Approaching Fair Collision-Free Channel Access
with Slotted ALOHA Using Collaborative
Policy-Based Reinforcement Learning

Luca de Alfaro
Computer Science and Engineering
University of California
Santa Cruz, CA
luca@ucsc.edu

Abstract—A novel expert-based approach to reinforcement
learning is applied to slotted ALOHA in order to approach
fair collision-free transmissions. Active nodes use known periodic
transmission schedules as policies and assign weights to them
based on the Quantitative Tree (QT) algorithm introduced in
this paper. Nodes learn to transmit following the policies with
the highest weights to minimize packet collisions. This results
in two variants of slotted ALOHA, which we call ALOHA-
QT and ALOHA-QTF, that converge to transmission schedules
that are almost free of collisions within a short period of time,
and that attain near perfect transmission throughput even when
node additions and departures occur frequently. In addition,
ALOHA-QTF attains very fair bandwidth distribution among
nodes, where the nodes with bottom ten percent of bandwidth still
fare reasonably well. ALOHA-QTF is shown to be better than
slotted ALOHA with exponential back off and framed slotted
ALOHA with Q learning (ALOHA-Q) in terms of throughput
and fairness.

I. INTRODUCTION

Simplicity is the most salient feature of the ALOHA proto-
col [1]; a node with a packet to send simply transmits. This
simplicity makes ALOHA and its variants an attractive choice
for channel access in such untethered networks as underwater
acoustic networks, satellite networks, space networks, wireless
networks in which hidden-terminal interference is prevalent,
and IoT deployments consisting of very simple nodes. How-
ever, the simplicity of ALOHA comes at the price of poor
performance, with a maximum throughput of only 18% of the
available bandwidth. As a result, several variants of ALOHA
have evolved over the years to allow more efficient sharing of
common channels in untethered networks.

Section II summarizes relevant prior work. The first ma-
jor improvement on ALOHA was slotted ALOHA [19],
which doubles the maximum throughput attainable with pure
ALOHA by forcing noes to transmit at the beginning of time
slots defined at the physical layer. As the review of related
work presented in Section II describes, many approaches have
been proposed over the years to improve the performance
of ALOHA have been based on framed slotted ALOHA

ISBN 978-3-903176-28-7© 2020 IFIP

Molly Zhang
Computer Science and Engineering
University of California
Santa Cruz, CA
mollyzhang @ucsc.edu

J.J. Garcia-Luna-Aceves
Computer Science and Engineering
University of California
Santa Cruz, CA
ji@soe.ucsc.edu

[17], which organizes the channel into transmission frames
consisting of a fixed number of time slots. A major limitation
with these approaches is that they require network nodes
to agree on the number of slots per transmission frame a
priori. This is a problem because the optimum length of a
transmission frame is a parameter whose value depends on
the number of nodes, their connectivity, and traffic patterns.

Some recent proposals based on framed slotted ALOHA
have adopted the expert-based approach to reinforcement
learning (RL), also known as regret learning [7], [8], [2]. The
goal is for nodes to learn which time slots to use in a way that
reduces the likelihood of packet collisions and hence attains
much higher throughput, and without need for any centralized
coordination, pre-agreement, or out-of-band communication.
The ALOHA-Q protocol [6], [5] is arguably the first example
of this approach. Each node in ALOHA-Q learns in which time
slot out of the M time slots of a fixed-length time-frame to
transmit by tracking the success of M policies (i.e., “experts”),
with each policy consisting of transmitting in a given time slot.
Another approach [23] consists of using deep neural networks
for deep reinforcement learning (DRL) in the context of slotted
ALOHA.

To achieve high utilization, the nodes must learn how to
coordinate. In ALOHA-Q, the coordination is guided by a
fixed transmission frame, limiting the achievable utilization
under variable network conditions. Furthermore, nodes take
a long time to learn which slot in a large frame to use. In
the DRL-based approach, the nodes can learn very general
coordination schemes using deep neural networks, but the
learning can take very long, even when only a couple of
network nodes are involved. Furthermore, the DRL approach
incurs a considerable computational cost at each node for
training the neural networks.

This paper introduces a new approach to the use of RL
in the context of slotted ALOHA. The key insight in our
proposed RL approach consists in organizing the set of known
policies into a policy tree, with each policy (i,2™) consisting

262

of transmitting at every time ¢ with ¢ mod 2™ = 7. Nodes
learn which policies render higher throughput by assigning
quantitative weights to all policies. The weight tracks the
policy success in predicting available network time-slots, and
the nodes schedule their transmissions according to the best
policies. This results in fast convergence to transmission
schedules that are fair and almost free of collisions, without
the need for predefined transmission frames, sophisticated
physical-layer mechanisms, or deep neural networks. As in the
original slotted ALOHA protocol, the only assumptions made
are that nodes are synchronized so that transmissions start at
the beginning of time slots, and a node can detect whether or
not its transmission succeeds before the time slot ends.

We call the proposed approach ALOHA-QT, where QT
stands for quantitative tree, referring to the way in which the
policies are organized into a tree, according to the policies’
period, with quantitative weights tracking the success of each
policy. Sections III and IV describe this approach, and Sec-
tion V introduces ALOHA-QTF, a more sophisticated variant
of the same approach that exhibits improved fairness.

