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Abstract—Encrypted application classification (EAC) has be-
come an emerging and challenging task for network moni-
toring and management, and statistical-based approaches are
less impacted by encrypted streams. However, much effort is
required from domain experts to handcraft statistical features.
To solve this problem, this paper proposes an end-to-end en-
crypted application classification framework (E2E-EACF) based
on one dimensional convolutional neural network (1D-CNN).
Only encrypted payload (EncP) and inter-arrival time (IAT)
are required by the framework to classify encrypted flows.
Experimental results demonstrate that E2E-EACF can achieve
more than 91.00% accuracy and 0.92 F1 score (the harmonic
average of precision and recall) on a public dataset (WRCCDC),
better than classical machine learning algorithms (e.g., decision
tree and support vector machine).

Index Terms—Machine Learning (ML), Encrypted Application
Classification (EAC), Deep Learning (DL), Deep Packet Inspec-
tion (DPI), Convolutional Neural Network (CNN).

I. INTRODUCTION

Encrypted application classification (EAC) has become an
emerging and challenging task for network monitoring and
management [1]. Much effort has been poured to address
this issue; however, it is still far from being completely
solved. The reasons can be mainly attributed to the follows: 1)
New applications with unregistered or dynamic ports and new
techniques (e.g., encryption and obfuscation) are continuously
appearing [2], [3], resulting in traditional port-based classifi-
cation approaches ineffective. 2) Deep packet inspection (DPI)
based approaches [4] identify and classify traffic by comparing
packets’ payload with predefined rules. Consequently, they are
very suitable for unencrypted traffic [5]. 3) Statistical-based
approaches trying to find some statistical features, such as
the maximum, minimum, and standard deviation of packets’
length of each flow, which are less impacted by encryption
techniques, seem to be viable. However, they require much
effort and knowledge from domain experts to discover and
summarize the features [6].

Motivated by the above reasons, this paper proposes an end-
to-end encrypted application classification framework (E2E-
EACF) based on one dimensional convolutional neural net-
work (1D-CNN) to classify encrypted traffic into the category
generated by the corresponding application as quickly as
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possible. The key contributions of this paper are summarized
as follows:

1) E2E-EACF is focused on encrypted traffic analysis. All
the experiments conducted in this paper exclude unencrypted
traffic, e.g., UDP traffic (unencrypted), and DNS traffic, be-
cause they can be spoofed and is unreliable.

2) E2E-EACF can analyze raw packet streamings directly.
Only encrypted payload (EncP, the spatial feature) and inter-
arrival time (IAT, the temporal feature) are used to classify
encrypted traffic without the need to handcraft any other
features by human experts.

3) Experimental results show that E2E-EACF achieves more
than 91.00% accuracy and 0.91 F1 on eight different kinds of
encrypted traffic, which is better than classical machine learn-
ing algorithms. Moreover, the results show that combining the
temporal feature with the spatial feature can further improve
the performance. Any of them alone cannot achieve satisfying
classification performance.

The remainder of this paper is organized as follows: Section
IT reviews the state-of-the-art works in this field. Section
IIT explains the proposed E2E-EACF in detail. Section IV
conducts experiments to evaluate E2E-EACF and analyze the
results. Lastly, Section V concludes our work.

