
Packet Delay Minimization in Multi-hop Wireless
Sensor Networks with Periodic Traffic

Bartłomiej Ostrowski
Institute of Telecommunications
Warsaw University of Technology

Warsaw, Poland
b.ostrowski@tele.pw.edu.pl

Michał Pióro
Institute of Telecommunications
Warsaw University of Technology

Warsaw, Poland
m.pioro@tele.pw.edu.pl

Artur Tomaszewski
Institute of Telecommunications
Warsaw University of Technology

Warsaw, Poland
a.tomaszewski@tele.pw.edu.pl

Abstract—The paper is devoted to minimization of end-to-end
packet delay in multi-hop TDMA-based wireless sensor networks
composed of gateways and wireless routers that form a mesh
topology. The network is supposed to deliver packets, generated
at the sensors, to the gateways. It is assumed that each sensor
(connected to one of the routers) produces a new packet at
the beginning of each consecutive TDMA frame, and each such
packet is then transmitted to a given subset of gateways along
a multicast routing tree rooted at the sensor’s router. Assuming
that the transmission pattern of the TDMA frame is given (i.e.,
knowing what nodes are selected to broadcast in each time slot of
the frame) and sufficient to carry the so described packet streams
with finite delay, we aim at finding a packet broadcast scheduling
pattern that minimizes the maximum packet delay over all packet
streams generated by the sensors. To achieve that, we introduce
an exact mixed-integer programming formulation for the related
optimization problem. Since the problem formulation can be
effectively solved only for networks of limited size, we propose a
relevant heuristic method, and demonstrate, through an extensive
numerical study, its capability of finding near optimal solutions
in reasonable time.

Index Terms—Wireless sensor networks, multicast, transmis-
sion scheduling, mixed-integer programming, simulated anneal-
ing, IoT

I. INTRODUCTION

The considerations of the presented paper are motivated by
the issue of minimizing the end-to-end delay experienced by
the packets that are to be sent from the sensors to the selected
gateways in meshed wireless sensor networks (WSN) [1]–
[3], that are based on time division multiple access (TDMA)
to radio channel. It is known that in terms of throughput
maximization, TDMA potentially outperforms other medium
access control schemes like CSMA. Since TDMA is supported
by medium access control (MAC) schemes such as WiMax,
WirelessHART [4], ISA100 [5], and the whole family of low-
rate personal area network (LR-WPAN) technologies based on
the IEEE 802.15.4 specifications, it is worth considering for
WSN supporting IoT.

In the considered network the sensors are connected to
routers. At the beginning of each consecutive (repeated)
TDMA frame, each sensor produces a new packet (containing

This work was supported by the National Science Centre, Poland, under the
grant no. 2017/25/B/ST7/02313: “Packet routing and transmission scheduling
optimization in multi-hop wireless networks with multicast traffic”.

ISBN 978-3-903176-28-7© 2020 IFIP

measurement data); each such packet is sent over a fixed
multicast tree from the sensor’s host router to a set of gateways
selected for the sensor in question. Each node of the tree
broadcasts the received packets to its neighbors, according to
a packet broadcast schedule specified for the (time) slots of
the frame.

The basic research question addressed in this paper is as
follows: how to rigorously model and optimize the packet de-
lay in the above described multi-hop wireless sensor networks
of the kind described above for a given frame composition?
This question includes the delay objective to be minimize as
well as description of the frame composition that is necessary
in the modeling.

The main body of this paper is composed of Sections II
and III. In the first of them, we describe the considered
network and frame configuration, introduce a mixed-integer
programming formulation of the basic packet delay optimiza-
tion problem, and discuss the issues that concern its input data
preprocessing, as well as extensions of the problem. Since the
problem turns out to be difficult and hence finding its exact
solutions is inefficient, in Section III we present a solution
algorithm based on the simulated annealing meta-heuristic that
is capable of finding near optimal solutions of the studied
problem in reasonable time for networks of practical size. The
considerations of these two sections are illustrated and justified
by a numerical study presented in Section IV, followed by
Section V that briefly concludes the paper.

The considerations of the paper are continuation of the
research presented in paper [6], in particular of the packet
delay minimization introduced in Appendix B2 of that paper.

II. PACKET DELAY MINIMIZATION PROBLEM (PDMP)

In this section we will first introduce the notation and basics
facts about the considered network configuration and then
described in detail the basic problem dealt with in this paper,
that is PDMP – packet delay minimization problem.

A. Network description

The considered network configuration is described below,
using notation summarized in Table I. The network graph is
composed of the set of nodes V and the set of arcs A. The arcs
represent directed radio links between the nodes so that each

1

TABLE I
ADDITIONAL NOTATIONS.

