
MixCAN: Mixed and Backward-Compatible Data
Authentication Scheme for Controller Area

Networks
Teri Lenard, Roland Bolboacă, Béla Genge, and Piroska Haller

George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Romania
Gheorghe Marinescu, No. 38, Târgu Mureş, Mureş, Romania, 540139

Email: teri.lenard@umfst.ro, roland.bolboaca@umfst.ro, bela.genge@umfst.ro, piroska.haller@umfst.ro

Abstract—The massive proliferation of state of the art inter-
faces into the automotive sector has triggered a revolution in
terms of the technological ecosystem that is found in today’s
modern car. Accordingly, on the one hand, we find dozens
of Electronic Control Units (ECUs) running several hundred
MB of code, and more and more sophisticated dashboards
with integrated wireless communications. On the other hand,
in the same vehicle we find the underlying communication
infrastructure struggling to keep up with the pace of these
radical changes. This paper presents MixCAN (MIXed data
authentication for Control Area Networks), an approach for
mixing different message signatures (i.e., authentication tags) in
order to reduce the overhead of Controller Area Network (CAN)
communications. MixCAN leverages the attributes of Bloom
Filters in order to ensure that an ECU can sign messages with
different CAN identifiers (i.e., mix different message signatures),
and that other ECUs can verify the signature for a subset of
monitored CAN identifiers. Extensive experimental results based
on Vectors Informatik’s CANoe/CANalyzer simulation environ-
ment and the data set provided by Hacking and Countermeasure
Research Lab (HCRL) confirm the validity and applicability of
the developed approach. Subsequent experiments including a test
bed consisting of Raspberry Pi 3 Model B+ systems equipped
with CAN communication modules demonstrate the practical
integration of MixCAN in real automotive systems.

Index Terms—Controller Area Networks, Electronic Control
Units, In-Vehicle security, Data authentication.

I. INTRODUCTION

THe massive proliferation of state of the art interfaces
into the automotive sector has triggered a revolution in

terms of the technological ecosystem that is found in today’s
modern car. Accordingly, on the one hand, we find dozens of
Electronic Control Units (ECUs) running several hundred MB
of code, and more and more sophisticated dashboards with
integrated wireless communications [1]. On the other hand,
in the same vehicle we find the underlying communication
infrastructure, which is struggling to keep up with the pace of
these radical changes.

In today’s modern vehicles the “backbone” communication
is provided by the Controller Area Network (CAN). Standard-
ised in 2003 [2], it is an International Standardization Organi-
zation (ISO) - defined communications bus that describes the
rules for exchanging data frames between devices. Given its
limitations mainly in terms of bandwidth and payload size,

recently, two main improved communication infrastructures
have been proposed. The CAN+ protocol was proposed by
Ziermann, et al. in 2009 [3], and it exploits the time between
transmissions to send additional data. More recently, in 2012,
Robert Bosch Gmbh developed the CAN with flexible data-
rate protocol (CAN-FD) [4], which brings several advantages
over CAN and CAN+, amongst which the most significant
being higher bandwidth and larger payload.

While technological advancement brought up a wide range
of advantages and integrated features, gradually, modern ve-
hicles started to experience a new breed of cyber-physical
attacks. In this case, the attackers (e.g., vehicle owners, mali-
cious actors) exploit software vulnerabilities (or undocumented
features) in order to alter the vehicle’s behavior, to gain certain
advantages, or simply to cause physical damage [5], [6].
Unfortunately, while several notable techniques have emerged
in the attempt to address the data authentication requirements
in CAN communications [7], [8], [9], as it turns out, the
practical integration of such techniques is impaired by the
restrictions of the CAN bus. Therefore, most prior works
presume the recent technological advancements regarding the
CAN protocol (e.g., CAN+, CAN-FD) [10], [11]. However, in
order to leverage the features of CAN+ of CAN-FD, expensive
hardware upgrade is necessary.

Staring with the work of Radu [8], it was acknowledged
that data authentication techniques need to be backward-
compatible with the standard CAN protocol. However, while
such works are indeed AUTOSAR-compliant [12], they au-
thenticate each frame or group of frames according to each
frame’s identifier. AUTOSAR is a series of standards that
defines the Secure On-board Communication module including
guidelines for implementing data authentication. The standard
recommends using 128-bit keys, 64-bit Message Authenti-
cation Codes (MACs), alongside counters or timestamps to
enforce freshness. In terms of MAC computations, the stan-
dard also recommends that MACs should be computed on
the frame identifier, the actual data, and the value of the
counter/timestamp. In the case of Radu [8] and other related
studies [10], [13], for each distinct frame an additional frame
transporting the authentication tag is also issued. However,
we observe that such a procedure can significantly affect the
available communication bandwidth with impact on mission-ISBN 978-3-903176-28-7 c© 2020 IFIP

395

critical services.
In order to address the issue of data authentication in CAN

networks, this paper presents the MIXed data authentication
for Control Area Networks (MixCAN) approach, that mixes
different frame signatures (i.e., authentication tags) in order
to reduce the overhead of CAN communications. MixCAN
leverages the attributes of Bloom Filters in order to ensure
that one ECU can sign frames with different CAN identifiers
(i.e., mix different frame signatures), and that other ECUs can
verify the signature for a subset of monitored CAN identifiers.
Given the significant limitations of the CAN protocol in
terms of frame size, bandwidth, CAN identifiers, and the
fundamental requirement of ensuring backward compatibility,
MixCAN encapsulates an application-level data authentication
strategy. As a result, MixCAN can be deployed by regular
software updates, and can function in a hybrid environment
with nodes not supporting MixCAN. Extensive experimental
results based on Vector Informatik’s CANoe/CANalyzer simu-
lation environment and the data set provided by Hacking and
Countermeasure Research Lab (HCRL) confirm the validity
and applicability of the developed approach. Subsequent ex-
periments including a test bed consisting of two Raspberry
Pi 3 Model B+ systems equipped with CAN communication
modules demonstrate the practical integration of MixCAN in
real automotive systems.