II. RELATED WORKS

This section focuses on the state-of-art works on EAC
in recent years, and most of them are based on machine
learning algorithms. Rezaei et al. [7] introduce a general
framework for deep learning-based traffic classification, and
present common deep learning methods and their applications
in traffic classification tasks. The authors also discuss open
problems and challenging issues in this field. Wang et al. [8]
put forward an end-to-end approach based on CNN to classify
traffic. The proposed approach is flow-based and uses the first
784 bytes of each flow as input features, which inspires our
works. Lotfollahi et al. [9] propose a packet-based encrypted
classification approach based on CNN and Stack Auto Encoder
(SAE). They extract the first 1500 bytes of only one packet
and take them as the inputs to train their classification models.
However, they use some parts of header information and
ignore temporal information hidden in a flow. Wang et al.
[10] use three common deep learning algorithms: Multilayer
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Perceptron, Stacked Autoencoder, and Convolutional Neural
Networks, to classify encrypted traffic generated by different
smart home devices under Software Defined Network (SDN).
The authors want to better manage distributed smart home
networks. Aceto et al. [11] propose to use common deep
learning to design practical mobile traffic classifiers based
on automatically-extracted features, which are able to cope
with encrypted traffic. They evaluate the performance of the
state-of-the-art deep learning classifiers based on an exhaustive
experimental validation.

Even though many algorithms are proposed to classify
encrypted traffic, they more or less use a part of header
information as features. From the perspective of payload based
classification, [8], [9], and [10] are the most similar works to
our work. However, the main differences between our work
and their works are: 1) Our work only uses encrypted applica-
tion data to classify encrypted traffic without using any packet
header information, and 2) Our work combines the spatial
feature and the temporal feature to classify encrypted traffic
without decrypting encrypted packet payload, and achieves
higher accuracy than that of any of them alone (more details
can be seen in subsection IV-C).

I11. METHODOLOGY

Our classification is on per flow basis and our aim is to
identify and classify encrypted flows as quickly as possible.
Fig. 1 presents the proposed framework (E2E-EACEF) in detail.
The core of it is a classification module (CM) that can be
simply recognized as a black box, which takes in raw packets
and outputs the identified category of each flow. Inside the CM,
there are two major components, online analysis component
(OACQ) and offline learning and updating component (OLUC).
OAC is responsible for online analysis to cater to the real-
time requirement, while OLUC aims to keep the online
classification model up to date by regularly updating it with
a new model, which constantly learns on the latest encrypted
traffic.

Online Analysis

> Preprocessing
1
1

Updating Trainfing
1

1

1

Offline Learning

-
and Updating R

Fig. 1: End-to-end encrypted application classification frame-
work (E2E-EACF).

A. Preprocessing

1) Traffic representation: In this paper, we consider com-
bining a spatial feature (encrypted payload: EncP) and a
temporal feature (IAT) to classify encrypted traffic. The main

reasons are as follows: a) Encrypted payload, even after
encryption process, still contains some useful information that
is helpful to classify encrypted traffic. This assumption is
validated in a latter section IV-C. ”EncP” in this paper does
not include any packets’ header, including Ethernet header,
IP header, TCP header, and even TLS header. IAT is another
feature we use because this property is basically not affected
by encryption [12]. On the other hand, the timing of packets
cannot be easily modified because it has a direct impact on the
performance of web services [12]. b) Any other information,
such as header information, handshake packets, and flow-based
features, is not used because this information can be spoofed
and is unreliable. For example, IPs can be easily revised and
spoofed by many public tools, e.g., ipspoof [13]. With a tool
named Scapy [14], almost all content in the packet header can
be modified.

2) Feature extraction: In general, feature extraction pro-
cedure mainly includes four steps, payload extraction (PE),
IAT calculation (IAT-C), truncating/padding process (TPP),
and normalization process (NP). PE is responsible for pars-
ing packets, only extracting encrypted payload data (EncP),
removing all header information (H) from each packet, and
transforming EncP byte by byte from the hexadecimal values
into the decimal values because our approach requires real
numbers as an input. IAT-C is used to calculate the time
difference between every two adjacent packets in each flow.
The result is further transformed to decimal values in a fixed
size (e.g., 4 bytes) and then appended to the extracted payload.
Once the length of the extracted data (EncPs + IATs) exceeds
the preset value lenyyses (e.g., 3,000), TPP truncates the
extracted data to lenpyses. The corresponding flow of the
extracted data is removed from the flow table and fed into the
later parts. Otherwise, it keeps waiting until its length reaches
the preset value or timeout. If the length reaches the preset
value, truncation operation is executed. Otherwise, TPP pads
zeros to the end of the extracted data until its length equals
lenyytes. NP is applied to expedite the training process of the
classification model. In this paper, Z-Score, one of the most
commonly used normalization methods, is used to normalize
the flow data.