Notation Description
B(s) multicast routing tree for sensor s ∈ S (rooted at node r(s))
V(s),A(s) set of nodes and arcs, respectively, composing tree B(s)
G(s) set of leaves of tree B(s) (destination gateways for sensor s)
V ′(s) set of nodes broadcasting in tree B(s); V ′(s) := {r(s)} ∪ V ′′(s), where V ′′(s) ⊆ (R \ {r(s)})
V ′(s, w) set of nodes appearing after node w ∈ V ′(s) in tree B(s) (V(s, w) := δ+(w) ∩ A(s))
C(s, w) set of c-sets applicable for s at node w ∈ V ′(s); C(s, w) := {c ∈ C : w ∈ W(c), U(c, w) ∩ V ′(s, w) 6= ∅}
C(s, a) subset of c-sets in C(s, o(a)) used for s on arc a ∈ A(s); for a = (o(a), w), C(s, a) := {c ∈ C(s, o(a)) : w ∈ U(c, o(a))}
S(w) set of sensors s with w ∈ V ′(s)
p(s, a) (unique) arc preceding arc a in A(s), a ∈ A(s) \ {δ+(r(s))}
q(s, g) (unique) arc in A(s) incoming to node g ∈ G(s)

arc a (a ∈ A) corresponds to a directed pair nodes; hence,A ⊆
V2\{(v, v) : v ∈ V}. The set of all arcs originating at node v ∈
V will be denoted by δ+(v), and the set of all arcs terminating
at v by δ−(v); hence, δ+(v) := {(v, w) : w ∈ V} ∩ A and
δ−(v) := {(w, v) : w ∈ V} ∩ A. The network utilizes time
division multiple access (TDMA) to radio channel.

The set of nodes is divided into two non-empty disjoint sets
R and G, called routers and gateways, respectively. The routers
are traffic originating as well as traffic transiting nodes, while
gateways are traffic terminating nodes only, i.e., gateways
only receive packets and do not transit them (which implies
δ+(g) = ∅, g ∈ G). Each router r is associated with a set
of sensors S(r), where the sets S(r), r ∈ R, are pairwise
disjoint. Note that some of S(r) can be empty and the set
of all sensors S is equal to

⋃
r∈R S(r). The particular router

r ∈ R that serves sensor s ∈ S will be denoted by r(s), i.e.,
r = r(s) if, and only if, s ∈ S(r).

Each sensor s ∈ S generates a stream of packets destined
to a given set of gateways G(s), where G(s) ⊆ G. Such a
stream is composed of a sequence of packets (called s-packets)
generated at the beginning of each consecutive TDMA frame.
Each s-packet is sent to its destinations g ∈ G(s) along a given
multicast routing tree (tree in short) denoted by B(s). Such a
tree is rooted at router r(s) and its leaves are specified by G(s).
Note that in general the tree may contain other nodes from R\
{r(s)}. These extra nodes will be denoted by V ′′(s), and hence
V ′(s) := {r(s)} ∪ V ′′(s) is the set of nodes that broadcast s-
packets. Thus, V(s) = {r(s)}∪V ′′(s)∪G(s). Additionally, the
set of arcs composing tree B(s) will be denoted by A(s), and
the set of nodes appearing after node w ∈ V ′(s) in tree B(s) by
V ′(s, w). In the following we assume that all packets generated
by the sensors are of the same size and that transmitting of
one packet takes exactly one time slot of the frame.

On its way to destinations in G(s), each particular s-packet
is broadcast (in general more than once) from each node
w ∈ V ′(s) to its neighbors in B(s), i.e., to nodes in V ′(s, w).
These broadcasts are executed in the consecutive (time) slots
of the TDMA frame. Let T = {1, 2, . . . , T} denote the
set of the slots composing the frame and let c(t) denote
the so called compatible set (c-set in short) applied in slot
t ∈ T . Each such compatible set is characterized by the set
W(c(t)) of the nodes (simultaneously) broadcasting in slot t,

and by the sets U(c(t), w), w ∈ W(c(t)), where U(c(t), w)
is the set of nodes that can successfully decode the signal
from node w when all nodes in W(c(t)) are broadcasting.
It is assumed that all these sets are non-empty. Note that
the same sequence Ĉ := (c(1), c(2), . . . , c(T)) is applied in
all consecutive TDMA frames and thus defines the (frame)
transmission pattern.

Now let us consider the family C of the c-sets appearing
in sequence Ĉ, and let T (c) denote the number of times c-set
c ∈ C appears in Ĉ (note that by definition T (c) > 0, c ∈
C). In the following, the family C together with the sequence
(T (c), c ∈ C) will be called the frame composition.

It turns out that the traffic carrying capability of the network
depends only on the composition [C, (T (c), c ∈ C)] of its
frame, and not on a particular transmission pattern Ĉ corre-
sponding to this composition. To explain this let us consider
a sequence of binary coefficients h = (h(s, w, c), s ∈ S, w ∈
V ′(s), c ∈ C(s, w)), where C(s, w) is the subfamily of C
containing all c-sets applicable for s at node w ∈ V ′(s).
Using these coefficients, it can be shown (see [6]) that a
TDMA frame with composition [C, (T (c), c ∈ C)] is capable
of delivering all s-packets (for each sensor s in S) to their
destinations in G(s) with finite delay if, and only if, there
exists a sequence h such that the following conditions hold:∑

c∈C(a) h(s, o(a), c) ≥ 1, s ∈ S, a ∈ A(s) (1a)∑
s∈S h(s, w, c) ≤ T (c), c ∈ C, w ∈ W(c) (1b)

(where o(a) denotes the originating node of arc a ∈ A,
and C(a) is the subfamily of C containing all the c-sets
realizing transmission over arc a, i.e., c ∈ C(a) if, and only if,
o(a) ∈ W(c) and U(c, o(a)) contains the terminating node of
arc a). Above, the coefficients in h are interpreted as follows:
h(s, w, c) = 1 if, and only if, node w ∈ W(c) broadcasts an
s-packet in one of the slots that applies the c-set c. Hence,
condition (1a) ensures that within one frame, for each stream
s ∈ S, one s-packet transmission is realized over each arc in
A(s). Condition (1b), in turn, ensures that there is a sufficient
number of occurrences of c to realizes the broadcasts implied
by the values in h.