Section VI addresses the performance of the proposed
approach, and compares ALOHA-QT and ALOHA-QTF with
traditional slotted ALOHA with exponential backoff and
ALOHA-Q. The results show that nodes using ALOHA-QT
and ALOHA-QTF learn to coordinate and achieve utilization
above 75% in a few hundred time-slots, which is the time in
which each node transmits only 10 to 20 times, even when
50 nodes join the network simultaneously; furthermore, the
utilization ultimately settles to about 90%. We show that this
speed of convergence is markedly superior to what can be
achieved with either ALOHA-Q or the DRL approach. The al-
location of bandwidth is markedly fair, with the 10% of nodes
in the lowest bandwidth percentile each receiving bandwidth
that is 75% of the average one. We present results showing
the protocol robustness and speed of adaptation in settings
where the number of active nodes varies, and in settings where
nodes continuously join and leave the network. In all these
settings, ALOHA-QTF reaches very high utilization, always
above 75% except in short transients, with fair bandwidth
sharing. This high and fair utilization is reached without any
centralized coordination, packet content modification, or out-
of-band communication to reach agreement.

II. RELATED WORK

Most of the approaches that have been proposed over the
years to improve the performance of ALOHA and slotted
ALOHA have been based on framed slotted ALOHA. A
number of schemes consist of using repetition strategies with
which each node transmits the same packet multiple times,
and relying on physical-layer techniques (e.g., code division
multiple access and successive interference cancellation) to
improve throughput [15], [12], [18], [20].

A number of recent attempts have been made to improve the
performance of slotted ALOHA and framed slotted ALOHA
by using machine learning in the coordination of time-slot
selection among nodes with packets to send.

Two diametrically opposed approaches to learning coordi-
nation have been proposed so far. In ALOHA-Q, [6], [5],
nodes used reinforcement learning to choose in which slot
of a fixed-length transmission frame to transmit. In [23],
nodes use general deep-reinforcement learning to learn how
to coordinate, without reference to any underlying frame or
set of alternative policies.

The ALOHA-Q protocol (framed slotted ALOHA with Q-
learning) was proposed by Chu et al. in [6], [5] for coordi-
nating transmissions in framed slotted ALOHA. The protocol
assumes a fixed frame length M. Each node has the set
of policies {(¢, M) | 0 < ¢ < M}, where policy (i, M)
prescribes transmitting in the i-th time-slot of the frame, that
is, at all time slots ¢ where ¢ mod M = ¢. Whenever a
node transmits a packet in time slot ¢, it updates the weight
of policy (¢t mod M, M), increasing it if the transmission
succeeds, and decreasing it otherwise. At each frame, each
node transmits according to the policy of highest weight, with
a back-off procedure if a collision occurs.

ALOHA-Q is closely based on the “expert-based” approach
to reinforcement learning [7], [8], [2], in which an agent has
several experts at its disposal. At each stage, the agent chooses
dynamically the best expert to follow, according to the past
quality of their advice. In ALOHA-Q, the agents are the nodes,
and the experts are the periodic policies. The nodes are thus
constrained to transmitting according to frame-based periodic
policies: this speeds up the learning step, at the expense of
flexibility. The nodes learn to coordinate in a few tens of
frames, but the fixed frame length limits the network utilization
that can be obtained under variable network traffic.

A reinforcement-learning approach that allows nodes to
transmit according to any schedule has been presented in [23].
The nodes use deep-reinforcement learning to learn when it
is best to transmit. The approach is based on Q-learning,
where the value of actions (transmit, or wait) is learned as
a function of the state of the system (the recent network
history) [22]. The work relies on deep reinforcement learning,
where the values are computed with the help of a trainable
neural network [14]. In particular, the approach relies on
LSTMs [9], a type of recurrent neural network whose output
depends on a sequence of inputs. In this way, the value of an
action can depend on the recent network history, and nodes
can potentially learn arbitrary transmission schedules. The
drawback of this generality is that learning, unguided by fixed
policies, takes long time: the approach has been demonstrated
only for networks of two adaptive nodes, and even for such
small networks, it takes tens of thousands of time-slots to
converge.

Deep reinforcement learning (DRL) has been used in other
approaches to channel access in networks. In [16], DRL is used
to choose which of IV orthogonal channels to access using a
MAC protocol, and in [21], it is used to choose a frequency
channel in presence of interference. In [4], DRL is used for
channel selection and access in LTE-U networks.

The policy trees introduced in this paper are related to the
binary trees proposed by Capetanakis for conflict resolution

263

following collisions [3]. However, there is a deep difference on
how such trees are used in the two approaches. In Capetanakis’
approach, the trees guide the resolution of each conflict as it
arises. By contrast, policy trees are used in ALOHA-QT and
ALOHA-QTF to guide both the resolution of the conflicts,
and the periodic transmissions of the nodes, so that once the
nodes learn how to resolve a conflict, they continue to transmit
according to schedules that avoid conflicts.

III. PRELIMINARIES

We consider a fully-connected network in which the channel
is time slotted. At each time slot a node can either transmit
(T) or wait (W), and the channel can be in one of three
states: empty (E), if no node transmits; success (S), if exactly
one node transmits; and collision (C), if two or more nodes
transmit. We assume that the nodes can detect the state of
the time slot, and thus, the outcome of their transmissions.
This assumption can be brought to practice in several ways. A
central node (such as a satellite transponder or a base station)
can use a downlink to repeat the transmissions sent to it in each
slot over an uplink, as in the original slotted ALOHA protocol.
Alternatively, each time slot can be divided into a portion for
packet transmission and a portion for an acknowledgement.

It is well known that the throughput of slotted ALOHA in
a fully-connected network tends to 1/e a2 0.37 as the number
of nodes grows. Achieving higher throughput while giving
each node a fair share of the bandwidth requires coordinating
the node’s transmission schedules. ALOHA-QT and ALOHA-
QTF attempt to do this by allowing node to learn to coordinate
via reinforcement learning, without need for any centralized
coordination, pre-agreement, or out-of-band communication.

