can be

created by gathering information from previous executions. In

this work, the services profiles are generated using a bounded

random approach (see Section V).

C. Minimizing the Latency

The second optimization goal is to reduce the latency of the

most popular applications, selected on the first optimization

problem. Eq. (7) depicts the formulation. The main idea is

to minimize cost, represented by the propagation delay of the

links towards a node (Cn,gw). The cost can be changed to

another gauge, e.g., energy consumption, to model a different

requirement.

min
∑
a∈A

∑
r∈R

∑
n∈N

∑
s∈S

∑
gw∈GW

P a,r
s,n × Cn,gw (7)
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In order to guarantee that the popular applications are

still selected (i.e., maintaining the results from the first op-

timization), the acceptance matrix resulting from the first

optimization problem is now a parameter matrix and used as

input for the placement process in the second optimization

problem. Therefore, during this step of the optimization, the

services are placed in the most convenient nodes in the Fog,

aiming at the reduction of the latency of the services; see

Eq. (8).

∑
s∈S

Ka,r × Ia,s =
∑
s∈S

P a,r
s,n ∀a ∈ A, r ∈ R,n ∈ N (8)

Constraints from the first optimization problem (i.e., Eq. (2)

through (6)) are kept in this step to guarantee feasibility. In

the following section, an alternative heuristic based on the

PageRank algorithm is proposed.

IV. A HEURISTIC BASED ON PAGERANK

Although optimization solutions are often used for offline

environments and as a theoretical threshold, they are not

usually applied in online or more realistic scenarios given their

lack of adaptability and also their high response times [22].

Furthermore, by optimizing the selection of requests that come

from the gateways, the procedure will most likely place the

majority of the applications in the same Fog nodes, thus

potentially creating an overload in the same nodes and links in

case of heavy load. To overcome these issues, an alternative

heuristic, based on the PageRank algorithm, is presented in

this section.

First, the original PageRank algorithm is introduced to, later

on, describe how it is adapted for the PRP (Popularity Ranked

Placement) heuristic.

A. The PageRank Algorithm

The PageRank algorithm was first introduced to rank web

pages in a search engine, and it was based on a summa-

tion derived from bibliometrics research (i.e., the analysis

of the citation structure among academic papers) [14]. The

idea behind the PageRank algorithm is to rank the nodes

in a graph via probability propagation. To understand how

it works, an example is provided in Fig. 1. Consider the

graph G = (V,E), where V = {A,B,C,D} and E =
{(A,B), (A,C), (B,D), (C,A), (C,B), (C,D), (D,C)}. At

the beginning of the algorithm, it is assumed that all the nodes

in set V have the same rank r = 1
n , where n denotes the

cardinality of set V .

Nodes are ranked following an iterative approach, according

to Eq. (9) where Bni is the set of nodes pointing into node ni

and deg+(nj) is the number of out-links from node nj . Let

rk+1(ni) be the rank of node ni at iteration k+1. The ranking

process begins with r0(ni) =
1
n for all nodes and is repeated

until the PageRank scores converge to final stable values [23].

The values obtained after applying the first three iterations of

Eq. (9) to the graph depicted in Fig. 1 are shown in Table III.

A B

DC

Fig. 1. A graph example to illustrate the PageRank algorithm

rk+1 (ni) =
∑

nj∈Bni

rk
(
nj

)

deg+
(
nj

) (9)

The implementation of the PageRank algorithm could be

sped-up using matrices [23]. The idea is to use an N × N
matrix H in combination with a 1 × N row vector πT ,

which holds the PageRank value of all nodes in each iteration.

The matrix H is a row normalized hyperlink matrix with

Hij = 1
deg+(nj)

if there is a link from node ni to node

nj , and 0, otherwise. Thus, nonzero elements in H represent

the transition probability from one node to another. The

corresponding H matrix for the graph depicted in Fig. 1 is

shown in Eq. (10).

H =

⎛
⎜⎜⎜⎝

0 0 1
3 0

1
2 0 1

3 0
1
2 0 0 1
0 1 1

3 0

⎞
⎟⎟⎟⎠ (10)

The nonzero elements of row i in H correspond to the out-

link nodes of node i; meanwhile, the nonzero elements of

column i denote the in-link nodes of node i. Regarding the

rank of the nodes, the row vector π(k)T represents the PageR-

ank vector at the k-th iteration of the algorithm. Consequently,

Eq. (9) can be written using a matrix notation as shown in

Eq. (11).