Frame compositions fulfilling the above conditions will be
called feasible. Note that to check whether a given frame
composition [C, (T (c), c ∈ C)] is feasible we can treat the

2

w1 w2 w3 w4 w5

Fig. 1. A network with a multicast packet stream.

coefficients in h as optimization variables, and check, using a
mixed-integer programming (MIP) solver, whether the result-
ing MIP formulation (1) is feasible. Observe that in general for
a given feasible frame composition there are multiple solutions
h that fulfil conditions (1). In the following any such vector
h will be called packet assignment requirement.

B. PDMP formulation

Consider a network where (i) fixed multicast trees B(s), s ∈
S, (ii) a feasible composition [C, (T (c), c ∈ C], and (iii)
a corresponding packet assignment requirement h are given.
Now, in order to fully describe the network operation we need
to make the following selections:
� a transmission pattern: choose one of T !∏

c∈C T (c)! possible

sequences Ĉ = (c(1), c(2), . . . , c(T)) of c-sets that cor-
respond to the assumed frame composition (each such
pattern is a permutation with repetitions of the elements
c of C, where element c is repeated T (c) times)

� a packet broadcast schedule: for each s ∈ S, w ∈
V ′(s), c ∈ C(s, w) such that h(s, w, c) = 1, choose a
time slot t ∈ T with c(t) = c and reserve the broadcasts
from node w ∈ W(c(t)) for the consecutive s-packets.

Now observe that the so described packet broadcast sched-
ule (specified on top of the transmission pattern) determines
packet delays. In fact (see [6]), for each s ∈ S all consecutive
s-packets (let us denote them with s(1), s(2), . . .) will appear
at each gateway g ∈ G(s) with the same delay D(s, g)
measured in the number of time slots elapsed between the
epoch in which such a packet is generated at s (note that
packet s(k) is generated at the beginning of frame number
k) and the time epoch it is delivered to g. Clearly, these
delays will in general be different for different choices of
the packet broadcast schedule. Thus, defining the maximum
delay for sensor s (called sensor measurement delay) as
D(s) := maxg∈G(s)D(s, g), s ∈ S, we can finally state the
packet delay minimization problem (PDMP): given a frame
composition and a packet assignment requirement, find a
packet broadcast schedule that minimizes the measurement
delay over all sensors.

The so described problem can be illustrated by the following
example studied already in [6]. Consider the network shown
in Figure 1 that is supposed to carry only one multicast
packet stream with the source node (dark grey) and the set
of destination gateways (light gray). Assume that the frame

w1 w2 w3 w4 w5

w2 w3 w4 w5

c2 c4

c1 c3 c5

Fig. 2. A family of compatible sets.

is composed of five time slots and each time slot uses one
c-set from the family of c-sets depicted in Figure 2. Clearly,
each of the considered c-sets has to be used in the frame, i.e.,
T (c1) = T (c2) = T (c3) = T (c4) = T (c5) = 1. It is easy to
notice that the order in which the considered c-sets are situated
in the frame greatly influences the packet delay. Indeed, the
sequence (c1, c2, c3, c4, c5) results in the packet delay equal to
5 time slots, while the reversed sequence increases the delay
to as many as 21 time slots, which shows the importance of
appropriate scheduling in terms of the packet delay.

A MIP problem corresponding to the above verbal state-
ment is given in formulation (2). The parameters in that
formulation are the frame composition [C, (T (c), c ∈ C],
the packet assignment requirement h = (h(s, w, c), s ∈
S, w ∈ V ′(s), c ∈ C(s, w)), and the upper bound M on the
maximum number of frames necessary to deliver a packet to
its destination; this means that the maximum delay expressed
in the number of slots is not greater than T := M · T , and
hence T := {1, 2, . . . , T} is the set all considered time slots.
Additional objects used in (2) are the arcs p(s, a) and q(s, g)
defined in Table I.

The formulation makes use of the following optimization
variables:

� d delay – continuous variable
� xtc = 1 if c-set c ∈ C is used in time slot t ∈ T of the

frame; otherwise xtc = 0 (binary variables)
� Y tsw = 1 if node w ∈ V ′(s) is reserved for broadcasting s-

packets, s ∈ S, in time slot t ∈ T of the frame; otherwise
Y tsw = 0 (binary variables)

� ztsa = 1 if packet s(1) from sensor s ∈ S is sent over arc
a ∈ A(s) in time slot t ∈ T ; otherwise ztsa = 0 (binary
variables)

� Ztsa = 1 if packet s(1) from sensor s ∈ S has been sent
over a ∈ A(s) in one of the slots between 1 and t ∈ T ;
otherwise Ztsa = 0 (binary variables).