A. From ALOHA-Q to ALOHA-QT and ALOHA-QTF

The starting point in our design is ALOHA-Q [6], [5], a
protocol based on a fixed-length frame, in which each node
learns in which slot of the frame the transmissions can be most
successful. ALOHA-Q is based on a transmission frame of
fixed length M. An ALOHA-Q node keeps a time-slot counter
t, and relies on M policies (0, M), (1, M), ..., (M —1,M);
a policy (i, M) prescribes sending at all times ¢ such that
t mod M = i. The policies play the role of the experts in
reinforcement learning: each node tracks the success of each
policy, and so eventually settles into transmitting always in the
same time-slot of each frame.

ALOHA-Q has two limitations. One is its reliance on a
fixed-length frame. When the number of nodes N is smaller
than the frame length M, the network utilization can approach
N/M in the long term. However, when N < M the utilization
can be very low, and when N > M, the utilization is quickly
degraded, as there are not enough slots for each node in the
fixed-length period. The second limitation of ALOHA-Q is the
adoption of a non-standard version of weight update for the
policies, which slows down adaptation.

Our approach improves on ALOHA-Q in four main ways.
The first, and most important, is to abandon the use of a fixed-
length frame, and adopt instead a policy tree, where policies

of different periods are arranged in a tree. The tree guides
conflict resolution and helps the nodes settle on non-conflicting
policies. The availability of policies of different periods en-
ables the nodes to vary their transmission rate and adapt to
the number of active nodes: there is no longer a fixed frame
that can remain mostly empty, or be of insufficient length
to accommodate all nodes. The second, related, improvement
is to allow nodes to follow the “advice” of more than one
expert simultaneously; this lets nodes mix policies of different
transmission bandwidth, enabling the nodes to fine-tune their
overall transmissions. The third improvement consists in a new
method for updating the policy weights following network
outcomes. Our method is closer to the standard methods in
reinforcement learning, and enables a faster convergence to an
efficient schedule. The last improvement consists in tuning the
weight updates and policy selection to ensure a fair distribution
of the network bandwidth to the participating nodes.

B. The Policy Tree

Each node keeps a time-slot counter ¢. A (periodic) policy
consists in a pair (¢,m) with 0 < i < m; the policy (¢, m)
prescribes transmitting at all times ¢ such that ¢ mod m = 1.
For instance, the policy (3, 8) prescribes transmitting at times
t=3,11,19,27,.... Importantly, our design does not require
the nodes to synchronize their time-slot counters: a policy
(i,m) for a node with counter ¢ is equivalent to a policy
((i + k) mod m,m) for a node with counter t' = ¢ + k.

The reinforcement learning at each node is based on the
set of policies P = {(4,2™) | 0 < i < 2™,0 < m < n}.
The maximum periodicity 2™ is chosen so that it is larger
than the maximum number of nodes that can be present on
the network. Since nodes can transmit with periods that are
smaller than 2" (for example, nodes can transmit every fourth
time-slot using a policy of period 2?), there is no performance
penalty in ALOHA-QT in choosing a value of n that is larger
than necessary.

Fig. 1. Policy tree in ALOHA-QT and ALOHA-QTF

In principle, reinforcement learning could be applied to
arbitrary sets of policies. However, constraining the periods
to be powers of 2 facilitates the coordination between the
nodes. To illustrate this, it is useful to depict the policies
of ALOHA-QT as arranged into a binary policy tree, where
the root policy is the policy that transmits at all times, and
where the two children of a policy transmit each in half of the
time slots of the parent, as depicted in Figure 1. The policy

264

(0,2) in the tree prescribes transmitting at even time slots, and
has as children the two policies (0,4) and (2,4) which both
prescribe transmission once every four time slots; the union
of the transmission schedule of these two children policies is
exactly the set of transmission schedule of the parent (0, 2). In
this tree, two policies prescribe conflicting transmissions only
if one policy is an ancestor of the another. Thus, as long as
nodes settle on policies that are not the ancestor of the other,
the nodes can transmit on the network avoiding conflicts.

If we allowed policies with arbitrary periods, rather than
policies in the tree with periods that are powers of 2, conflicts
would be common: for instance, if two policies (¢, m), (i, m’)
have mutually prime periods m,m/, then there would be a
collision every mm’ time-slots.

IV. ALOHA-QT

Algorithm 1 describes how each node selects time slots
for transmission in ALOHA-QT. Each node keeps a time-slot
counter ¢, and it stores the weight w, € [0,1] of each policy
o in the policy tree. At each time slot, each node performs
the following actions:

e Policy selection. The node selects a subset A; of active
policies to follow in the time slot ¢, based on the weights
of the policies.

e Decision. If ¢t mod m = i for some active policy
(i,m) € A, and the node is active (it has some packet
to send), the node transmits; otherwise, it waits.

e Policy weight update. Based on the resulting channel state
(Successful, Empty, Collision) of the time slot, the node
updates the weights of all policies.

e Policy weight normalization. Once the weights of the
policies have been individually updated, the values for all
policies are normalized, redistributing some of the “lost
weight” randomly across all policies.

A. Policy-Weight Initialization

Let n be the depth of the policy tree. For k = 1,2,....n
and 0 < i < 2¥, we initialize the weight of policy (4, 2%) € P
by:

UJ(LQk) =0.2- 12k‘ s

where {Z,},cp is a set of random variables independently
sampled from the uniform distribution over [0, 1]. Thus, poli-
cies have an initial weight of approximately 0.2, with a small
amount of noise added to break ties between policies and to
ensure that the initial behavior of nodes is not synchronized.
The denominator 1.2% causes policies with shorter periods
to have higher probability of being initially active. In this
fashion, nodes are initially likely to adopt policies that transmit
frequently, falling back on policies that transmit more rarely
only as needed to avoid collisions.