The remainder of this paper is structured as follows. Related
studies are briefly documented in Section II. The developed
scheme, including a detailed security analysis is presented in
Section III. Next, the experimental results are presented in
Section IV, and the paper concludes in Section V.

II. RELATED WORK

Several techniques have been developed in order to secure
CAN communications. Starting with the work of Herrewege,
et al. [7], it was shown that, while the CAN bus has significant
limitations in terms of payload and bandwidth, data authen-
tication is still achievable via Message Authentication Codes
(MAC), and more specifically the HMAC standard, alongside
a counter in order to ensure freshness and resistance against
replay attacks. The approach entitled CANAuth presumes the
presence of the CAN+ protocol, which permits out-of-band
transmissions [3]. By building on the extensive features pro-
vided by CAN+, the authors also developed a key distribution
protocol, where each master node (from each group of related
nodes), periodically issues a new group key.

By leveraging the breakthrough in the field of sensor
networks, namely the Timed Efficient Stream Loss-tolerant
Authentication protocol (TESLA) [14], B. Groza, et al. [15],
developed an approach specially tailored to the CAN protocol.
The approach integrated symmetric cryptographic functions
(i.e., MAC) for data authentication and for releasing new
session keys. Similarly to TESLA, keys are chained and
released after the authenticated frames.

Next, we mention the more recent work of Radu and
Garcia [8], where the LeiA CAN authentication protocol
was presented. LeiA is designed to be backward compatible

with existing vehicle’s CAN infrastructure. Similarly to the
approach undertaken in the present work, LeiA authenticates
each CAN frame by adding one additional frame (and new
CAN identifier) to each CAN frame. The newly added frame
carries the authentication tag and leverages a 64-bit truncated
MAC.

By leveraging the advantages of the CAN-FD protocol,
Woo, et al. [10], developed a secure communication proto-
col and security architecture for CAN-FD-enabled in-vehicle
systems. The approach embraces two distinct layers. A first
security layer, where regular ECUs communicate securely
by leveraging symmetric cryptographic constructions (e.g.,
symmetric encryption, and MAC). This is reinforced by a
second security layer consisting of an advanced gateway
capable of signing and verifying signatures via asymmetric
cryptographic computations. In terms of data security, Woo’s
approach involves data encryption (via symmetric cryptogra-
phy) and authentication (via MAC computation). However, the
additional encryption introduces significant overhead on the
CAN, which is mitigated by the assumption of CAN-FD as
underlying communication infrastructure.

Wang and Liu [13] acknowledged the importance of se-
curing gateway ECUs (i.e., ECUs enabling external commu-
nications), which provide various communication interfaces,
including the support for Vehicle to Internet communica-
tions. These benefit from significant computational power and
communication bandwidth and enable the realisation of new
infrastructural paradigms such as the Internet of Vehicles [16].
Wang’s approach focuses on the secure distribution of crypto-
graphic keys in and outside the vehicle. In a similar fashion,
we find other approaches, where the emphasis is placed on
the distribution of cryptographic keys [17]. Unfortunately,
the data authentication has received less attention, and, as
already mentioned, most recent works [11], [18] presume
the availability of the new CAN-FD protocol, which requires
expensive hardware changes.

III. DEVELOPED APPROACH

A. Addressed Problems

The data frame authentication envisioned in this work
addresses the following two problems, for which solutions
are missing in related studies. First, in CAN communication
systems, it is customary for one node (e.g., Electronic Control
Unit – ECU) to transmit several frames with different CAN
identifiers (CIDs). The same node is usually programmed to
process and respond to a different set of CIDs. According to
existing schemes [8], each frame sent by a node needs to be
accompanied by a signature, which means that for each CID an
additional CID is used in order to publish the signature as well.
A direct consequence of such techniques is that the necessary
CIDs are essentially doubled. Furthermore, if individual CAN
frames are authenticated, such a procedure can almost double
the number of CAN frames, with severe repercussions on the
performance of the underlying communication hardware, and
ultimately, on the execution of critical functions (e.g., engine
control).

396

t1 t2

1 0 0 00 1 0 1 1 0 1 0

...
h1(t1)

h2(t1)

h3(t1) h1(t2)
h2(t2)

h3(t2)

Fig. 1. An example Bloom Filter with m = 12, and l = 3.

The second, and more significant problem that is addressed
by the developed approach is that if one ECU signs all frames
(with different CIDs) once, the receiving nodes that would
otherwise process only a subset of CIDs, will be forced
to process and store all frames issued by the transmitting
node in order to verify the signature. Unavoidably, such a
procedure would increase not only the impact on the CAN
communication infrastructure, but also on the verifier ECUs.

B. Bloom Filters

In order to address the problems mentioned above, the
developed solution leverages the Bloom Filter [19]. The Bloom
Filter (BF) is a probabilistic data structure that provides a
space-efficient solution for representing a set of n items
T = {t1, t2, ..., tn} by leveraging a set of l independent hash
functions H = {h1, h2, ..., hl}. Each hash function h ∈ H
maps an item t ∈ T to an integer value in the range of
[0,m), where m is the size (in bits) of the Bloom Filter array
represented as BF = {b0, b1, ..., bm−1}. Here, bi denotes a
single bit from the BF. Ultimately, each hash function hl sets
one bit in the Bloom Filter array.