3

Packet Delay Minimization Problem:

minimize d (2a)
subject to:
d ≥

∑
t∈T t · ztsq(s,g), s ∈ S, g ∈ G(s) (2b)∑

c∈C x
t
c = 1, t ∈ T (2c)∑

t∈T x
t
c = Tc, c ∈ C (2d)

xt+(k−1)T
c = xtc, c ∈ C, t ∈ T , 2 ≤ k ≤ K (2e)∑
s∈S(w) Y

t
sw ≤ 1, w ∈ V, t ∈ T (2f)

Y tsw ≤
∑
c∈C(s,w) h(s, w, c)xtc,

s ∈ S, w ∈ V ′(s), t ∈ T (2g)∑
t∈T Y

t
sw =

∑
c∈C(s,w) h(s, w, c), s ∈ S, w ∈ V ′(s) (2h)

Y t+(k−1)T
sw = Y tsw,

s ∈ S, w ∈ V ′(s), t ∈ T , 2 ≤ k ≤ K (2i)∑
t∈T z

t
sa = 1, s ∈ S, a ∈ A(s) (2j)

Ztsa =
∑t
τ=1 z

τ
sa, s ∈ S, a ∈ A(s), t ∈ T (2k)

ztsa ≤ Ztsp(s,a), s ∈ S, a ∈ A(s) \ {δ+(r(s))}, t ∈ T (2l)

ztsa ≤ Y tsb(a), s ∈ S, a ∈ A(s), t ∈ T (2m)

ztsa ≤
∑
c∈C(s,a) x

t
c, s ∈ S, a ∈ A(s), t ∈ T (2n)

d ∈ R; xtc ∈ B, c ∈ C, t ∈ T (2o)

Y tsw ∈ B, s ∈ S, w ∈ V ′(s), t ∈ T (2p)

ztsa, Z
t
sa ∈ B, s ∈ S, a ∈ A(s), t ∈ T . (2q)

Due to constraint (2b), objective (2a) minimizes, over all
sensors s, the maximum of number of slots required to deliver
packet s(1) (and hence all subsequent packets s(2), s(3), . . .)
to all destinations, i.e., to all gateways g in G(s). This
particular objective will be referred to as min-max delay.

The three subsequent constraints specify a frame transmis-
sion pattern Ĉ in which c(t) = c, if, and only if, xtc = 1.
Constraint (2c) assigns exactly one c-set from C to each slot
of the frame, while constraint (2d) ensures that pattern Ĉ is
consistent with the assumed frame composition. Constraint
(2e), in turn, ensures that Ĉ is repeated in the consecutive
frames.

Next, constraints (2f)-(2i) define the packet broadcast sched-
ule consistent with the specified frame transmission pattern
and the assumed packet assignment requirement h.

Then, by means of variables ztsa, and Ztsa, constraints (2j)-
(2n) specify, for each arc a in the tree of sensor s, which time
slot in 1, 2, . . . , T is used to transmit packet s(1) over this
arc. Note that constraint (2l) prevents transmitting packet s(1)
over a if it has not been transmitted over a yet.

The final three constraints specify the range of the variables,
where R denotes the set of real numbers and B := {0, 1}.

PDMP, represented by MIP formulation (2), is an NP-
hard problem, as demonstrated in [7] for its special case
assuming unicast packet traffic rather than multicast packet
traffic assumed in this paper (the unicast case is substantially
simpler to treat that the multicast one). Certainly, PDMP can
be directly solved by MIP solvers. However, as illustrated in

Section IV, such exact solving of (2) becomes inefficient for
large networks, and therefore in Section III we will introduce
a heuristic algorithm for PDMP.

C. Comments

The first simple comment is that the min-max delay
objective used in formulation (2) is not the only rele-
vant for PDMP. For example, the total packet delay d =∑
s∈S

∑
g∈G(s)D(s, g) (where D(s, g) =

∑
t∈T t · ztsq(s,g))

could be used, possibly with additional upper-bound con-
straints on d(s). Another possibility is min-max fair optimiza-
tion [8].

The min-max delay optimization problem stated in Sec-
tion II-B assumes that frame composition [C, (T (c), c ∈ C)]
and packet assignment requirement h are fixed, and hence have
to be preprocessed in a reasonable way. This can be done by
finding a frame composition and packet assignment require-
ment that result in minimum frame length T . To solve the
corresponding optimization problem (frame size minimization
problem) the following mixed-integer programming problem
formulation, based on constraints (1) (where quantities T (c)
and h(s, w, c) become optimization variables and that is why
are denoted as Tc and hswc below) can be used:

min T =
∑
c∈C Tc (3a)∑

c∈C(a) hso(a)c ≥ 1, s ∈ S, a ∈ A(s) (3b)∑
s∈S hswc ≤ Tc, c ∈ C, w ∈ W(c) (3c)

Tc ∈ R, c ∈ C (3d)
hswc ∈ B, s ∈ S, w ∈ V ′(s), c ∈ C(s, w). (3e)

Above, C represents the family of all possible of c-sets and
because of that formulation (3) is non-compact since the
number of the elements of C grows exponentially with the
size of the network. This issue was treated in detail in [6]
and solved using a price-and-branch approach involving c-
set generation. It is important to note that formulation (3)
assumes that the multicast trees B(s), s ∈ S, are fixed (for
example, for each s the shortest-path tree rooted at r(s) can be
used). In general, however, combining frame size minimization
with tree optimization will lead to significant decrease of the
minimum frame size. This is shown in papers [6], [9], where
such combined optimization is considered. In any case, the
trees used/optimized during frame size minimization are used
in formulation (2).

Clearly, the c-set family used in the frame composition
assumed for PDMP will contain those c-sets c for which
Tc > 0 in an optimal solution obtained for (3). Then,
the packet assignment requirement assumed for PDMP will
involve only values of those hswc for which c belongs to the
obtained composition. The so obtained frame compositions
will be used in the numerical study presented in Section IV.