B. Policy Selection

We denote by A; the set of policies that have been selected
as active at time t. A policy o € P is selected as active in a
round if:

265

Constants:
n = 8: depth of policy tree;
Winit = 0.25: weight initialization factor;
o™ = 0.2: multiplicative increment factor;
a~ = —0.5: multiplicative decrement factor;
Yo = 0.1: policy initialization noise;
v1 = 1.2: initial bias for high-bandwidth policies;
n = 0.95: weight selection threshold;
€, = 0.02: probability of relinquishing a time-slot;
State Variables:
P={(G,m)|0<i<mm=2F0<k<n}
policies;
{we }oep: policy weights;
active: True if the node is active; false otherwise;
t € IN: time slot counter;
Channel Variables:
d € {T,W}: decision (T : transmit; W : wait);
S : successful time slot;
E : empty time slot;
C': time slot with collisions;
c € {S, E,C}: channel state (S : successful
transmission, E : empty time slot, C' : collisions);
X each occurrence of X is independently sampled from
the uniform distribution over [0, 1];
Initialization:
t:=0;
for 0<k<n 0<i<2"do
Wi k) = Winit - 1"+ (1 =70 +70 - Xik);
At every time slot:
// Policy selection
& ={(i,m) € P|i mod m =t}
A = argmax, cp we U{o € P | ws > n};
// Decision
if & N A # 0 and active then d := T else d := W;
h := channel outcome in {E,C, S};
// Policy weight update
if (d,h) € {(W,E),(T,S)} then o := o™ else
ai=o
for 0 € P do
if o € & then w!, == w, - 2% else W, = we;
// Voluntary slot relinquishment
if Rand[0, 1] < €, then
for o € & do ¢, =0;
// Policy weight normalization
W:=3" cpWs, W' .= Zaepw;, A=W -W'
if A>0and W < Wiy - |P| then
for 0 € P do X, := Rand|0, 1];
for o € P do wo :=w, + A*(Xs/> Xo);
else
for o € P do wy := w;
// Bound enforcement
for o0 € P do w, := min(1, ws);
// Increment time
t:=t+1;

Algorithm 1: ALOHA-QT Algorithm. Rand|0, 1] is
a random number generator that returns independent
samples from the uniform distribution over [0, 1].

1) either o is the policy with the maximal weight w, among
all policies in a node;

2) or w, > wp, where wy is a pre-determined weight
threshold; we use wy = 0.95 in our implementation.

The first criterion ensures that a node always follows its best
policy: this guarantees that every node will transmit at least
once every 2" time-slots. The second criterion allows a node
to follow any additional policy that has been successful in
predicting available slots. The ability of nodes to follow more
than one policy is instrumental in enabling nodes to utilize a
flexible amount of network bandwidth.

We experimented with alternative selection schemes to
the one mentioned here; for instance, we experimented with
selecting the highest-weight policy o, along with any other
policy o’ such that w, > aw,, for a weight fraction o < 1.
These schemes did not work as well as the one we presented
above.

C. Decision

We say that a policy (i, m) is enabled in a time slot ¢ if ¢
mod m = i: thus, the policies enabled at a time slots are those
that prescribe transmitting in time slot. We let & = {(i,m) €
P |t mod m =i} be the set of enabled policies at time ¢.
A node transmits (takes decision T') if A; NE; # (), that is, if
one of the active policies at ¢ is enabled; otherwise, it waits
(decision W). At the end of the time slot, the node receives
the network state for the slot, which can be E (empty slot),
S (successful transmission), or C' (collision). The pair (d, k),
consisting of the decision d € {T, W} and the network state
h e {E,S,C}, is called the outcome of the slot for the node.

D. Policy Weight Update

At the end of a time slot, we apply a multiplicative update
to the policies that are enabled in the time slot, increasing
their weight if transmitting does not lead to collisions, and
decreasing if it does. The multiplicative update to the weights
w, of all enabled policies o € &, takes the following form:

w, = wy e (1)

where:

e {X,} is a set of random variables independently sampled
from the uniform distribution [0, 1];
e « is an update constant that depends on the slot outcome;
we use:
x a=0.2for (d,h) € {(W, E),(T,S)};
x a=—0.5 for (d,h) € {(W,S),(W,C),(T,C)};
o w! is the policy weight after the update.

Due to X,, the multiplicative update factors are random-
ized. This is different from the common case for expert-
based reinforcement learning [22], [8]. Randomization helps
break the ties between nodes that lay claims on the same
transmission slots. To understand this, consider the case of
nodes transmitting in the same time slot, leading to a collision.
If a deterministic update was used, the nodes would update
the weights of the policies responsible for the conflict in a

synchronized manner, multiplying them by the same factor
smaller than one. Eventually, the nodes involved in the colli-
sion would stop using the policies and cease transmitting in
the slot. As the slot became empty, the nodes would reverse
course, and increase the weights of the conflicting policies,
likely reintroducing the conflict. This oscillatory behavior,
from collisions to empty slots and back again, would slow
down convergence to collision-free transmissions. Randomized
updates break the symmetry and facilitate the emergence of a
“winning” node that claims a slot; once a slot is claimed, the
weight update mechanism reinforces the exclusive use of the
slot by the winning node.