In order to insert an item t ∈ T into the BF, t is hashed
with each hash function h ∈ H . The result constitutes a
set of values {h1(t), h2(t), ..., hl(t)}, which set to 1 the
corresponding bit in the BF according to:

∀bi ∈ BF, bi = 1 iff i ∈ {h1(t), h2(t), ..., hl(t)}. (1)

In order to query if an item t′ has been added to a BF, the
same procedure is applied as before in order to obtain the set
of values {h1(t′), h2(t′), ..., hl(t′)}. If any of the bits at the
positions indicated by these values is 0, then certainly we can
conclude that t′ /∈ BF. Otherwise, if all bits are set to 1, then
t′ ∈ BF with a high probability level. Note that the Bloom
Filter is a probabilistic data structure, where the possibility of
collision exists, and the data structure thus exhibits a certain
level of false positives. This can be tuned, though, according
to the chosen parameters, as shown later in this paper. On the
other hand, the Bloom Filter does not exhibit false negatives
in the membership verification process. An example BF with
m = 12 and l = 3 is illustrated in Fig. 1.

C. MixCAN: Approach Description

The developed approach named MixCAN (MIXed data
authentication for Control Area Networks) builds on the at-
tributes of the BF described above in order to ensure that
one node (i.e., ECU) can sign frames with different CIDs
(i.e., mix different frame signatures), and that other nodes
can verify the signature for a subset of monitored CIDs. The

reader should note that within the developed approach, the
term “sign” denotes the computation of an authentication tag
by leveraging a keyed hash function (i.e., a MAC). For this
purpose we presume that a symmetric cryptographic key k has
been securely distributed amongst all communicating nodes
(ECUs) and it has been stored in a tamper-resistant module
(e.g., a Trusted Platform Module). The security protocol for
distributing such keys is not within the scope of MixCAN,
specific techniques can be found in related studies [11], [17].

1) Mixing Time Window: Similarly to prior works, Mix-
CAN decouples the transmitted data from the actual signature.
Accordingly, the signature is transmitted at a later time on
an aggregated and mixed set of frames according to a time
window. Given the criticality of frames (identified according
to their priority), the time window needs to be computed
according to the frame priority values, and the maximum
delay that is tolerated for receiving the authentication tag. The
establishment of this time window can be made at design time,
since both transmitted and received frames, their periodicity, as
well as their CIDs are known apriori. Consequently, MixCAN
leverages this information in order to establish, at design time,
the value of this time window. More formally, let i denote the
i-th frame that is transmitted by a particular ECU, and let
δi to denote the maximum tolerated delay for receiving the
authentication tag for frame i. Then, for a set of transmitted
frames I , the time window W is computed as:

W = min
i∈I

δi. (2)

2) Constructing the Secure Bloom Filter: As already men-
tioned, MixCAN builds on the concept of Bloom Filters, and
in particular, on the concept of encrypted Bloom Filters (EBF)
[20]. Accordingly, the family of hash functions responsible for
inserting an element into the BF data structure are replaced by
encryption algorithms. To this end, in order to insert an item t
into the BF, an encryption operation Ek(t) is performed with
a cryptographic key k. The result of the encryption is then
split into dlog2(m)e parts. Similarly to the approach described
in [20], MixCAN leverages the output of a cryptographic
function, namely a Message Authentication Code (MAC), as
the output of the l hash functions. The MAC possesses the
required statistical properties for BF (as also demonstrated
in [20]), and it has several advantages in terms of security,
namely:
• The MAC benefits from the first preimage resistance,

a property that is inherited from hash functions. The
first preimage resistance property entails that, given y =
MACk(x), then it is computationally infeasible to find x if
one only has knowledge of y. Here, MACk(x) is a MAC
function applied on item x with the secret key k.

• The MAC also brings the second preimage resistance
property, which entails that given y = MACk(x), it is
computationally infeasible to find x′ 6= x such that
y = MACk(x

′). The second preimage resistance property
guarantees the collision resistance.

• The practical complexity of the brute force approach for
successfully mounting a collision attack is significantly

397

0 1 0 1 0

CID=1
m1

m2

...

CID=2
m1

m2

... ...

MAC
k

MAC
k

0 0 0 10 0 1 1 0 0 1 0

h1h2

1 0 0 00 1 0 0 1 1 1 0

h1h2

1 0 0 1 0... 0 ...EBF=

MAC
k

||
CID=1 || CID=2|| ||ctrx

Signed BF (SBF)

|| ||ctrx ctrx

W W

MAC mixing

Fig. 2. MixCAN’s architecture.

larger in the case of MAC functions (opposed to the case
of hash functions), since, for each attempt there is a need
to validate the particular “guess”. Accordingly, such an
attack usually requires the presence of an “oracle”, that
is, an entity that can be interrogated upon the correctness
of a particular guess.

• Since it builds upon cryptographic hash functions, the
MAC is computation-efficient and can be implemented
with lightweight cryptographic algorithms in resource-
constrained scenarios [21].

In a nutshell, MixCAN’s construction is visualized in Fig. 2.
Let Ci denote the set of CIDs sent by node i, x ∈ Ci to denote
CID x from Ci, and FW

ix to denote the sequence of frames
(including their CIDs and payload) sent by node i with CID
x in time window W . Accordingly, let C∗i denote the set of
all combinations of subsets of CIDs excluding the empty set
(∅ /∈ C∗i), and X ⊆ C∗i an element from this set, hereinafter
called a mix set. Then, given two mix sets X1 ⊆ C∗i and
X2 ⊆ C∗i from C∗i , these are considered to be disjoint, namely
X1 ∩ X2 = ∅.

Based on the definitions above, for a specific mix set X ⊆
C∗i , and for each x ∈ X , MixCAN computes:

yx = MACk(F
W
ix ||ctrX), (3)

where || denotes concatenation, and ctrX is the freshness
counter associated with the mix set X that is inserted into
EBF. This first step of MixCAN aggregates a sequence of
frames transmitted under a specific CID by applying a MAC
function. The use of the MAC function in this particular step
is essential, since, in order to mount a brute force attack
against the developed scheme, by leveraging this approach,
the attacker would also require the presence of an oracle to
interrogate the correctness of a particular guess.

The next step is the frame mixing procedure envisioned
for MixCAN, which essentially entails the insertion of several

aggregated MACs (yx) into the same encrypted Bloom Filter
(EBF).