Another issue related to PDMP is that the minimum delay d
resulting from (2) depends in general on the particular packet
assignment requirement h (out of many possible for a given
frame composition) used as an element of the input data. To
overcome this, we can assume that only the frame composition

4

is fixed, make h(s, w, c) optimization variables hswc, and add
constraints (3b) and (3c) to the formulation.

In fact, when packet assignment requirement optimization
is added to (2), we can add frame composition optimization
as well. This is achieved by converting the c-set occurrence
parameters T (c) to non-negative continuous variables Tc, and
adding a new constraint∑

c∈C Tc ≤ T (4)

to formulation (2).
In fact, although this extension will in general allow only for

a marginal improvement of the minimum packet delay when
the family C resulting from the frame size minimization (3) is
used as input to the so modified PDMP, it may decrease the
minimum packet delay to a more substantial degree when a
larger family C is assumed for (2). This is because there is a
tradeoff between minimization of packet delays and minimiza-
tion of the frame size. (We are aware of network settings where
this is the case.) Thus, from the delay minimization viewpoint
it could be beneficial to increase the value of T above its
minimum value resulting from (3) and possibly extend the
family C by adding other c-sets generated during the frame
size minimization solution process but not used in the final
frame composition. Note that in general this procedure will
decrease the delay at the expense of decreasing the network
throughput since the increasing the frame size implies smaller
packet intensity (one per frame) of the streams produced by
the sensors.

Observe also that in order to consider all possible com-
patible sets we could still apply price-and-branch to the just
described version of the delay minimization problem, using
its linear relaxation for the master problem. However, the
effectiveness of such an approach would be unacceptable.
Also, we could explicitly embed the problem of finding the
c-sets for all the slots in T into (2). Such a full version of the
problem would require adding, for each slot t ∈ T , a set of
constraints (and associated binary variables) forcing that the
broadcasts used in the slots represent c-sets (these constraints
are given by conditions (2) in [6]). However, this would make
the problem virtually intractable for realistic networks.

Finally, let us notice that tree optimization could be added
to formulation (2) as well, in one of the ways used in [6]
for frame size minimization. Then, the trees B(s) would be
characterized by additional binary variables, constrained by
additional conditions added to the formulation. This, however,
would lead to an inefficient problem formulation, tractable
only for “toy” network instances.

III. SOLUTION ALGORITHM

Since for realistic networks the number of binary variables
in formulation (2) becomes tremendous and thus likelihood of
solving it in reasonable time by a MIP solver is low, a heuristic
algorithm is in place. For that we make use of the simulated
annealing (SA) meta-heuristic [10] given below in the form of
Algorithm 1.

Algorithm 1 Simulated annealing (SA)
1: procedure SA
2: P := initial solution;
3: P best := P ; F best := F (P best);
4: Θ := Θ0;
5: while (stopping criterion = false) do
6: l := 0
7: while l < L do
8: Q := neighbor(P)
9: ∆F := F (Q)− F (P)

10: if ∆F ≤ 0 then
11: P := Q
12: if F (P) < F best then
13: F best := F (P); P best := P ;
14: end if
15: else if random(0, 1) < e−

∆F
Θ then

16: P := Q
17: end if
18: l := l + 1
19: end while
20: reduce temperature(Θ)
21: end while
22: end procedure

Roughly speaking, the SA algorithm represents a random
walk through the points (called solutions) of a feasible set P
(called the solution space) aiming at minimizing the objective
function F : P → R. Each solution P ∈ P has a specified
neighborhood N (P) (where N (P) ⊆ P), and the moves
of the random walk are allowed only to the neighboring
nodes. Starting from an initial solution, in each step (the steps
are executed in the while loop composed of lines 7-19 in
Algorithm 1) the algorithm moves from the current solution P
to its randomly selected neighbor Q ∈ N (P) if such a move
does not increase the objective function (∆F ≤ 0) or it passes
the so called Metropolis test applied in line 15. Note that the
test allows for the “uphill” moves, that is for the moves that
increase the objective function. The idea behind the test is that
the chance of passing the test depends on the value of ∆F
(the higher the value the lower the chance) and on the current
value of the temperature parameter Θ (the lower the value the
lower the chance) and when ∆F > 0 or the test is not passed,
the constructed random walk trajectory stays at the current
point P .

Note that for any fixed temperature value Θ, L steps of
the random walk are executed, and since in the main while
loop (comprising lines 5-21) the temperature is reduced, in
the consecutive sequences of L steps the chance of accepting
an uphill move is decreasing. When the stopping criterion is
fulfilled, the best solution visited by the generated random
walk trajectory is stored in P best and F best.

In order to apply the SA procedure to PDMP (with a given
frame composition [C, (T (c), c ∈ C)] and the corresponding
packet assignment requirement h) we need to characterize the
solution space and specify the functions required in Algo-

5

rithm 1. This is done as follows.