E. Policy-Weight Normalization

After the multiplicative update of the policy weights, we
perform a three-step normalization of the weights.

a) Relinquishing the slot: First, with a small, constant
probability ¢,, the weight of every policy in &; is set to O,
forcing the node to relinquish transmission at a time slot, if
it were holding it. This ensures that no node can hold a slot
forever, ensuring some amount of fairness in the bandwidth
allocation to the nodes.

b) Redistributing lost weights: In expert-based reinforce-
ment learning, some of the weights lost by the policies that are
downgraded is redistributed across all policies. In this way, if
policies once successful become unsuccessful, the nodes will
explore alternative policies [7], [8]. To this end, let wg,w,
be the weights of policy o before and after the multiplicative
update step, let W =3, w, and W' =3 - w,, and let
A =W — W' be the decrease in total weight. If A > 0 and
W' < winit - |P|, where wy;; is the initial reputation given to
each policy, we redistribute the lost weight via:

Xo
ZG’ X‘T ’
where {X,},cp is a set of random variables independently
sampled from the uniform distribution over [0, 1]. Thus, the
redistribution of the lost weight is randomized, again to break
the symmetry between the updates at different nodes.

¢) Bound enforcement: Finally, the weights of all policies
is bound to the [0,1] interval, setting w, = min(1,w,).
Bounding the weights of policies that have been successful for
a long time ensures that the weights can be reduced quickly,
and the policies abandoned, should the policies become unsuc-
cessful (that is, prescribe transmissions that cause collisions).

ro
wy = wy + A

V. ALOHA-QTF

The bandwidth allocation of active nodes using ALOHA-QT
is fair in the long term due to two reasons. First, every node
has at least 1/2™ bandwidth, because a node always selects at
least one policy. Second, the more frequently a node transmits,
the more frequently it will relinquish a time-slot, and once a
time slot is relinquished, all nodes can lay a claim to it. Thus,
in the long term the time slots will rotate the node to which
they are allocated, and the overall allocation of bandwidth to
the nodes will be fair.

266

This long-term fairness guarantee; however, it is not useful
for nodes that are only active during short intervals of time in
which they have data to send. We describe here a variation of
the ALOHA-QT protocol, which we call ALOHA-QTF and
achieves fairness in short time intervals. ALOHA-QTF differs
from ALOHA-QT in two respects:

o nodes randomly relinquish time slots only if they use
more than their fair share of bandwidth;

« the policy-weight update is made sensitive to the fraction
of bandwidth used by each node.

To implement these refinements, ALOHA-QTF keeps track
of the number of recently active nodes in the network via a
participant counter.

A. Counting Active Nodes and Estimating Fair Bandwidth

The ALOHA-QTF protocol achieves fairness by estimating
the number of active network nodes, and by using the estimate
to tune protocol parameters, among which the policy weight
updates. We assume that each node transmits its node ID (such
as its MAC address) as part of each packet.

a) Counting active nodes: To estimate the number of
active network nodes, each node keeps a sliding window
consisting of 2™ slots, where n is the depth of the policy tree.
Each slot in the sliding window can contain either a node ID,
or a placeholder L, which indicates no ID. At each network
time-slot, the node deletes the left-most slot in the sliding
window, corresponding to the oldest information, and adds to
the right of the sliding window a new slot containing new
information, according to the channel state ¢ € {S, E,C}:

e S: the ID of the node that transmitted successfully is
added;

e FE: 1 is added;

e C: a random ID, taken uniformly at random from the
space of node IDs, is added.

For example, if the sliding window contains [31, B2, . . . , B2n],
and a successful transmission by ID + is received, the content
of the sliding window is updated to [, .. ., B2, 7]. Once this
is done, the node produces the estimated N of the number of
active network nodes by counting the number of distinct IDs
(excluding 1) in the sliding window. The rule for collisions
ensures that, if there are network collisions, N tends to over-
estimate the number of active nodes, as each collision is
counted as a new participant (assuming the space of node
IDs is much larger than the actual number of participating
nodes, as is usually the case). This over-estimation works in
the right direction, as it causes each node to trim down its
transmissions, thus reducing the frequency of collisions.

b) Fair and requested bandwidth: From the estimate N
for the number of active nodes, the node computes the fair
bandwidth by = 1/ max(1, N): this is the bandwidth that each
network node would receive under perfectly fair allocation.
The node also computes requested bandwidth b,., which is the
fraction of network slots during which the node will transmit.
To compute b,, let 6(¢,¢') = 1if A;NEy # B and §(¢, ') =0
otherwise. In other words, 6(¢,t') = 1 if there is a policy

active at ¢ which is scheduled to transmit at time t'. At the
current time ¢, the requested bandwidth b,. is defined as

= /
by =5 >t .
=0
The requested bandwidth can be computed efficiently by
letting B := Ay, and by then removing from B all policies
that are the descendants, in the policy tree, of policies already
in B. Precisely, we remove from B every policy (¢,m) such
that there is (¢',m’) € B with m’ < m and ¢ mod m' = 7¢'.
For example, if B = {(0,2), (0,4), (2,8), (3,4)}, the policies
(0,4) and (2,8) would be removed from B, as they are de-
scendants of (0,2) € B, leading to B = {(/, €), (3, A)}. Once
the set B is thus minimized, we have b, = 3", ., 5 1/m.

B. Fair Policy Update

Once the fair and requested bandwidths by, b, are computed,
we modify the policy weight update in two ways.

« First, we apply the Relinquish step of Algorithm 1 only
if b, > by, that is, only if a node uses more than its fair
share of bandwidth would it give up its claim on slots.

o Second, we modify the multiplicative update (1) by
distinguishing the two cases of policy demotion (« < 0)
and policy promotion (o > 0). For every o € &, the
update becomes, for o < 0:

w<,7 = W - exp(XU Qe min(lv (br/bf)1/2))) (2)
and for o > 0:
w!, = w, - exp(X, - a-max(0,1— (b, /bf)%)) . (3)

The modified weight updates (2) and (3) can be interpreted
as follows. In the case of a policy demotion, or @ < 0, if
b, < by, that is, if the node is using less than its fair share
of bandwidth, then the demotion is scaled down from 1 to
(br/bs)'/? < 1. In this way, nodes that use less than their fair
share see their policies weights reduced less forcefully. Thus,
when a node A that uses less than the fair share of bandwidth
vies for the use of a time-slot with a node B that uses more
than the fair share, the policy weights of B will be reduced
more, and A will tend to prevail in the use of the slot.