3) Data labeling: This paper uses the value of server name
indication (SNI) to label the samples popped from the flow
table. The main reason is that the SNI value in the Client
Hello packet of each TLS flow includes the domain name of
the corresponding application.

B. Proposed classification approach

Once we obtain the samples represented by the features
(EncP and IAT) mentioned in subsection III-A, 1D-CNN is
used to identify and classify different encrypted traffic to the
corresponding categories.

1) 1D-CNN: Fig. 2 shows the basic architecture and com-
ponents of 1D-CNN. It includes input layer, convolutional
layer (conv. layer), pooling layer, flatten layer, dense layer
and output layer.

500



Input Layer
Flatten Layer
‘-11 Conv Layer

—

Dense Layer

5

X0

Pooling Layer
Output Layer

—

o
w

S
o

Vg

v
A

(X
A\
-
Y
N/
A A

e
Y.

input length
o
N

~
®
:
®

A

NE
=ln

.'Y

e

Fig. 2: 1D-CNN architecture.

Convolution operation (CO) in conv. layer is applied on the
input data to extract abstract features (also known as feature
maps). Let z; € R be the iy, sample in a dataset (X), which
has n features (EncP+IATs), and x;.,4 ; represent the segment
(Tizs, Tizs41se> Tizstj) Of x; with a length of j + 1 features.
In CO, a filter w € RF is involved and its size is k * 1.
Therefore, in the 1D conv. layer, a feature z, is produced from
the segment of x; ( x;.s1%k—1) by

Zs = f(wxi:s—&-k—l + b) (1)

Here b € R is the bias term and f is a non-linear activation
function (e.g., leaky relu). This filter is applied to each possible
window of segment of the input sample to generate a feature
map

zZ = [21,22,...,2n,k+1] (2)

with z € R"7*+1, Pooling layer is used to aggregate multi-
ple low-level features and further reduce their number. Max
pooling operation, max{z}, is applied on the feature map z
to further expedite the learning and evaluation process of the
classification model. After convolution and pooling operations,
all the features in multi-channels (each CO generates one
channel) are flattened to an one-dimensional vector that further
forms flatten layer. Following the flatten layer is a dense layer
that fully connects with the flatten layer, aiming to combine all
the abstract features to assist the later classification process.
The neural (¢;) in the dense layer can be produced by

¢ = flwiz; +b;) 3)

where z; is the input values from the previous layers, w; and
b; are the weight and bias, respectively. Finally, all the results
generated by the dense layer are passed to output layer that
outputs the classification results by using softmax as activation
function.

Once we obtain the classification model, then it can be used
to identify and classify incoming flows to the corresponding
category.

C. Offline learning and updating component

Keeping the classification model up to date is very important
, and we use the following three steps to update the online
classification model. Step 1: Using a local database (DB)
to continually store the samples identified by the 1D-CNN

model. Step 2: Using two conditions to determine if we need
to update the online classification model. One is the number
of samples n4ms stored in the DB and another is the interval
itvl between the previous update time and the current time. If
one of them exceeds the preset threshold (e.g., nsqams > 1,000
or itvl > 30 minutes, which can be achieved from historical
traffic), then OLUC is activated. All samples stored in the DB
are used to train a cloned 1D-CNN Model, and its parameters
(weights: IV and biases: B) are copied from the current online
model. Then these samples are removed from the DB. Step 3:
Using the new model trained on the latest samples to replace
and update the online model immediately.

IV. EVALUATION

In this section, we evaluate the proposed approach and
compare it with classical supervised machine learning ap-
proaches: decision tree (DT), support vector machine (SVM),
k-nearest neighbors (KNN), logistic regression classifier (LR),
and gaussian naive bayes (NB).