� Function initial solution. To construct the initial so-
lution we first randomly select a transmission pattern
Ĉ = (c(1), c(2), . . . , c(T)) realizing the assumed frame
composition. In effect, for each c ∈ C we define the
set T (c) of time slots that apply the c-set c: T (c) :=
{t ∈ T : c(t) = c} (note that |T (c)| = T (c)). Then,
again randomly, we specify the corresponding packet
broadcast schedule as follows. We start with assigning
a status “unreserved” to all nodes w ∈ W(c(t)), t ∈ T .
Then, for each s ∈ S and w ∈ V ′(s), and each c-set
c ∈ C(s, w) such that h(s, w, c) = 1, we choose at
random a slot t ∈ T (c) among the slots where node
w is unreserved and reserve it (and change its status
to “reserved”) for broadcasting s-packets. Clearly, the
so obtained packet broadcast schedule will be, due to
fulfilment of inequality (3c), consistent with the assumed
packet assignment requirement h.

� Objective function F . In order to calculate the value of
F (P) notice, that solution P constructed by function
initial solution (and every solution Q generated during
execution of Algorithm 1) defines a solution of PDMP,
i.e., a feasible solution of formulation (2). More precisely,
solution P specifies feasible values x(t, c) corresponding
to variables xtc, and Y (t, s, w) corresponding to variables
Y tsw in (2). Using these values, the values of z(t, s, a)
and Z(t, s, a) (corresponding to variables ztsa and Ztsa,
respectively) can be computed from conditions (2j)-(2n),
leading to the value F (P) of the SA objective function.
This value is simply the smallest d fulfilling all inequali-
ties in (2b). (In fact, for given x(t, c) and Y (t, s, w), the
value of F (P) can be efficiently calculated through an
appropriate algorithm that does not involve calculation
of z(t, s, a) and Z(t, s, a).)

� Function stopping criterion. Returns true when Θ be-
comes less than or equal to an assumed final value Θ.

� Function neighbor(P). A solution obtained by swapping
the c-sets (preserving the reservations assigned to broad-
casting nodes in each of the swapped c-sets) in P between
two randomly selected time slots in T .

� Function random(0, 1). Returns a random number from
interval [0, 1].

� Function reduce temperature(Θ): Θ := α × Θ for a
given parameter alpha (0 < α < 1).

Note that frame composition [C, (T (c), c ∈ C)], packet as-
signment requirement h = (h(s, w, c), s ∈ S, w ∈ V ′(s), c ∈
C(s, w)), initial temperature Θ0, final temperature Θ, tem-
perature reduction factor α, and number of steps in a single
iteration L are input parameters for the SA algorithm.

It should be noted that the time slot permutations of the
initial solution considered in the SA algorithm do not exhaust
the whole solution space. As an example consider two time
slots (t′ and t′′), two packet streams (s′ and s′′), and a c-
set c with two transmitting nodes (w′ and w′′). Assume that
as a result of the frame size minimization we obtain the

following values: T (c) = 2, h(s′, w′, c) = 1, h(s′, w′′, c) =
1, h(s′′, w′, c) = 1, h(s′′, w′′, c) = 1. Now consider the initial
solution with both nodes of c applied in slot t′ reserved for
s′-packets, and both nodes of c applied in slot t′′ reserved for
s′′-packets. For this solution the only neighbor is the solution
with both nodes of c applied in slot t′ reserved for s′′-packets,
and both nodes of c applied in slot t′′ reserved for s′-packets.
Hence, there is no possibility to obtain the solution (and its
swapped version) where nodes w′ and w′′ in time slot t′ are
reserved for s′-packets and s′′-packets, respectively, and nodes
w′ and w′′ in time slot t′′ are reserved for s′′-packets and s′-
packets, respectively. This issue is important since the latter
solutions can have different min-max delays. In our numerical
study presented in Section IV this issue is taken into account
by starting multiple SA algorithm instances concurrently, each
from a different (randomly generated) initial solution.

IV. NUMERICAL STUDY

Below we present a numerical study illustrating effective-
ness of solving PDMP by means of the simulated annealing
algorithm described in Section III, as well as in exact way by
solving formulation (2) using a MIP solver. The SA algorithm
and all optimization models related to formulations (2) and (3)
were implemented in C# and executed on a dedicated Windows
Server 2016 Datacenter x64 virtual machine, configured for 20
logical processors and up to 80 GB of RAM. CPLEX 12.9.0
was used for solving the MIP formulations.

A. Network setting

We consider irregular network topologies of five different
sizes: extra small networks with |V| = 20 nodes, small net-
works with |V| = 30 nodes, medium networks with |V| = 40
nodes, large networks with |V| = 50 nodes, and extra large
networks with |V| = 60 nodes. The networks were generated
using the tool available at [11] that places nodes randomly
in an assumed square network area according to the uniform
distribution. To achieve constant network density we increase
the network area proportionally to |V| and assume the network
area equal to 163 m × 163 m for extra small networks,
199.5 m × 199.5 m for small networks, 230 m × 230 m
for medium networks, 257.5 m × 257.5 m for large networks,
and 282 m × 282 m for extra large networks. In each network,
40% of nodes are the traffic originating routers, i.e., the routers
r in R with non-empty sets of associated sensors S(r) (note
that these routers are also capable of transiting packets), 15%
of nodes are the gateways (for small and large networks the
number of the gateways was rounded up), and the remaining
nodes are the (purely) transit routers with S(r) = ∅. Examples
of such networks (one for each of the considered sizes) are
depicted in Figures 3-7, where Network 1 has 20 nodes and
97 links, Network 2 has 30 nodes and 174 links, Network 3
has 40 nodes and 263 links, Network 4 has 50 nodes and
406 links, and Network 5 has 60 nodes and 451 links. In the
figures, the traffic originating routers, the gateways, and the
transit routers are shown in red, blue, and white, respectively.