Conversely, in the case of policy promotion, or o« > 0,
only nodes that request less than their fair share (that is, with
b, < by) will see their policy promoted. Thus, empty network
slots will be more likely to be allocated to nodes whose active
policies request less than the fair share.

VI. PERFORMANCE EVALUATION

We compare the performance of ALOHA-QT and ALOHA-
QTF with the performance of ALOHA-Q [6], [5], and slotted
ALOHA with exponential backoff (ALOHA-EB), by means
of simulations. We consider a fully-connected single-channel
wireless network in our comparisons. The channel is time
slotted, and time slots are organized into transmission frames
of 64 time slots each for the case of framed slotted ALOHA-
Q. The length of a time slot equals a packet length, which

267

is assumed to be a constant. The number of active nodes is
changed for different scenarios. We compare the performance
of the protocols in terms of their network utilization, and of
their fairness. For simplicity, the simulations assume that a
node knows the fate of any transmission within the same time
slot that it took place.

Network utilization: A time slot is either empty or
contains a successful transmission or a collision. To show how
the network utilization evolves over time, we aggregate time
slots in blocks of 100, and for each block we can compute
the utilization as a fraction of individual slots that contains a
successful transmission. Similarly, we can measure the fraction
of empty and collision time slots in each block. Using blocks
of length 100 offers a compromise between having a fine time
resolution, and computing meaningful statistics on each block.

Fairness: The fairness of a protocol indicates how equi-
tably the bandwidth of the protocol is distributed among the
nodes. We provide two measurements of fairness. The first is
the Jain’s index [11], [10]. Assume that n nodes are active in a
time block and let b; be the number of successful transmissions
in the time block by node i € [1,...,n]. Let B =" | b; be
the bandwidth in the time block. Jain’s index is computed as

2
o
nY i1 b
Jain’s index is a quantity between 1/n and 1; it is 1 for a
perfectly fair distribution of the channel (b; = B/n for all i),
and it is 1/n if only one node gets to use the channel.

The other measure we use is the bottom-10% fair share. To
compute it, sort the nodes in order of bandwidth, so that b; <
by < - < by, and let m = [n/10]. Then, Big = > .o, b;
is the cumulative bandwidth of the bottom 10% of the nodes,

and
nB1g

mB

is the ratio between the actual bandwidth for the bottom 10%,
and the bandwidth the bottom 10% would receive under fair
allocation. The Fg9, measure is a number between 0 and 1,
just like Jain’s index. While Jain’s index captures the fairness
of the overall allocation, the F'y9, measure captures how the
most “unfortunate” nodes fare in the protocol.

Fion =

A. ALOHA-Q and ALOHA With Exponential Back-off

a) ALOHA-Q: We implemented ALOHA-Q, the Q-
learning version of slotted ALOHA proposed in [6], [5],
using a frame length of M = 64. Each node stores g-values
41,92, - - -, Qe4, Where g; represents the quality of the decision
of transmitting in the i-th slot of the frame. In every frame, a
node transmits in the slot 4 with maximal ¢;; if the transmission
is successful, it increases ¢;; if a collision occurs, it decreases
¢; and it follows a randomized back-off before retrying. As
long as the number m of active nodes is no larger than
M = 64, the performance of ALOHA-Q converges to m/M
in the long run; when m > M, conflicts for the use of the
time-slots in the fixed-length frames arise, and the performance
degrades. In our simulations, the number of active nodes is at

most about 50, so as to use ALOHA-Q close to its optimum
performance.

b) Slotted ALOHA-EB: In slotted ALOHA with expo-
nential back-off, which we denote as ALOHA-EB, every
node has an initial transmission probability p = 1/2 when
it becomes active. The node then updates the probability
p whenever a collision, or an empty slot, is detected on
the network, setting p := ap in case of collisions, and
p:= min(1l, p/a) in case of empty slots, where « is a constant
that determines adaptation speed; in our simulations we use
a=0.9.

This is the symmetrical version of ALOHA-EB, in which
all nodes transmit with similar probability. For large numbers
of nodes, the bandwidth utilization reaches the optimal value
of 1/e, or about 37% [13]. In another version of ALOHA
with exponential back-off, each node adjusts its transmission
probability as a function of the success, or failure (collision),
of its own transmissions only. For this “individual” version of
ALOHA with exponential-backoff, it is known that one node
will soon dominate and transmit all the time, while the other
nodes reduce their transmission probability indefinitely. The
network utilization approaches 100%, but the bandwidth is
used by one node only. We do not provide comparison graphs
for the “individual” version of ALOHA with exponential
backoff, as its behavior is well known, and as we are interested
in protocols that allow nodes to share the bandwidth.

B. Simulation Results

1) Network With 50 Active Nodes: In Figure 2 we compare
the network utilization and fairness of the protocols for a
network consisting of 50 active nodes. As the protocols include
randomization, we report the average and standard deviation
computed over 25 simulations. We aggregate fairness over time
blocks that contain on average 20 time slots for each network
node: this ensures that the relative number of transmissions by
the node are not unduly affected by statistical noise.