π(k+1)T = π(k)TH (11)

From Eq. (11), the following observations arise [23]: (1)

each iteration requires one vector-matrix multiplication, con-

sidering that H is a very sparse matrix, the vector-matrix

operation is reduced to O(n) computational effort; (2) the

iterative method used is a linear stationary process performed

applying the power method to matrix H; and (3) H could be

seen as a stochastic transition probability for a Markov chain,

where the dangling nodes of the graph create 0 rows in the

matrix and the other rows belong to the non-dangling node

keeping stochastic values. Consequently, H is considered a

sub-stochastic matrix.

In this work, the PageRank algorithm described above is

adapted to rank the nodes in a network topology using the

PD (Propagation Delay) of the links to weight the probability

transition between nodes. A heuristic based on this ranking

process is described below.
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TABLE III
PAGERANK VALUES PER ITERATIONS

Iteration 0 Iteration 1 Iteration 2 PageRank

r0(A) = 1
4

r1(A) = 1
12

r2(A) = 1.5
12

1

r0(B) = 1
4

r1(B) = 2.5
12

r2(B) = 2
12

2

r0(C) = 1
4

r1(C) = 4.5
12

r2(A) = 4.5
12

4

r0(D) = 1
4

r1(D) = 4
12

r2(A) = 4
12

3

B. Ranking nodes to create Communities

To avoid the potential issue concerning the overload of the

nodes close to the gateways and the gateways themselves, an

alternative is to create communities that can share the load

of the gateways while keeping the applications deployed in

their proximity, as explored in other works [7][10]. However,

only selecting neighboring nodes to share the load could be

restrictive since there is a chance that a non-neighbor is better

qualified than the neighbors (e.g., has lower latency connec-

tivity). Thus, ranking the nodes according to the probability

in which they would communicate (e.g., be chosen in the

shortest path) represents a better selection criterion to build

these sharing groups or communities. In this work, the ranking

process described above is used to create those communities.

The heuristic takes advantage of the low latency levels in

the Fog, by deploying applications’ modules through the Fog

infrastructure and near to the final users whenever possible.

When the Fog runs out of resources, deployment in the Cloud

will be carried out. The ranking of the nodes is created

according to the procedure described in Subsection IV-A. For

a weighted graph, the probability of moving from one node

to the next will not only depend on the presence of a link but

on a metric based on the weights of the edges. In this work,

the PD is used as a metric of the link latency. Thus, nodes

connected through a link with a lower propagation delay will

have a higher probability to connect since they will be part of

the shortest path towards the destination node.

The community-building process is described in Algo-

rithm 1. The first step is to get the topology graph (line 1),

and to remove the Cloud node since it will not be part of any

community (i.e., only being used when there are no resources

available in the Fog), and also transforming it as a complete

directed graph. Following this, the nodes are ranked using

the process described in Subsection IV-A. The PD is used

to weight the transition probability from one node to another

in the graph (line 2).

The communities are built by selecting all the nodes with

a transition probability higher than a threshold (line 7). For

this work, the threshold was defined in 0.1, to create bigger

communities, but the value could be adapted following a

different criterion. After this, a community is created by

combining this initial community with all the communities

of its initial members (line 14).

All the Fog nodes that were not assigned to any community

during this process are grouped in the final step, as shown in

line 16. The results of this process include: (1) a structure with

the communities for all nodes; (2) a structure with the nodes

Algorithm 1: Build Communities

Result: Communities for all nodes in the infrastructure

1 topology ← getTopology()

2 prank ← PageRank(topology, weight=PD)

3 communities ← ∅
4 non communities ← ∅
5 foreach node in topology do
6 foreach element in prank do
7 if prank[element] � threshold then
8 Add element to communities[node];

9 end
10 end
11 end

12 avg size ← getCommunitySize(communities)

13 foreach node in topology do
14 mergeCommunities(node, communities);

15 end

16 non communities← prank − communities;

17 return communities, non communities, avg size

that do not belong to any community; and (3) the average size

of the initial communities (see line 17).

Once the communities are built, the deployment process

begins, as explained in the following subsection.

C. Popularity Ranked Placement

The heuristic proposed, called PRP (Popularity Ranked
Placement) uses the communities described in the previous

subsection for the placement process, and is presented in

Algorithm 2. After creating the communities (line 3), the

applications to deploy are ranked according to their requests

(i.e., to prioritize popular applications, as in the ILP model

described in Section III), as shown in line 5. Also, the nodes

in each community are ranked according to the probabilities

calculated in the previous step.