6

Fig. 3. Network 1

Fig. 4. Network 2

Each link depicted in the figures is bi-directed and repre-
sents two oppositely directed arcs between its end nodes. Such
a link is provided between two given nodes if, and only if, the
distance between these nodes does not exceed the maximal
transmission range, which is calculated as follows. First, to
obtain the power received at a node we use the propagation
model described in [6]: the power (expressed in mW) received
at node w when node v is broadcasting is defined as the power
of the transmitter (which is the same for each node and equals
100 mW) multiplied by d(v, w)−4, where d(v, w) (in m) is the
distance between the nodes. Then, assuming noise power equal
to -101 dBm, and setting the threshold for the signal to noise
ratio (SNR) to 8 dB, we calculate the maximal transmission
range, which is equal to 66.8 m.

B. SA parameters setting

The parameter values used in the SA algorithm described
in Section III are as follows. In the case of extra small,
small, medium, and large networks the initial and the final
temperatures are set to Θ0 = 5 and Θ = 0.1; for extra large
networks we assume Θ0 = 3 and Θ = 0.06. The temperature
is reduced with factor α set to 0.9. Note that since reaching the
final temperature is used as a stopping criterion, in both cases
the number of iterations is always equal to 38. In each iteration
i, L = 20 000 steps of the algorithm are performed, and hence
the SA random walk through the solution space is 760 000

Fig. 5. Network 3

Fig. 6. Network 4

steps long. As explained in Section III, for better exploration
of the solution space when optimizing each network instance,
we have used a number of different random initial solution.
In the computations we have used 20 initial solutions for each
network and we have run the corresponding SA algorithm
instances in parallel, each in a separate thread of a logical
server.

C. Results of the delay optimization

Below we present the numerical results on delay optimiza-
tion. In the considered cases the set of destination nodes for
each sensor includes all gateways, and each traffic originating
router is associated with just one sensor (and hence is the
source of only one packet stream). For solving PDMP, the
frame composition, the packet assignment requirement and the
multicast routing trees for the traffic originating routers (which
are the shortest-path trees, precomputed by means of Dijkstra’s

7

Fig. 7. Network 5

TABLE II
NUMERICAL RESULTS – EXPLANATION

Notation Description
T ∗ optimal frame length obtained from frame size

minimization
d∗MIP minimum delay obtained by solving the MIP for-

mulation of PDMP
d0avg average initial delay for initial solutions used in

concurrent SA algorithm instances
d∗avg average delay for final solutions of concurrent SA

algorithm instances
d∗SA the best minimum delay found by means of the

concurrent SA algorithm
tf computation time required for solving frame size

minimization
tdMIP computation time required for solving the MIP

formulation of PDMP (timeout for the computation
time equal to 3h was set in this case, and (*)
denotes that this timeout was reached)

tdSA computation time required for solving all concur-
rent SA instances

algorithm) obtained from the frame minimization problem (3)
are assumed. Notations used in this section are described in
Table II.

The results for the networks depicted in Figures 3-7 are
presented in Table III. The main observations are as follows.
First, the optimization process leads to a significant delay
decrease. The optimized delay is up to 3.08 times smaller
than the average initial delay (this is the case for Network 5;
for Networks 1− 4 these values are equal to 2.63, 2.84, 2.89,
and 3.01, respectively). Next, the SA algorithm is able to find
solutions that are optimal or close to the lower bound, i.e.,
the minimum frame size T ∗. (Note that the minimum frame
size is indeed the lower bound for d since if the minimum d
were strictly less than T ∗, then all packets would reach their
destinations before the frame end, and hence the slots after

XS S M L XL

50

100

150

20.5

38.7

56.7

75.3

91.9

20.5

41

67.5

97.3

133.5

network size

frame length delay

Fig. 8. Frame size and minimized delay as a function of the network size.

the slot no. d would not have to be used.) For Network 1
the optimal solution was found, while for Networks 2 − 5
the optimized delay is 10.64%, 17.30%, 31.94%, and 39.24%
greater than the lower bound, respectively, and this means that
all packets are delivered well before the second frame ends.

Let us observe that the MIP formulation (2) of PDMP was
successfully solved (before the 3 hour timeout was reached)
only for the two smallest networks, and provided the exact
minimum delay d∗ = 23 (equal to the minimum frame size in
this case) for Network 1 and d∗ = 48 for Network 2. Notice
that for the case of Network 1 SA algorithm found the optimal
solution as well, while for Network 2 the difference between
SA solution and optimal solution is equal to only 8.33%. Note
also that within the timeout, only feasible PDMP solutions for
Network 3 were found, while even this was not possible for
Network 4 and Network 5. Yet, using the SA algorithm we
were able to obtain the near optimal solutions even in those
computationally demanding cases in a reasonable time. Note
that the SA solution (d∗SA = 61) for Network 3 found in 16
minutes and 35 seconds is substantially better than the best
feasible solution (d∗MIP = 102) achieved by the MIP solver
in 3 hours.

The results obtained with the SA algorithm averaged over 10
randomly generated networks for each of the considered sizes
are presented in Table IV and depicted in Figure 8 (where the
letters XS, S, M, L, and XL denote extra small, small, medium,
large, and extra large networks, respectively). The results
confirm satisfactory effectiveness of the SA approach. For all
extra small networks the optimal solutions were found. For
small, medium, large, and extra large networks, the optimized
delay is on the average 5.94%, 19.04%, 29.21%, and 45.26%
greater than the lower bound, respectively.