Then, given the size of the EBF m, yx is split into
dlog2(m)e parts. Let Vyx denote the set of values obtained
after performing the split operation. According to the funda-
mental principles of BF, each v ∈ Vyx

indicates the bit position
in the BF, which is set to 1. More formally:

EBFX [v] = 1, ∀v ∈ Vyx . (4)

Lastly, MixCAN applies a MAC function on each EBFX

for each X ⊆ C∗i . The operation includes the concatenation
of the CIDs and of the freshness counter’s incremented value.
Essentially, the concatenated CIDs provide the unique mix set
identifier, while the counter is used to ensure the freshness of
the authenticated EBF, which is a fundamental requirement
set forth by the AUTOSAR specifications. More formally,
this last step computes a MAC signature with the pre-shared
cryptographic key k on the encrypted Bloom Filter EBFX for
the mix set X as:

SBFXctrX = MACk(X̂ ||ctrX ||EBFX), (5)

where X̂ denotes the concatenated CIDs from the mix set X
and ctrX the freshness counter corresponding to the mix set
X inserted in EBFX .

Once the signature on the encrypted Bloom Filter is com-
puted, the transmitter outputs EBFX together with SBFXctrX ,
as the tuple:

< EBFX ,SBFXctrX > . (6)

3) Counter Synchronization: It is essential that nodes have
the opportunity to synchronize on the value of the counter.
Since MixCAN does not send the value of the counter ctrX

with each authenticated frame, its value needs to be periodi-
cally transmitted. For this purpose, a MAC-based construction
is used, and the following tuple is periodically sent on the
CAN bus:

< ctrX ,MACk(CID, ctr
X) > . (7)

In Eq. (7) CID denotes the CAN identifier of the frame
that is used to send the value of ctrX . This construction,
once again, corresponds to the requirements set forth by the
AUTOSAR standard, which requires that signed (i.e., authen-
ticated) frames encompass both freshness and authentication.

4) Signature Verification: After having received the se-
quence of frames FW

ix from node i, and the tuple <
EBFX ,SBFXctrX >, the recipient first verifies the validity of
the MAC of EBFX by recomputing it with the same pre-
shared cryptographic key k, the concatenated CIDs and the
incremented value of the verifier’s counter ˆctr

X
. If successful,

then it proceeds with the computation of the MAC for FW
ix

according to Eq. (3), obtaining thus the value yx. By following
similar steps as in the case of the insertion procedure, the
verifier then splits yx into dlog2(m)e parts, thus obtaining the
set of values Vyx . As a last step, the verifier checks if all bits
identified by each v ∈ Vyx

are in EBFX . If so, it concludes
that the signature is valid.

398

Considering that the BF is a probabilistic data structure, in-
tuitively, an attacker may possess realistic chances of injecting
additional data frames into a encrypted Bloom Filter. However,
we observe that in the case of in-vehicle systems communica-
tions patterns are static, and we rarely find new nodes (e.g., re-
placement of an ECU, the addition of new sensors/ECUs). As
a result, two subsequent failed signature verifications should
raise serious alarms. Therefore, we observe that while the BF
is probabilistic, as discussed later, the attacker’s success can
be significantly limited by the implementation of thresholds,
alarms, and mitigation strategies.

D. Security Analysis

Given that the BF is a probabilistic data structure, the rate
of false positives, that is, the probability for an interrogation
to return true for an item that is not present in the BF, needs
to be analyzed. To this end, we find two main computations
for the false positive rate. The first computation, as described
in [22] (denoted by P 1), and the more recent one presented
in [23] and revised in [24] (denoted by P 2).

In the former case, the false positive rate is computed as:

P 1 =

(
1−

(
1− 1

m

)ln
)
≈
(
1− e−ln/m

)l
, (8)

where m denotes the size of the BF, n is the number of inserted
items, and l is the number of hash functions. By leveraging
(8), the optimal configuration for l, as a parameter of n and
m can be computed as:

l =
m

n
ln(2). (9)

More recently [23], [24] it was observed that the probability
value P 1 is rather imprecise. This is owed to the fact that in
[22] it was assumed that the items that are added to the BF
are independent from each other. Accordingly, the more recent
approximation of the false positive rate (as given in [24]) is:

P 2 =
m!

ml(n+1)

m∑
i=1

i∑
j=1

(−1)i−j jlnil

(m− i)!j!(i− j)!
. (10)

Considering that the BF is protected by a MAC with a size
of at least 64 bits, which, according to the National Institute
of Standards and Technology (NIST) [25] provides a sufficient
level of security, the security level of MixCAN is then equal to
the security of the BF. More specifically, MixCAN’s security
and, in particular, its susceptibility to collision attacks (i.e.,
false positives in the BF domain), equals the probability of
false positives in BF. According to Eq. (10), the false positive
rate is given by the computation of P 2.

Numerically, the probability of false positives is illustrated
in Table I. Here, we have computed the probability of false
positives (for both P 1 and P 2), in the case of two hash
functions used to compute the MAC: MD5 and SHA-1.
According to the computations, for a BF size of m = 64
bits, with n between 1 and 5 elements, there is a significant
difference between the values computed for P 1 and P 2. For
example, in the case of 3 elements in the BF with MD5 as

TABLE I
PROBABILITY OF FALSE POSITIVES COMPUTED FOR m = 64, l = 22 FOR

MD5 AND k = 28 FOR SHA-1.

P 1 P 2

n MD5 SHA-1 MD5 SHA-1

1 0.159·10−11 0.242·10−12 0.551·10−11 0.158·10−11

2 0.21·10−6 0.276·10−11 0.637·10−11 0.129·10−11

3 0.6·10−4 0.153·10−3 0.148·10−3 0.475·10−3

4 0.0016 0.0048 0.0033 0.0106
5 0.0129 0.0357 0.0218 0.0617

hash function, the value of P 1 is 0.6 · 10−4, while that of P 2

is of 0.148 · 10−3. Similar differences are visible for the other
cases of n. The value of the false positives increases with the
size of the hash value (i.e., by using SHA-1). This is owed
to the increase of l (the number of hash functions in the BF),
since each function alters one bit in the BF.