The first option is to deploy the applications’ modules

within the community of the GW from which the application’s

request was launched. The search space inside the community

is limited by an expanding window, which size is set according

to the average size of the initial communities (line 6). The

expanding window technique allows to minimize the internal

fragmentation of resources inside of the nodes while allowing

to place a less demanding application’s module in the already

explored nodes of the community. The searching process

within the windows follows a RR (Round Robin) approach

until no more resources are available to host the application’s

module. In the case that the deployment succeeds, the RR

pointer is updated accordingly.

When the community window runs out of resources to

deploy the application’s module, the size of the expanding

window is augmented by the average size of the initial

communities, until the size of the community is reached, and

a new search process to find the hosting node is carried out
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Algorithm 2: Popularity Ranked Placement

Result: Placement of applications’ modules

1 placement matrix ← ∅
2 topology ← getTopology();

3 community, non community ← Build Communities()

4 reqs ← getRequests();

5 apps ← rankApps();

6 expWin ← getAvgCommunitySize();

7 foreach req in reqs do
8 while req > max(WindowNodeCapacity) ∧
9 ¬ ReachCommunitySize do

10 Expand expWin;

11 end

12 if req ≤ max(WindowNodeCapacity) then
13 deploy(placement matrix, community);

14 else
15 if req ≤ max(NonComNodeCapacity) then
16 deploy(placement matrix, non community);

17 else
18 deploy(placement matrix, Cloud);

19 end
20 end
21 end

22 return placement matrix

(lines 8 - 11). The process is also illustrated in Fig. 2. The

community for node A is shown in Fig. 2(a). The initial

window size in this example is 3 (i.e., the average size of

the initial communities). Once the subset contained inside the

expanded window runs out of resources (there is no node that

can host the application’s module to deploy), the window’s size

is augmented by its original size, 3 in this case, as depicted in

Fig. 2(b). This process is repeated until finding a node with

enough resources to fit the application’s module to deploy, or

until the community size is reached, as seen in Fig. 2(c).

If the expanding window reaches its maximum size (i.e.,

the community size) and there are not enough resources to

satisfy the request, a new search process is initiated in the non-

community nodes (also a resulting structure from the previous

step, see Subsection IV-B) following a First Fit approach (lines

15 - 16). Thus, Fog nodes are prioritized for placement before

trying to deploy the application’s modules in the Cloud. If all

previous attempts fail, the application’s module is deployed in

the Cloud (line 18).

Simulation experiments were performed to validate this

proposal. The evaluation setup is described in the next section.

V. EVALUATION

The validation was performed using the YAFS simula-

tor [21] because of its strong support of Fog critical features

and high granularity of reported results [24]. The experiments

were conducted on a PC with 32GB 2400MHz DDR4 RAM

and 2.80GHz Intel Core i7-7700HQ with 4 cores and 8 threads

(2 threads per core) processor. The PC was running Microsoft

A B C D E F G H

A B C D E F G H

A B C D E F G H

(a) Extended Community with initial expanding window (size = 3)

(b) Extended Community with augmented  expanding window (size = 6)

(c) Reaching the Extended Community Size (size = 8)

Fig. 2. Expanding Window

Windows 10 Pro (Build 18363) operating system. Python

2.7.16 was used for YAFS. For the ILP model, the IBM

CPLEX Optimizer version 12.9 was used [25].

Regarding the network topology, a graph was generated

according to the complex network theory, following a random

Barabasi-Albert network [26]. 50 Fog nodes comprise the

network, and an additional node was added to represent the

centralized Cloud. This node is connected to the Fog nodes

with the highest betweenness centrality in the graph. The

nodes with lowest betweenness centrality were appointed as

GWs, representing the nodes at the edge of the network.

Applications were randomly generated following a Growing
Network graph structure. This means a vertice is added one at

a time with an edge to the last added vertice. After the graph

is complete, two vertices are randomly selected (excluding

the source) to generate an information flow to the source

vertice. This allows simulating typical Fog/IoT delay-sensitive

applications that can be deployed at Cloud/Fog environments.

For instance, an augmented reality application that can capture

location-related information, process it, and send a reply to the

user; or an eHealth application where some medical values are

captured from the patient, processed and/or stored for later

analysis, and sent to the health specialist for evaluation, or to

regulate a patient’s medication.

TABLE IV
PARAMETERS VALUES FOR EXPERIMENTS

Parameter
Value
(min - max)

Network
Propagation Delay (ms) 2 - 10
Bandwidth (bytes/ms) 75000

Fog
Resources (units) 10 - 25
Speed (instr/ms) 500 - 1000

GW
Request rate (1/ms) 1/1000 - 1/200
Popularity (prob) 0.25

Application

Services (number) 2 - 8
Resources (units) 1 - 5
Execution (instr/req) 20000 - 60000
Message size (bytes) 1500000 - 4500000

The parameters were set according to the values displayed

in Table IV, for each network link, Fog node, GW, and

application. Similar values have been previously used in re-
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lated work [10]. The application demands are measured using

the YAFS’ resources unit, defined as a vector containing the

capacity of different computational resources (e.g., number of

cores for CPU, GB for memory, or TB for the hard disk).