D. Convergence of the SA delay minimization process

Convergence of a selected SA algorithm run for Network 3
(the one that found the best solution) is illustrated in Figure 9.

8

TABLE III
DELAY OPTIMIZATION RESULTS

T ∗ d∗MIP d0avg d∗avg d∗SA tf tdMIP tdSA

Network 1 23 23 60.55 24.85 23 1.5s 31s 3m28s
Network 2 47 48 147.55 52.9 52 10s 55m47s 9m19s
Network 3 52 102 176.7 64.35 61 1m5s 3h (*) 16m35s
Network 4 72 - 286.3 100.55 95 1m15s 3h (*) 35m50s
Network 5 79 - 339.2 114.95 110 1m50s 3h (*) 45m33s

TABLE IV
AVERAGED DELAY OPTIMIZATION RESULTS

T ∗ d0avg d∗avg d∗ tf tdSA

XS 20.5 48.1 20.84 20.5 2.54s 2m38s
S 38.7 141.11 43.42 41 11.31s 8m19s

M 56.7 215.66 72.17 67.5 42.5s 18m26s
L 75.3 302.97 102.05 97.3 1m39s 38m15s

XL 91.9 423.5 141.27 133.5 2m48s 58m12s

0 5 10 15 20 25 30 35
60

80

100

120

140

160

180

number of iterations

de
la

y

Fig. 9. Convergence of the delay minimization process.

In this case the gap between the initial solution (d0 = 161)
and the final solution (d∗SA = 61) was equal to 100. This gap
was reduced by 48% already in the first iteration, and became
equal to 15% of the initial gap after 15 iterations. Then, in the
next 8 iterations, the gap was further decreased to 3% (this
took place in iteration number 23). Finally, it took 10 extra
iterations (when the algorithm terminated) to reduce the gap 0.
The observed behaviour suggests that if the computation time
is important and slightly worse solutions can be accepted, the
SA iterative process could be terminated substantially earlier
than indicated by the stopping criterion.

V. CONCLUDING REMARKS

The presented paper deals with a difficult issue of opti-
mizing packet delay in multi-hop wireless TDMA networks
with periodic traffic, and in particular with min-max packet
delay optimization for the case when the frame composition,
the packet assignment requirement and the multicast routing

trees are known and fixed, and then only an optimal permu-
tation of the c-sets composing the frame and a corresponding
packet broadcast schedule are to be found. This problem
turns out to be difficult (NP-hard), and its exact mixed-
integer formulation is in general applicable only for small
networks. Because of that we have developed a simulated
annealing based heuristic algorithm that, as shown by means of
a numerical study, gives near-optimal solutions in reasonable
time.

As far as future work is concerned, we are going to
investigate the extensions of the packet delay minimization
problem discussed in Section II-C, especially those dealing
with enlarging the frame size in order to decrease the delay.
This is planned to be done within the grant listed in the
acknowledgment.

REFERENCES

[1] I. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: a
Survey,” Computer Networks, vol. 47, no. 4, pp. 445–487, 2005.

[2] D. Benyamina, A. Hafid, and M. Gendreau, “Wireless Mesh Networks
Design: a Survey,” IEEE Communications Surveys and Tutorials, vol. 14,
no. 2, pp. 299–310, 2012.

[3] P. Rawat, K. Singh, H. Chaouchi, and J. Bonnin, “Wireless Sensor
Networks: a Survey on Recent Developments and Potential Synergies,”
J Supercomput, vol. 68, pp. 1–48, 2014.

[4] O. Khader, A. Willig, and A. Wolisz, “WirelessHART TDMA Protocol
Performance Evaluation Using Response Surface Methodology,” in
IEEE BWCCA, October 2011, pp. 197–206, published online, DOI:
10.1109/BWCCA.2011.32.

[5] M. Nixon, A Comparison of WirelessHART and ISA100.11. White
Paper: HCF SPEC-xxx, July 2012, revision 1.0, Preliminary A.

[6] M. Pióro, A. Tomaszewski, and A. Capone, “Maximization of multicast
periodic traffic throughput in multi-hop wireless networks with broadcast
transmissions,” Ad Hoc Networks, vol. 77, pp. 119–142, 2018.

[7] Y. Li, A. Capone, and D. Yuan, “On End-to-end Delay Minimization in
Wireless Network under Physical Interference Model,” in IEEE INFO-
COM, April 2015, pp. 2020–2028, published online, DOI: 10.1109/IN-
FOCOM.2015.7218586.

[8] W. Ogryczak, M. Pióro, and A. Tomaszewski, “Telecommunications
Network Design and Max-Min Optimization Problem,” Journal of
Telecommunications and Information Technology, vol. 3, pp. 43–56,
2005.

[9] A. Tomaszewski and M. Pióro, “Packet Routing and Frame Length
Optimization in Wireless Mesh Networks with Multicast Communica-
tions,” in Proc. of the 17th International Network Strategy and Planning
Symposium (NETWORKS 2016), September 2016, pp. 1–8.

[10] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in
Communication and Computer Networks. Morgan Kaufmann, 2004.

[11] E. Fitzgerald, “Wireless network scenario generator,” https://bitbucket.
org/EIT networking/network generator, accessed 2020-01-07.

9