While the BF suffers from an increased level of false posi-
tives, we make the following observations. First, implementa-
tions should limit the value of n to at most 3. Otherwise, the
value of m should be increased. Second, false positives entail
that, from the attacker’s point of view 1 in approximately 1000
attempts to inject a data frame will succeed, with n = 3. How-
ever, the CAN is not a randomly accessed environment, and
ECU to ECU communications need to be 100% successful.
This implies that in the case of a attack, failed authentications
can occur. From the accountability perspective, failing to ver-
ify an authentication tag should have significant repercussions.
As such, failed authentications should be logged by ECUs and
should be disclosed to the user or to relevant authorities in
order to signal the presence of a malicious actor. Lastly, since
the developed approach leverages a MAC function to insert an
element into the BF, the attacker needs to use an oracle (e.g.,
a verifier ECU) in the attempt to mount a successful frame
injection attack. This is a significant aspect that will force the
attacker to interact with valid ECUs. Consequently, any failed
authentication will disclose the presence of malicious devices,
thus automatically triggering alarms and defence mechanisms
[26]. A more detailed analysis of this aspect is also provided
later in the experimental results section.

The security of MixCAN is summarized and proven with
the following proposition.

Proposition 1. The security of MixCAN is bounded by the
probabilities P 1 and P 2 obtained from equations (8) and (10).

Proof. In Table I we showed the probabilities P 1 and P 2

using MD5 and SHA-1 in EBF. Observe that P 1 and P 2

are strictly related to l and n. It can be seen that different
l and n affect the results from P 1 and P 2. Consequently, the
resistance of a EBF against attacks is equal to the probabilities
themselves. Thus, MixCANs security is bounded by P 1 and
P 2. �

IV. EXPERIMENTAL RESULTS

The experimental assessment focuses on several aspects, as
discussed earlier in the paper, namely: backwards compati-

399

CID₂₁ CID₂₂ CID₂₃

CID₃₂ CID₅₁

CID₁₁ CID₁₂

CID₂₁ CID₂₂

CID₁₃

CID₂₃

CID₄₁

CID₃₁

CID₅₁

CID₄₁

CID₃₁

CID₁₁

CID₃₂

CID₁₂ CID₁₃

 Encrypted Bloom Filter Verified CIDs

ECU₁ ECU₂

ECU₃ ECU₄ ECU₅

CAN
bus

Fig. 3. Experimental setting (Scenario A) including ECUs, transmitted
encrypted BF, and verified CIDs.

bility with the classic CAN protocol; minimized impact upon
integration into a real environment; resistance to attack vectors
frequently seen in automotive networks (e.g., man-in-the-
middle, replay, impersonation); and assessment of MixCAN’s
computation time.

Fig. 4. MixCAN’s impact on the bus load in relation to the configured baud
rate.

A. Experimentation Environments and Implementation Details

The experiments were conducted in two distinct environ-
ments: Vector Informatik’s CANoe/CANalyzer [27] software
to simulate a close-to-reality CAN bus environment (denoted
as Scenario A); and a physical test bed assembled with Rasp-
berry Pi 3 Model B+ boards, each connected to a MCP2515
CAN controller and TJA1050 CAN transceiver, as shown in
Fig. 5 (denoted as Scenario B).

1) Scenario A: MixCAN was integrated into CANoe as
a Dynamic Link Library(DLL). As data, the set provided

Fig. 5. Experimental test bed (Scenario B), including two Raspberry Pi 3
Model B+ boards as ECUs, two CAN controllers and a CAN bus (breadboard).

by Hacking and Countermeasure Research Lab (HCRL) [28],
[29] was integrated into the CANoe simulation environment.
The HCRL data set comprises 2 million classic CAN frames
distributed across 45 CIDs. The data set originates from a KIA
SOUL vehicle, and it is utilized in the Information Security
R&D Data Challenge organized by HCRL and the Korea
University from Seoul, South Korea.

Fig. 3 represents the architecture of the experiments con-
ducted with the CANoe simulator. In the designed experiments
each ECU is responsible for aggregating and constructing an
EBF for a collection of CIDs (denoted by white squares),
and for the verification of a set of CIDs (denoted by gray
squares). The experiment was designed to emphasize the core
concept behind MixCAN, that is, a given ECU is not required
to authenticate every item in a EBF, but only a sub-collection
of relevant items. In terms of implementation details, the size
of the BF was set to 64 bits in order to ensure that the BF can
be transmitted in one CAN frame. The size of the freshness
counter (ctrX) was also set to 64 bits, which ensures that the
counter will practically never need to be reset and that its value
fits into one CAN data frame.

For the MAC computation over a specific mix set (i.e., to
obtain yx according to Eq. (3)) the MD5 hash function was
considered suitable based on the results obtained in Table I.
For the MAC computation over the EBF structure and over the
freshness counter the SHA-1 hash function was used, which, in
accordance to the AUTOSAR specifications, was truncated to
64 bits in order to fit into a single CAN data frame. For both
MAC computations, a pre-shared cryptographic key of 256-
bits was used throughout the experiments. The EBF parameters
were determined using equation (9), resulting in maximum 3
inserted items and 22 hash outputs per item. Note, however,
that MixCAN is not restricted to this configuration, and based
on Eq. (10) and (9) the EBF parameters can be tuned and set
to the designer’s criteria.

Each EBF aggregated maximum three CIDs, following the
results from Table I, while the size of the time window W
was computed for each CID such that the maximum tolerated

400

delay for each CID (i.e., δi) equals two transmission time
periods. In terms of transmitting the EBF, two additional CIDs
have been added for each ECU: one for transmitting the EBF
data structure (of 64 bits), and one for transmitting the MAC.
Two additional CIDs per ECU have been added for counter
synchronization.