The network load was varied to evaluate the performance

of the proposals under different conditions. Four scenarios

were defined: (1) tiny: 5 different applications, (2) small: 10
applications, (3) medium: 15 applications, and (4) large: 20
applications. Each of the applications has at least one request.

To simulate the popularity of the applications, the number of

requests was determined using a uniform distribution. All the

scenario setup, as well as the source code, is available via a

GitLab repository [27].

The ILP solution and the proposed heuristic (PRP) are

compared with the well known FF (First Fit) algorithm, as

it was used in other works for evaluation purposes [6][7]. For

the FF algorithm, the nodes were organized according to their

resources, from lowest to highest, to prioritize nodes with less

resources that usually are deployed at the edge of the network,

closer to the users. All solutions were executed once before the

simulations, i.e., a static service placement is considered, and

30 simulations were executed using these static placements

to mitigate the statistical error. 95% confidence intervals are

included in the plots.

VI. RESULTS AND ANALYSIS

The performance of each placement method (ILP model,

PRP, and FF) is presented in this section. The first metric to

evaluate is the latency. The latency is calculated as the sum of

the transmission times among the application’s modules [21].

Fig. 3 shows the results, grouped by scenario and displayed

in seconds.

Fig. 3. Total Latency by Scenarios

From Fig. 3, it is possible to note that the best results

correspond to the ILP optimization model, as expected. As

the load grows, the latency increases, which is also expected.

For the smallest load (i.e., tiny scenario), PRP shows an

exceeding latency of about 3 times the values obtained with

the ILP placement, while FF shows an extra of about 5 times

regarding the ILP latency. These discrepancies are reduced

in higher load scenarios. Nevertheless, while the breach is

reduced between ILP and PRP, it is more prominent for FF.

For instance, in the medium scenario, FF shows an increase of

3 times respecting the ILP approach, while PRP only shows

1.5 times more latency. Grouping the nodes in communities

(PRP) showed better results than performing a linear search

(FF). As the scenario got more complex, the improvement is

more noticeable; in general, the results of PRP are closer to

the optimal than FF.
Fig. 4 depicts the network transmission, including the ap-

plication messages forwarded and the average network buffer

occupancy (i.e., the average amount of messages kept in

node’s network buffers waiting for link availability). From

these results, it is important to point out that the ILP method

forwarded the lowest amount of messages, thus generating less

traffic and, ultimately, less congestion. PRP values remained

close to the theoretical optimum (ILP), especially for the

smaller scenarios. As the load increases, so does the number

of messages forwarded. FF showed to be the least efficient

method; the nodes with the lower amount of resources are se-

lected first, saturating the network buffers as the load increases.

For the application messages, since FF does not take into

consideration the interaction between nodes, modules from the

same application can be placed in distant nodes (i.e., several

hops); thus, the amount of messages forwarded is larger.

Fig. 4. Network Transmission

Fig. 5 illustrates the number of nodes used by each method.

This means the number of nodes where applications’ modules

were placed; the figure also portraits the number of modules

placed on the busiest node; this is the node where more

modules were deployed. Since the placement was statically

performed before the simulations, there are no variations in

the results and thus no confidence intervals shown.
The ILP model led to the concentration of the placement

of modules in the nodes closer to the request points (i.e., the

GWs), saturating these nodes, and therefore creating a new
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Fig. 5. Module Placement Metrics

issue in the form of congestion of the nodes and the links

connected to said nodes. As the load increases, the advantages

of the optimization are missed by the congestion created. On

the other hand, PRP uses more nodes for the two smallest

scenarios, thus having impact on the energy consumption. For

the two larger scenarios, the number of nodes used tends to

stabilize in all the placement approaches.

Fig. 6 depicts a comparison of the latency obtained by

each application considering the amount of requests it has.

For space constraints, only the results corresponding to the

large scenario are displayed; similar results were obtained for

the other scenarios.

Fig. 6. Latency by Application - Large Scenario

Overall, the ILP model obtained the best results, while FF

got the worst. It is noteworthy that as the application has more

requests (i.e., more popularity), it shows lower latency for

ILP and PRP. Furthermore, ILP and PRP results are relatively

close, with ILP showing the lowest latency values. It is clear

that there are three tiers regarding the latency response per

application, being the lowest the one corresponding to the ILP

model, the following to PRP, and the highest to FF.