Both ALOHA-QT and ALOHA-QTF achieve a channel
utilization above 75%. ALOHA-QT reaches 75% utilization
in about 500 time slots (that is, in only 10 time-slots per
node); the ramp-up of ALOHA-QTF is somewhat slower, and
1000 time-slots (or 20 slots per node) are required to achieve
75% utilization. It is remarkable that 50 nodes can coordinate
their transmissions with just a few transmissions per node.
The slower ramp-up of ALOHA-QTF is due to the modified
weight update (3), which makes the nodes slightly slower in
exploiting available network slots. This is the price to pay for
the fairness of ALOHA-QTF: the protocol exhibits the highest
fairness of the protocols considered, guaranteeing 75% of the
average node bandwidth even to the nodes in the 10% lowest
bandwidth percentile.

Once the nodes have time to fully adapt, ALOHA-Q should
lead to a utilization of 50/64 ~ 78%. However, in the 4,000
time-slots spanned by our simulation, the adaptation has not
occurred. We note that ALOHA-Q has a Fjgy fairness very
close to zero, indicating that there is a group of nodes that
consistently fails to be able to transmit successfully.

268

50 nodes

1.00 1
g
§ 0.75 4
5 0.501
= S . — —— ALOHA-QTF
o - fE————tA L N ———
Z 025 4 -== ALOHA-QT
5 0.
z e ALOHA-Q
—:- ALOHA-EB
0.00 L T T T T T
0 10 20 30 40
Time blocks (1 block = 100 time slots)
1.00 1
075 11—
£ 0504 =7~
= —— ALOHA-QTF
025 ~~= ALOHAQT
e ALOHA-Q
—-- ALOHA-EB
O‘OO L T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time blocks (1 block = 1000 time slots)
1.00 17 ALOHA-QTF
-==- ALOHA-QT
0.75 TTeFeee ALOHA,Q
< —-- ALOHA-EB
S 0.50
S R . —.—.
02541 1 ___eemmmTTTTTTTEmmm
0.00 1 = YT FRRPPRPOS WURRTRII NUUUUUUUN NSO

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time blocks (1 block = 1000 time slots)

Fig. 2. Network utilization and fairness in a network with 50 active nodes.
The results are the average of 25 simulations; the colored bands are plus or
minus one standard deviation.

2) Variable Number of Active Nodes: To gain a better
understanding of the performance of the protocols when nodes
join and leave active transmission, we consider a scenario in
which the number of active nodes is initially 20, then increases
to 50, and finally decreases to 30, as indicated in Figure 3.

We give results for the average of 20 simulations for each
protocol. We see that the bandwidth utilization of ALOHA-
QTF is markedly superior to the utilization resulting under
both ALOHA-Q and ALOHA-EB. The utilization of ALOHA-
QTF declines only during and immediately after the ramp-
down from 50 to 30 active nodes: as nodes become inactive,
some time-slots are left empty, and the remaining nodes need
some time to adapt and utilize these newly-available time-slots.
ALOHA-EB is once again close to its optimal utilization of
1/e ~ 0.37 throughout. The utilization of ALOHA-Q reaches
50% for 50 active nodes, again short of its theoretical limit of
50/64 =~ 78%.

The fairness of ALOHA-FQT dips temporarily when the

g% ﬂ
=]
<]
(]
i=
31
<0
0 50 100 150 200 250 300
Time blocks (1 time block = 100 time slots)
1.00 1
£ 0.75
8
; 0.50 1 ’_,J“\p""‘-\"“"#\"""‘.\, T
S I LSOO PN ORI T N NS o
3 LI S ’
2 0.25 1 —— ALOHA-QTF
—-==- ALOHA-Q
o004 e ALOHA-EB
0 50 100 150 200 250 300
Time blocks (1 block = 100 time slots)
1.00 A
0.75 4
£ 0.50 4
= —— ALOHA-QTF
0.25 1 === ALOHA-Q
----- ALOHA-EB
O.OO A T T T T T T T
0 5 10 15 20 25 30
Time blocks (1 block = 1000 time slots)
1.00 T ==, —
/ \ L=
0.75 4
sosot O N :
S A N e —— ALOHA-QTF
0.25 === ALOHA-Q
~ PELIED ALOHA-EB
000t Neme ook =

0 5 10 15 20 25 30
Time blocks (1 block = 1000 time slots)

Fig. 3. Network utilization and fairness for ALOHA-QTF, ALOHA-Q, and
ALOHA-EB under variable number of active nodes. The results are the
average of 20 simulations; the colored bands are plus and minus one standard
deviation.

number of active nodes rises from 20 to 50: the 30 newly active
nodes need some time to gain a bandwidth comparable to the
one of the 20 incumbents. In particular, the F'yy index for
ALOHA-FQT dips to close to 0 for a few thousand time-slots.
The dip in F}gy is much more pronounced and long-lasting
for ALOHA-Q.

3) Nodes Randomly Becoming Active and Inactive: Finally,
we considered the case of nodes becoming active or turning
inactive at random. We simulated a network with 100 nodes, of
which only one is initially active. At each time block (where 1
time block = 100 time slots), each node has probability 1/100
of switching state, from inactive to active, or vice versa. Thus,
on average, in each time block one node changes state. The

269

100 nodes, toggling active/inactive with prob. 1/100 per time block

g 1007 —— ALOHA-QTF
50751 A i ¥ ——- ALOHA-Q
= w0 e ALOHA-EB
> 050 o e DT P
20254 -7
CN

0.00 4 | | |

0 50 100 150 200

Time blocks (1 block = 100 time slots)

Fig. 4. Network utilization in a network of 100 nodes in which every node has
probability 1/100 of toggling the active/inactive state every 100-time units
block. The results are the average of 20 simulations; the colored bands are
plus and minus one standard deviation.

utilization is reported in Figure 4. We see that ALOHA-FQT
maintains its high level of utilization, above 75%, in spite of
the nodes continually joining or leaving the set of active nodes.
The utilization of ALOHA-Q grows with the number of active
nodes, and then settles at about 50%. Again, the utilization of
ALOHA-EB is close to its 37% theoretical optimum.

