Privacy-Preserving Blockchain-Based Data Sharing
Platform for Decentralized Storage Systems

Van-Hoan Hoang*, Elyes Lehtihet*, Yacine Ghamri-Doudane'
*OODRIVE-Trusted Cloud Solutions, 75010 Paris, France.
v.hoang @oodrive.com; e.lehtihet@oodrive.com
TL3i Lab, University of La Rochelle, 17000 La Rochelle, France.
yacine.ghamri@univ-Ir.fr

Abstract—Cloud-based storage services have been the dom-
inating outsourcing solution for both individuals and organi-
zations to share data digitally. Despite the advantages, users
must rely on storage services for data confidentiality, data access
control, user privacy, and data availability. Whereas data confi-
dentiality can be protected by advanced encryption algorithms,
the rest remain challenging. First, in existing centralized storage
services, even though data access controls are mainly defined by
data owners, they are maintained and enforced by the services,
which can deny data retrieval requests of authorized users or
allow requests of illegitimate users. Second, the identity of a user
is often known to the services to verify its eligibility to access
requested data according to the access control, thus making
the user traceable in the system. More importantly, the lack
of anonymity may make users reluctant to use such services
in sensitive contexts. Third, a huge amount of data is daily
generated and stored on a centralized party, simultaneously
serving requests from many users, which may cause a collapse
of the system during peak periods. To address all these con-
cerns, we propose a privacy-preserving blockchain-based data
sharing platform for the InterPlanetary File System (IPFS), a
content-addressable peer-to-peer storage system. The platform
allows protecting both user anonymity, data confidentiality, and
provides high data availability due to being deployed upon the
IPFS network.

Index Terms—anonymous access control, decentralized data
storage, ring signature, predicate encryption, hidden transaction.

I. INTRODUCTION

Cloud-based storage services have been widely adopted
for facilitating data storage and data sharing between remote
users. Since data is stored in a centralized third party which is
not fully trusted, there are four critical issues to be solved: (1)
data confidentiality, (2) data access control, (3) user privacy,
and (4) data availability. The advent of advanced encryption
schemes, such as attribute-based encryption [1], provides
a user-centric model, which can be used to encrypt data
before outsourcing to protect data confidentiality. However,
the others remain unsolved. First, outsourcing data to a cloud-
based storage service partially deprives a data owner of the
ownership. Users must rely on the service maintaining the
consistency and operations in accordance with user-defined
access control policy (2). However, due to legal reasons, for
example, data censorship, the service can block access to data
of an individual or a group of users. Even worse, the service

ISBN 978-3-903176-28-7© 2020 IFIP

can remove all data related to some specific users. Second,
regarding user privacy (3), a user has to provide its identity
to the service for verification before being granted access to
the requested data. This, however, leads to the user being
traceable in the system. The lack of user privacy enables
the service provider to trace all activities of any targeted
user or discover the relationship between data stakeholders,
i.e., who shares data with whom. This is not desired in
many scenarios, for example, in healthcare systems, in which
patients prefer concealing their identities while sharing their
sensitive Electronic Medical Records (EMR) to healthcare
institutions. Observe that simultaneously preserving data con-
fidentiality (1) and user anonymity (3) is also an efficient
way of resisting data censorship. Indeed, from a philosophical
point of view, we state that if storage nodes have knowledge
about neither the content of data nor the real identities of data
stakeholders, they will have no incentives to deny authorized
parties access or accept unauthorized ones access to the data.
Hence, the only way for storage service provider to remove
data pertaining to a certain user is to destroy all data of
the whole system that is, in most cases, not worth doing.
The user anonymity is, however, not a trivial work in the
context of data sharing where the data owner has to specify
users whom it wants to share data with, and authorized users
need to prove their right before accessing the data. Third,
with the proliferation of applications, such as Internet of
Things applications, where a huge daily volume of data is
transferred, stored, and accessed by different actors, such a
centralized approach seems insufficient to handle all data-
related requests at peak times, thus decreasing data availability
(4) or potentially leading to a single point of failure (SPOF).

With that being said, we need to rethink the way of
efficiently storing, sharing, and processing data to put back
data ownership in the hands of users as well as protect user
and data security. This implies a powerful data censorship
resistance mechanism. The emergence of the blockchain tech-
nology, which has offered many disruptive solutions in various
industries, makes it a prominent solution in this context. In this
paper, we propose a privacy-preserving blockchain-based data
sharing platform for the InterPlanetary File System (IPFS).
The deployment of IPFS [2], which inherits the advantages of
many peer-to-peer systems, allows simultaneously retrieving
data from multiple storage nodes, thus removing the risk of

280

SPOF and improving data availability.
Contributions: The platform is built on top of the public
blockchain and includes three main contributions:

1) We propose a revocable predicate encryption scheme for
a data owner to ensure data confidentiality while sharing
data with other users. While the private key of each user
is separately computed and given by the data owner to
decrypt the data, the data owner is able to revoke the
private keys at will. The scheme incorporates proxy re-
encryption technique allowing delegating re-encryption
task to the storage nodes in case that the data owner
wants to revoke some users. This makes the revoked
users unable to decrypt the re-encrypted data.

2) We propose a novel mechanism of hiding auditable data
access control lists that are stored on the blockchain
and fully managed by the data owners. A user can
anonymously prove its access right over the shared data,
without revealing its identity, to request a data retrieval.

3) We present the notation of hidden transaction that
prevents adversaries from analyzing the sender and the
recipient involved.