A. Dataset

In this paper, WRCCDC [15], a public dataset, is used to
evaluate the proposed model. Firstly, the WRCCDC dataset
filters all unencrypted traffic, such as UDP and DNS, and only
keeps encrypted traffic. Then all the encrypted traffic is pre-
processed with the procedures mentioned in subsection III-A.
After the data preprocessing, we choose the top eight kinds of
encrypted traffic, which comes from Google, Twitter, Youtube,
Github, Facebook, Outlook, Slack, and Bing, respectively. The
reason behind it is that these eight kinds of traffic account for
more than 74.00% (31,280/42,179) flows and 75.00% bytes
of all encrypted traffic, respectively, and each application has
more than 700 samples (flows). Furthermore, to reduce the
impact caused by data imbalance on classification algorithms
[16], we randomly sample the flows (samples) in each category
to keep each one around 700 samples.

B. Experiments

This section evaluates the proposed approach on the data
obtained from subsection IV-A. The whole dataset is randomly
split into three parts: Train set, Validation Set and Test Set,
and the ratio is 8:1:1.

1) Parameter and architecture: In this paper, the architec-
ture of our approach is similar to the general CNN architecture
in Fig. 2. The major difference between them is that our
architecture consists of four conv. layers, in which, the first
two have 16 convolutional kernels, and the last two have 32.
The size of each kernel is 3x1. A Max Pooling Layer with a
pool size of 2x1 is added at the end of every two conv. layers.
Moreover, we also use dropout after each pooling layer with a
rate of 0.2. Then the output of the last dropout is flattened into
a 1D vector. Finally, two dense layers are added in the model
with 500 nodes and 300 nodes, respectively. In addition, Relu
is chosen as the activation function; adam optimizer is used
for optimization; cross-entropy is used as loss function; batch
size is 64; learning rate is 0.0005, and epochs are 100. For DT,
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SVM, KNN, LR and NB, all of them use default parameters
in scikit-learn [17].

2) Results analysis: Based on the above architecture and
parameters, we have obtained the following results. Fig. 3
shows the relation between input (sample) size (includes EncP
and IAT) and classification accuracy of all models. The X axis
is the input size for different models, and the Y axis is the
corresponding classification accuracy. As shown in the figure,
the larger input size, the higher accuracy, which is consistent
with our expectation, i.e., a larger input size indicates the more
information we used to train the model, and we hence can
achieve higher accuracy than that of using a smaller size. For
example, with 3000 bytes of the input size, the proposed model
can achieve more than 91.00% accuracy, which is better than
around 80.00% when 1000 bytes is used.

However, the accuracy does not increase further after the
input size increases beyond 3000 bytes because the payload
of some flows does not have more than 3000 bytes, which
means that once the input size is more than 3000 bytes, zeros
will be padded to the end of those flows, and it does not
provide any more information for classification. Therefore, the
accuracy does not increase anymore. Furthermore, for input
size less than 1500 bytes, DT has the best result around
82.00% accuracy. The performance of the proposed model
is a little bit worse than DT because insufficient information
of each input sample is used to train the deep model, which
causes the deep model not to have good generalization on Test
Set. The performance of the other models (SVM, KNN, NB,
and LR) are even worse than DT and the proposed model in
all different input sizes.
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Input size (bytes) of classification models

Fig. 3: Relation between input size and classification accuracy
achieved by different approaches, including ours.

Considering time complexity and classification accuracy of
the proposed approach, 3000 is a good input size. Under this
condition, we have achieved the best accuracy, 91.61%, as seen
in Fig. 3. What’s more, only the first five packets are needed
on average to accumulate 3000 bytes. However, this packet
accumulation requirement does not mean that it will cause a
significant delay. The proposed approach does not need to hold
any packets while preparing for the input for the classification
model. Instead, the network device can continue to forward

packets upon their arrival, while storing and copying only
the first few packets. Once the length of payloads and IATs
obtained from a flow reaches the input size, classification
is activated. According to the identified results, the network
device can take a proper action to flow, e.g., changing its QoS
priority or taking a security measure.