By leveraging the HCRL data set, and the associated EBF,
the transmission period for each CID was determined, and the
data set (alongside the secure BF) were replayed on the CAN
bus by leveraging the architecture depicted in Fig. 3.

2) Scenario B: Two Raspberry Pi 3 model B+ (RPi) boards
were programmed to emulate two ECUs participating in the
MixCAN protocol. Each RPi was equipped with a Quad Core
1.2GHz Broadcom BCM2837 64bit CPU with 1GB RAM. As
for the underlying operating system, the Raspbian Buster Lite
OS was installed.

MixCAN’s main operations (construction and verification
of the EBF, signature of the EBF) were implemented in the
C++ language. The CAN communication was implemented
with the help of the SocketCAN Linux package [30]. In terms
of hardware, to create a CAN network each RPi board was
connected to a MCP2515 CAN controller and a TJA1050 CAN
transceiver. In terms of MixCAN’s implementation details, the
same configuration and the same hash functions were chosen
for the EBF as in the case of Scenario A. The first ECU was
programmed to continuously send CAN messages distributed
across three CIDs, and to construct the EBF and SBF after
five aggregated messages (from each CID). The second ECU
was programmed to verify the signature of one of the received
CIDs.

The main objective of this experiment was to evaluate the
computational time of MixCAN’s steps in a close-to-reality
environment. Namely, the EBF construction time, and the item
verification time have been evaluated.

B. Scenario A: Bus Measurements

The integration of cryptographic algorithms within a real-
time system brings an additional computational overhead in
term of storage, memory consumption, utilization of processor
time and network bandwidth, which, ultimately, affects the
system’s baseline behavior. Given the limited resources that
ECUs possess and the critical aspects in terms of com-
munication for a automotive network, the additional impact
brought by MixCAN when integrated in such a system requires
a thorough analysis. Accordingly, we analyzed MixCAN’s
impact in terms of bus load in the context of the simulated
CAN bus network, as described above.

Given that the CAN protocol’s communication bandwidth
is affected by the underlying hardware’s baud rate, a series of
experiments were conducted for baud rates of 125 Kbps, 250
Kbps, 500 Kbps, and 1000 Kbps. The measured results are
summarized in Fig. 4. It can be observed that the differences
between the traditional CAN measurements, compared to Mix-
CAN, are directly proportional. The additional frames brought
by MixCAN do not affect the network communications, and a
significant impact is only visible in the case of lower baud rates

TABLE II
MIXCAN’S IMPACT ON CAN’S BUS LOAD WITH DIFFERENT BAUD RATES.

Baud Rate Avg increase Min increase Max increase

125 Kbps 12.08% 11.84% 12.61%

250 Kbps 6.04% 5.92% 6.31%

500 Kbps 3.02% 2.96% 3.16%

1000 Kbps 1.92% 1.89% 1.99%

(e.g., 125 Kbps). Nevertheless, as also summarized in Table
II, the impact on the bus load does not exceed 12.61% for
125 Kbps baud rate, and 1.99% for a 1000 Kbps baud rate.
Furthermore, the average increase in bus load for a typical
baud rate of 500 Kbps is of 1.92%, which is negligible.

C. Scenario A: Experimental Security Assessment

The signature aggregation constitutes the main advantage
that the Bloom Filter brings into MixCAN. However, due
to their probabilistic nature, Bloom Filters manifest a false
positive probability upon item query. From a security protocol
point of view, the false positive probability can be interpreted
as a vector of attack, and more precisely, as a vulnerability that
a man-in-the-middle (MITM) or replay attacks can exploit.
In order to assess the practical exploitation of this attack
vector, an experiment was designed assuming the following: a
malicious entity has direct access to the CAN bus network on
which MixCAN runs; the attacker doesn’t know the crypto-
graphic key shared by the ECUs; he/she is able to sniff CAN
frames (owed to CAN’s broadcast communication pattern);
and he/she has unlimited time to execute the attack.

Taking into account those mentioned above, an experi-
ment using CANoe was developed consisting of two ECUs:
ECU1 and ECU2 participating in the MixCAN protocol,
and a malicious ECU, ECUm, which tries to deceive the
authentication protocol. ECU1 periodically transmits a CAN
frame every 10 ms and buffers the frames for the latter
computation of the EBF. Let’s denote the frames sent by
ECU1 as FECU1

. ECU2 receives the FECU1
frames and

buffers them for later authentication. After having transmitted
five frames, ECU1 computes the EBF and its MAC signature
and sends < EBFX ,SBFXctrX >. After having received the
secure Bloom Filter, ECU2 proceeds with the authentication
of the received frames.

Conducting a MITM or replay attack over a CAN bus is
trivial, since one is only required to know the structure of
the CAN data frame, and the frame’s cycle time. Accordingly,
ECUm periodically replays (at 50 ms) a valid CAN frame
(from the HCRL data set) with a CID sent by ECU1 in the
past, in order to attempt to inject a new frame into the EBF
by exploiting the probabilistic nature of this data structure.
Throughout our experiments, from a total of 500.000 CAN
frames that have been injected by ECUm, 70 attempts were
successful, leading to 70 false data authentication. This yields
a false positive rate of 0.00014, which confirms the theoretical
probabilistic computations presented in Table I.

401

Fig. 6. Number of subsequent failed attempts to attack MixCAN before one
successful frame injection.