VII. CONCLUSIONS

We presented a new approach to the use of reinforcement
learning in the context of slotted ALOHA that dramatically im-
proves channel throughput. The proposed approach is based on
the concept of policy trees, and strikes a balance between the
two diametrically opposite approaches followed in ALOHA-
Q and in the DRL-based approach. As in ALOHA-Q, the
learning is based on a fixed set of policies, carefully chosen to
guide the nodes towards collaboration. As in the DRL-based
approach of [23], there are no fixed transmission frames. This
yields protocols that can quickly adapt to changing network
conditions, achieving high and fair utilization under a wide
range of number of active nodes and network traffic conditions,
with none of the computational load required by training
neural networks.

We presented two examples of the use of policy trees to
access a shared time-slotted channel. The simpler ALOHA-
QT is based on reinforcement learning applied to the policy
tree that defines periodic policies. Its refinement ALOHA-
QTF modifies the policy weight update rules in order to
improve the fairness of the bandwidth distribution among
active nodes at the price of additional computation and stor-
age requirements. These computational and storage costs are
relatively modest, and consequently, ALOHA-QTF can be
easily implemented on top of low-power embedded CPUs,
or even in custom hardware. Simulation experiments illustrate
the marked performance improvements attained with ALOHA-
QT and ALOHA-QTF compared to ALOHA-Q and slotted
ALOHA with exponential back offs.

ACKNOWLEDGMENTS

This material is based upon work sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL). Any opinions, findings,

conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of DARPA or AFRL.

REFERENCES

[11 N. Abramson. The throughput of packet broadcasting channels. IEEE
Transactions on Communications, 25(1):117-128, 1977.

[2] O. Bousquet and M. K. Warmuth. Tracking a small set of experts
by mixing past posteriors. Journal of Machine Learning Research,
3(Nov):363-396, 2002.

[3] J. Capetanakis. Generalized tdma: The multi-accessing tree protocol.
1IEEE Transactions on Communications, 27(10):1476-1484, 1979.

[4] U. Challita, L. Dong, and W. Saad. Deep learning for proactive
resource allocation in Ite-u networks. In European wireless technology
conference, 2017.

[5] Y. Chu, S. Kosunalp, P. D. Mitchell, D. Grace, and T. Clarke. Application
of reinforcement learning to medium access control for wireless sensor
networks. Engineering Applications of Artificial Intelligence, 46:23-32,
2015.

[6] Y. Chu, P. D. Mitchell, and D. Grace. ALOHA and g-learning
based medium access control for wireless sensor networks. In 2012
International Symposium on Wireless Communication Systems (ISWCS),
pages 511-515. IEEE, 2012.

[71 D. P. Helmbold, D. D. Long, and B. Sherrod. A dynamic disk spin-
down technique for mobile computing. In Proceedings of the 2nd annual
international conference on Mobile computing and networking, pages
130-142. ACM, 1996.

[8] M. Herbster and M. K. Warmuth. Tracking the best expert. Machine
learning, 32(2):151-178, 1998.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735-1780, 1997.

Huaizhou Shi, R. V. Prasad, E. Onur, and I. G. M. M. Niemegeers.

Fairness in Wireless Networks:Issues, Measures and Challenges. /EEE

Communications Surveys & Tutorials, 16(1):5-24, 2014.

R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative measure

of fairness and discrimination. Eastern Research Laboratory, Digital

Equipment Corporation, Hudson, MA, 1984.

E. E. Khaleghi, C. Adjih, A. Alloum, and P. Miihlethaler. Near-far

effect on coded slotted aloha. In 2017 IEEE 28th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), pages 1-7. IEEE, 2017.

L. Kleinrock. Queueing systems. Volume I: theory. wiley New York,

1975.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra. Continuous control with deep reinforcement

learning. Computer Science, 8(6):A187, 2015.

G. Liva. Graph-based analysis and optimization of contention resolu-

tion diversity slotted aloha. [EEE Transactions on Communications,

59(2):477-487, 2010.

O. Naparstek and K. Cohen. Deep multi-user reinforcement learning

for dynamic spectrum access in multichannel wireless networks. In

GLOBECOM 2017-2017 IEEE Global Communications Conference,

pages 1-7. IEEE, 2017.

H. Okada, Y. Igarashi, and Y. Nakanishi. Analysis and application

of framed aloha channel in satellite packet switching networks-fadra

method. Electronics Communications of Japan, 60:72-80, 1977.

E. Paolini, G. Liva, and M. Chiani. Coded slotted aloha: A graph-

based method for uncoordinated multiple access. IEEE Transactions on

Information Theory, 61(12):6815-6832, 2015.

L. G. Roberts. ALOHA packet system with and without slots and

capture. ACM SIGCOMM Computer Communication Review, 5(2):28—

42, 1975.

F. Schoute. Dynamic frame length aloha.

communications, 31(4):565-568, 1983.

S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. Deep reinforce-

ment learning for dynamic multichannel access in wireless networks.

IEEE Transactions on Cognitive Communications and Networking,

4(2):257-265, 2018.

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279—

292, 1992.

Y. Yu, T. Wang, and S. C. Liew. Deep-reinforcement learning multiple

access for heterogeneous wireless networks. IEEE Journal on Selected

Areas in Communications, 2019.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20] IEEE Transactions on

(21]

[22]

(23]

270