Finally, Table V shows the execution time, in seconds, for

the placement methods, by scenario. Since FF has the most

straightforward logic, it has also the lowest execution times,

followed closely by PRP. The times for ILP are significantly

higher since this method evaluates all possible solutions in

order to find the optimal result. The times obtained by the

ILP model could not be suited for more complex and dense

realistic scenarios.

TABLE V
EXECUTION TIME (IN SECONDS)

Scenario ILP PRP FF

Tiny 19.191 0.017 0.005

Small 47.382 0.019 0.007

Medium 104.983 0.022 0.011

Large 313.588 0.031 0.0019

In general, the ILP approach got the best results regarding

latency, but the worst on execution time and in node overload.

The latency values obtained with PRP are close to the ones

reported by ILP while getting significantly lower execution

times. Furthermore, since the PageRank can be calculated

dynamically, it is possible to apply this solution in case of

variations in the network infrastructure. Finally, by creating

communities, the load is spread among different nodes, which

could lead to other issues such as higher energy consumption,

that are not being considered in this work. This spread also

means lower congestion levels in both the Fog nodes and

communication links for PRP.

VII. CONCLUSIONS

Applications like augmented reality and virtual reality, as

well as video over IP, constitute the more significant portion of

IP traffic for the upcoming years. These types of applications

have special requirements, including low latency. The Fog

computing paradigm arises to overcome some of the new

requirements, but also brings new challenges in the form of the

need to design and develop novel orchestration mechanisms to

take the full advantages that the Fog has to offer; for instance,

new provisioning mechanisms, including service placement,

have to be developed.

An ILP model for service placement, aimed at maximiz-

ing the placement of popular applications, while minimizing

their latency is proposed. Moreover, a heuristic based on the

PageRank algorithm, called Popularity Ranked Placement, is

also introduced. PRP ranks the applications according to their

requests as a measure of their popularity, and also ranks the

nodes in the network topology to create communities with

the nodes with the highest transition probability; this way,

the placement load is divided among the nodes within the

community, avoiding congestion while also maintaining low

latency levels. An expanding window controls the placement

among the nodes in the community.
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The performance of both the ILP model and the PRP

solution were tested using YAFS, and are also compared

with the well known FF approach. Simulation results show

that while the ILP model had the lowest latency for all the

scenarios, it also had the highest concentration of placement in

the same nodes, thus generating congestion in the processing

nodes and for the communication links. PRP kept the latency at

low levels, close to the ILP results, but the load was balanced

between the nodes in the communities. Moreover, PRP showed

significantly lower execution times than the ILP model, which

makes it more suitable for more complex and dense scenarios,

and is the option that should be deployed in practical realistic

situations.
Future work includes studying the impact of the size of

the expanding window and the size of the communities for

different scenarios; analyzing its behavior under non-static

environments; and combining different optimization objectives

besides latency, for instance, applications’ availability require-

ments.
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cia, G. Ren, A. Jukan, and A. J. Ferrer, “Towards a proper service place-
ment in combined fog-to-cloud (f2c) architectures,” Future Generation
Computer Systems, vol. 87, no. 1, pp. 1–15, Oct 2018.

[20] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques
in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, Jun
2017.

[21] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot scenarios
in fog computing,” IEEE Access, vol. 7, no. 1, pp. 91 745–91 758, Jul
2019.

[22] K. Y. Lee and M. A. El-Sharkawi, Modern heuristic optimization
techniques: theory and applications to power systems. John Wiley
& Sons, Ltd, 2008.

[23] A. N. Langville and C. D. Meyer, Google’s PageRank and beyond: The
science of search engine rankings. Princeton University Press, 2012.

[24] D. P. Abreu, K. Velasquez, M. Curado, and E. Monteiro, “A comparative
analysis of simulators for the cloud to fog continuum,” Simulation
Modelling Practice and Theory, p. 102029, Nov 2019.

[25] IBM, “CPLEX Optimizer,” https://www.ibm.com/analytics/cplex-
optimizer, 2019, accessed: 2019-12-20.

[26] M. Jalili and M. Perc, “Information cascades in complex networks,”
Journal of Complex Networks, vol. 5, no. 5, pp. 665–693, Jul 2017.

[27] K. Velasquez, D. Perez Abreu, L. Paquete, M. Curado, and
E. Monteiro, “Rank-based Service Placement - GitLab Repository,”
https://git.dei.uc.pt/kcastro/rankPlacement.git, 2019, accessed: 2019-12-
20.

72