The outcome of these experiments has also been depicted in
Fig. 6. While it is clear that an attacker may eventually succeed
to inject a frame into MixCAN, the results summarized in
this figure also exhibit a different view of such an attack.
Namely, that a successful MITM attack is usually preceded by
a large number of failed attempts, which result in failure to
verify the . According to our experiments, the number of failed
attempts ranged from 41 to 32.065, which essentially means
that, before managing to successfully inject one single CAN
frame, an attacker needs to disturb the normal functioning
of the system, thus triggering alarms. This is a significant
building block in the construction of MixCAN, which relies
upon the deterministic nature of CAN communications and
secure frame verification, which should not fail under normal
operating circumstances. However, if an attacker attempts
to inject frames into a system running MixCAN, before it
succeeds, the attacker will undoubtedly need to disclose his/her
presence. Subsequently, a successfully detected attack attempt
can trigger defence mechanisms including the reconfiguration
of ECU control logic or disabling attack packets [26].

From a practical (i.e., real-world) perspective, the attack
conducted in this experiment is frequently seen in the auto-
motive sector, in terms of car tuning, or tampering attempts,
that tend to alter the data sent by certain ECUs and sensors in a
way that still keeps the system’s core components running with
false, unauthentic data. Consequently, this leads to a world-
wide behavior where automotive systems are compromised
almost as soon as they leave the manufacturing process [31].
For example, heavy load transport automotive vehicles are fre-
quently tampered to report false data regarding gas consump-
tion, thus drastically raising the amount of NOx emissions in
the public environment [32]. To this end, the implementation
of MixCAN can help prevent such fraudulent attempts, while
ensuring a traceable (i.e., audit-enabled logging) approach that
is backward compatible with existing hardware.

D. Scenario B: MixCAN Computation Assessment

Based on the experimental environment shown in Fig. 5,
the execution time of the following operations was measured:
• EBF construction time: the time for constructing the

Encrypted Bloom Filter, which includes: the computation

of the MAC for each item inserted into the EBF; the
splitting into dlog2(m)e parts; the insertion of the hash
results into the EBF; and the computation of the EBF’s
signature via the SHA-1 function.

• EBF verification time: the time for verifying the signature
of the SBF, and for verifying the presence of an item upon
receiving the tuple of messages < EBFX ,SBFXctrX >, for
a given CID.

As shown in Fig. 7, the computation time in both cases does
not exceed one millisecond. More specifically, the average
time for constructing the EBF, including the computation of
the SBF, is of 0.63 ms, while in the case of the verification
the average computation time does not exceed 0.35 ms.
The results have also been summarized in Table III. These
demonstrate, once again, MixCAN’s lightweight construction,
and its feasible integration into today’s automotive systems.

Fig. 7. MixCAN’s computation time in a real test bed comprising two Rasp-
berry Pi 3 Model B+ boards equipped with CAN communication interfaces.

TABLE III
MIXCAN’S COMPUTATION TIME.

Operation Avg time Min time Max time

Construction 0.63 ms 0.60 ms 0.67 ms

Verification 0.31 ms 0.23 ms 0.35 ms

V. CONCLUSIONS

We developed a novel data authentication strategy named
MixCAN for Controller Area Networks (CAN) that exhibits
two major features, namely: (i) a procedure for aggregating
different CAN identifiers in order to reduce the communication
overhead; and (ii) an approach for mixing different data frame
signatures in order to reduce the computational impact on
both the signer and the verifier nodes (i.e., Electronic Control
Units). In order to achieve its objectives, MixCAN leverages
the features of Bloom Filters, and symmetric key cryptogra-
phy (i.e., Message Authentication Codes). As a result, Mix-
CAN exhibits a lightweight construction, and is backward
compatible with classical CAN communications. While an
attacker may attempt to exploit the probabilistic nature of
Bloom Filters, as demonstrated by the experimental result,
one successful data frame injection is usually preceded by a
large number of failed attempts. Each such failed attempt can
subsequently disclose the presence of the attacker and lead to
the automated triggering of defence mechanisms. Lastly, we

402

mention that the experimental results also demonstrated the
feasible application of the developed approach in a close-to-
reality simulation environment comprising CAN frames from
a KIA SOUL vehicle, as well as in a real test bed consisting
of Raspberry Pi systems equipped with CAN communication
modules. In terms of future improvements, we envision en-
riching MixCAN with a lightweight key distribution protocol.
Furthermore, we consider that significant research needs to
be done to develop new defence mechanisms that would be
activated once an attack attempt is discovered. Such techniques
should have a limited impact on the normal functioning of
in-vehicle communication systems and on the ECUs in order
to ensure that malicious actors do not exploit these defense
mechanisms.

ACKNOWLEDGEMENT

This work was funded by the European Union’s Horizon
2020 Research and Innovation Programme through DIAS
project (https://dias-project.com/) under Grant Agreement No.
814951. This document reflects only the author’s view and the
Agency is not responsible for any use that may be made of
the information it contains.

REFERENCES

[1] R. Coppola and M. Morisio, “Connected Car: Technologies, Issues,
Future Trends,” ACM Comput. Surv., vol. 49, no. 3, pp. 46:1–46:36,
Oct. 2016. [Online]. Available: http://doi.acm.org/10.1145/2971482

[2] ISO, “ISO 11898-1:2003 - Road vehicles - Controller area network
(CAN) - Part 1: Data link layer and physical signalling,” International
Organization for Standardization, 2003.

[3] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16
higher data rates.” in 2009 Design, Automation Test in Europe Con-
ference Exhibition, April 2009, pp. 1088–1093.

[4] Robert Bosch Gmbh, “Can with flexible data-rate,” Vector CANtech,
Inc., MI, USA, Specification Version 1.0, 2012.

[5] C. Urquhart, X. Bellekens, C. Tachtatzis, R. Atkinson, H. Hindy, and
A. Seeam, “Cyber-Security Internals of a Skoda Octavia vRS: A Hands
on Approach,” IEEE Access, vol. 7, pp. 146 057–146 069, 2019.

[6] Y. Takefuji, “Connected Vehicle Security Vulnerabilities [Commentary],”
IEEE Technology and Society Magazine, vol. 37, no. 1, pp. 15–18, March
2018.

[7] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth - A
Simple, Backward Compatible Broadcast Authentication Protocol for
CAN bus,” in ECRYPT Workshop on Lightweight Cryptography 2011,
ser. ECRYPT ’11, 2011, pp. 1–7.