Fig. 4 shows the results of three metrics (Precision,
Recall and F1) achieved by our approach on Test Set.
The X axis is for different categories, and the Y axis is
the values of the metrics. We can see from the figure that
our approach has a good performance on Google, Twitter,
Outlook, Youtube and Facebook. For instance, we can achieve
more than 94.00% Precision, 91.00% Recall (except for
Youtube, that is 88.14%) and 0.91 F'l. The number of the
flows generated by these five applications exceeds 90.06% of
the total number of all eight encrypted flows. Moreover, only
Google and Twitter account for more than 75.90% of the total
number of all eight encrypted flows. Although the performance
for the rest (Github, Slack, and Bing) is a little worse than that
of the five applications, the total number of flows generated
by these three applications is less than 10.00% of the total
number of all eight encrypted flows. On the other hand, their
performance in Precision, Recall and F'1 are still more than
82.00%, 88% and 0.85, respectively.
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Fig. 4: The performance of Precision, Recall and F1 achieved
by the proposed model on Test Set.

3) Analysis of the classification speed: The average time
spent on identifying each flow in our approach is 291 us.
However, this time is much smaller than normal average flow
duration. For instance, the work in [18] presents a workload
characterization study of Outlook email traffic on campus (one
of the applications used in our study). More than 70% of the
average flow duration is more than 1 second. The work in
[19] shows that about 90% of the average flow duration of
Youtube (another application used in our study) is more than
15 seconds in the cellular network. Hence, we believe that the
proposed model can be used to identify encrypted traffic.
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C. Comparison with other works

This section talks about the main differences between our
work and three related works in [8], [10] and [9], which are
very similar to our work. We analyze and summarize the main
differences in data object, features, handshake, and so on.
Firstly, for data object, the majority of data samples used to
build their models is unencrypted traffic, while all the data
samples used to build our model is encrypted traffic. The
promising result achieved by the approach in [8] is mainly
due to the fact that a lot of packets generated by DNS and
other protocols are included in the training data, and the
distinct patterns the authors found in different applications are
caused by those different protocols, e.g., DNS. Even though
the authors in [9] filter DNS and mask IP addresses, they still
use other header information (such as ports and TCP Flags).
Hence the good results they obtained may come from this
header information instead of payload. The work in [10] has
the same problems as the work in [9]. On the other hand,
our work does not use any header information, while all other
works do (e.g., TLS header). Although the work in [9] claims
that only payload is used as the features. However, the payload
they referred is TCP payload that still includes TLS header.

Furthermore, none of them consider arrival time correlation
among packets in each flow. In our scheme, we combine both
the spatial feature (Payload: EncP) and the temporal feature
(IAT) to classify encrypted traffic and achieve more than 91%
accuracy when the input size is 3000 bytes. Fig. 5 shows the
results of three experiments with different features, 1) Only
using payload (EncP) as the feature, 2) Only using IAT as
the feature, and 3) Using both of them as the features. There
are two X axes in the figure; one is the input size, and the
other is the number of IAT. The Y axis is the classification
accuracy. From this figure, we can see that combining the
spatial feature and the temporal feature can achieve better
classification accuracy.
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Fig. 5: Results achieved by the proposed model with different
features on Test Set.

V. CONCLUSION AND FUTURE WORKS

This paper combines spatial feature (EncP) and temporal
feature (IAT) to classify encrypted traffic based on 1D-CNN

approach. Any other information, such as header information
and handshake packets, is not used because this information
can be easily spoofed and is unreliable. Extensive experimental
results show that our approach has better performance than
other approaches on the public dataset (WRCCDC). Our future
work will further improve the accuracy of our approach and
reduce its time complexity.
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