[8] A.-I. Radu and F. D. Garcia, “LeiA: A Lightweight Authentication Pro-
tocol for CAN,” in Computer Security – ESORICS 2016, I. Askoxylakis,
S. Ioannidis, S. Katsikas, and C. Meadows, Eds. Cham: Springer
International Publishing, 2016, pp. 283–300.

[9] B. Groza and P. Murvay, “Security Solutions for the Controller Area
Network: Bringing Authentication to In-Vehicle Networks,” IEEE Ve-
hicular Technology Magazine, vol. 13, no. 1, pp. 40–47, March 2018.

[10] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A Practical Security
Architecture for In-Vehicle CAN-FD,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 8, pp. 2248–2261, Aug 2016.

[11] B. Groza and P.-S. Murvay, “Identity-Based Key Exchange on In-
Vehicle Networks: CAN-FD & FlexRay,” Sensors, vol. 19, no. 22, 2019.
[Online]. Available: https://www.mdpi.com/1424-8220/19/22/4919

[12] AUTOSAR, “Specification of Secure Onboard Communication AU-
TOSAR CP Release 4.3.1,” AUTOSAR, 2017.

[13] L. Wang and X. Liu, “NOTSA: Novel OBU With Three-Level Security
Architecture for Internet of Vehicles,” IEEE Internet of Things Journal,
vol. 5, no. 5, pp. 3548–3558, Oct 2018.

[14] A. Perrig, R. Canetti, J. D. Tygar, and Dawn Song, “Efficient authentica-
tion and signing of multicast streams over lossy channels,” in Proceeding
2000 IEEE Symposium on Security and Privacy. S P 2000, May 2000,
pp. 56–73.

[15] B. Groza and S. Murvay, “Efficient Protocols for Secure Broadcast in
Controller Area Networks,” IEEE Transactions on Industrial Informat-
ics, vol. 9, no. 4, pp. 2034–2042, Nov 2013.

[16] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet
of Vehicles: Architecture, Protocols, and Security,” IEEE Internet of
Things Journal, vol. 5, no. 5, pp. 3701–3709, Oct 2018.

[17] K. Kang, Y. Baek, S. Lee, and S. H. Son, “An Attack-Resilient
Source Authentication Protocol in Controller Area Network,” in 2017
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS), May 2017, pp. 109–118.

[18] R. Hussain, F. Hussain, and S. Zeadally, “Integration
of VANET and 5G Security: A review of design and
implementation issues,” Future Generation Computer Systems,
vol. 101, pp. 843 – 864, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X19306909

[19] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[20] S. M. Bellovin and W. R. Cheswick, “Privacy-Enhanced
Searches Using Encrypted Bloom Filters,” 2004, under submission
smb@research.att.com 12449 received 1 Feb 2004. [Online]. Available:
http://eprint.iacr.org/2004/022

[21] A. Duka, B. Genge, and P. Haller, “Enabling authenticated data ex-
changes in industrial control systems,” in 2018 6th International Sym-
posium on Digital Forensic and Security (ISDFS), March 2018, pp. 1–5.

[22] M. Mitzenmacher, “Compressed Bloom filters,” IEEE/ACM Transactions
on Networking, vol. 10, no. 5, pp. 604–612, Oct 2002.

[23] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin,
J. Morrison, M. Smid, and Y. Tang, “On the false-positive
rate of Bloom filters,” Information Processing Letters, vol.
108, no. 4, pp. 210 – 213, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020019008001579

[24] K. Christensen, A. Roginsky, and M. Jimeno, “A new analysis of
the false positive rate of a Bloom filter,” Information Processing
Letters, vol. 110, no. 21, pp. 944 – 949, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020019010002425

[25] Q. H. Dang, “Recommendation for Applications Using Approved Hash
Algorithms, Special Publication (NIST SP) - 800-107 Rev 1,” 2012.
[Online]. Available: https://www.nist.gov/publications/recommendation-
applications-using-approved-hash-algorithms

[26] H. Kwon, S. Lee, J. Choi, and B. Chung, “Mitigation mechanism against
in-vehicle network intrusion by reconfiguring ECU and disabling attack
packet,” in 2018 International Conference on Information Technology
(InCIT), Oct 2018, pp. 1–5.

[27] Vector Informatik, “CANoe v 12.0: Testing ECUs and Networks with
CANoe,” 2020, last access: January 6th, 2020. [Online]. Available:
https://www.vector.com/int/en/products/products-a-z/software/canoe/

[28] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion
detection system for in-vehicle network by using remote frame,”
in 2017 15th Annual Conference on Privacy, Security and Trust
(PST), vol. 00, Aug 2017, pp. 57–5709. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/PST.2017.00017

[29] S. H. J. Hyunsung Lee and H. K. Kim, “CAN Dataset for intrusion
detection (OTIDS),” 2018, last access: January 6th, 2020. [Online].
Available: http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

[30] O. Hartkopp, et al., “SocketCAN: Controller Area Network Protocol
Family,” 2020, last access: January 6th, 2020. [Online]. Available:
https://github.com/linux-can/can-utils

[31] U. EPA, “DOJ. EPA Announce One-Billion-Dollar Settlement with
Diesel Engine Industry for Clean Air Violations. News Release,
22 October 1998,” 1998, last access: January 6th, 2020. [Online].
Available: https://archive.epa.gov/epapages/newsroom archive/ newsre-
leases/93e9e651adeed6b7852566a60069ad2e.html

[32] D. Pöhler, T. Adler, C. Krufczik, M. Horbanski, J. Lampel, and U. Platt,
“Real Driving NOx Emissions of European Trucks and Detection of
Manipulated Emission Systems,” in EGU General Assembly Conference
Abstracts, ser. EGU General Assembly Conference Abstracts, Apr 2017,
p. 13991.

403