The remainder of the paper is organized as follows: We
first present related work in Section II. In Section III, we
describe the system and security models. Section IV outlines
the overall architecture of the platform. Next, Section V
details the main building blocks of the platform. We detail the
platform in Section VI. We analyze the security and privacy
of the platform in Section VIIL. In Section VIII, we evaluate
its performance. Section IX concludes our work.

II. RELATED WORK

There have been several works targeting user anonymity in
the field of peer-to-peer content distribution network, such as
Freenet [3] and Free Haven [4]. While Freenet allows data
owners to encrypt data with their own names, Free Haven
does not provide such an encryption mechanism to protect
data confidentiality against storage hosts. Users in Freenet
and Free Haven can query the networks to retrieve desired
data. The routing protocols in these systems, which are used
to pass requests to data hosts and return the data to requesters,
allow protecting the identities of the data owners and the
data retriever at the network layer. However, these systems
do not support data access control mechanism, making data
owners unable to restrict access to specific users. Therefore,
user revocation, which happens when the data owners want to
update access control lists, cannot be featured in such systems.

In the context of Cloud-based storage, Shen et al. [5]
attempt to solve user anonymity by using group signature
technique. In group signature, the group manager computes
a master key (MK) and a system public key (PK). Each user
joining the group receives a private key generated based on
MK by the group manager. To access the shared data, a
member creates a signature § on behalf of the group using
its private key. The storage provider verifies the validity
of § by using PK before granting the user access to the
requested data. Verifying § only allows the storage provider

to determine whether it has been created by a group member,
without revealing the real identity of the signer. This approach,
however, has two main drawbacks. First, group members need
to directly interact with the group manager to receive their
private keys before being able to prove their data retrieval
right. This constraint is eliminated in our system design and
will be discussed in details later. Second, in this case, the data
access policy is simplified by PK that is used to verify group
signatures. Storing access control policy requires to fully rely
on the storage service for enforcement and further updates.

The works in [6], [7], aim at blockchain-based access con-
trol solutions, but none of them rigorously takes user privacy
into account. These simply solve data access auditability,
meaning that the blockchain engages in recording access con-
trol lists and data access activities in a chronological order so
that the data owner can audit these information later. However,
trivially storing access control lists on blockchain, which is
accessible to everyone, obviously violates privacy of data
stakeholders. In [8], [9], the authors make use of Ciphertext-
Policy Attribute-Based Encryption (CP-ABE), which allows
directly enforcing access control lists into ciphertexts, to
protect data confidentiality. The utilization of CP-ABE is
promising but still falls short in preserving user privacy.
Indeed, in CP-ABE schemes, a private key is associated with a
set of attributes while a ciphertext is associated with an access
policy. If a user’s attributes match the access policy, the user
is able to decrypt the data by using its private key. However,
the ciphertext must be stored along with the associated access
policy which indicates to the data stakeholders the right way
of decrypting the data. In storage systems, access policies,
however, allow deducing sensitive information about the data
stakeholders, thus putting user privacy at risk.

III. SYSTEM AND THREAT MODELS
A. System Model

The proposed platform includes 4 entities illustrated in
Figure 1.
Blockchain: is a growing chain of blocks which are vali-

Data Owners
Data Consumers

l

/-/—‘-\-\
w b

Fig. 1. The system model of the proposed platform

dated and chained together. Since being introduced in 2008
[10] as the underlying technology of Bitcoin, the blockchain
technology has attracted great interest from both industry
and academia. Later, Ethereum [11] appeared as the next
blockchain generation, which allows for deployment of smart
contracts. A smart contract is a self-executing computer
program stored on the blockchain, and is run by the miners
in a trustless way. Once being deployed on the blockchain, a

281

smart contract cannot be modified. This provides the users
with integrity, transparency and autonomy guarantees. The
proposed platform leverages the Ethereum blockchain to allow
users to create smart contracts for data sharing management.
InterPlanetary File System (IPFS): is a peer-to-peer pro-
tocol [2] using content-based addressing technique to enable
people worldwide to upload, download, and share data to-
gether in a fast and safe way. IPFS combines the advantages
from the successful peer-to-peer systems such as Kademlia
Distributed Hash Table, Bittorent, Git, and Self-Certified File
system, thus making it a robust decentralized storage platform,
providing quick data block retrieval. Recently, Filecoin [12]
is developed to expand IPFS to a global decentralized storage.
Specifically, Filecoin integrates an economic incentive mech-
anism into IPFS, allowing users to set out a price and rent
out unused disk for storing data of others.

Data Owner: is any user that stores data on the IPFS. It
has the ability of encrypting, anonymously delegating access
rights, and revoking access over the data. Once some users
are revoked, the data owner computes a re-encryption key and
sends it to the storage nodes for re-encrypting the data. Thus,
the revoked users are no longer able to decrypt the data.
Data Consumer: is anyone using data shared by data owners.

B. Threat Model

We formalize the security and privacy requirements that the
proposed data sharing platform is supposed to achieve:

1) Data Confidentiality: Our model assumes that data is
encrypted before outsourcing, making adversaries unable to
decrypt it without the decryption key that is only known to
authorized users. In case of revocation, the shared data is
re-encrypted by the proposed proxy re-encryption technique,
preventing the revoked users from decrypting the data. This
is also known as forward-secrecy requirement.

2) User Privacy: Data owners and consumers anony-
mously share data in the system without anyone learning any
personal information about them. This also disallows detecting
whether two specific users have ever shared data.

3) User Linkability: This implies the impossibility of link-
ing activities made by the same user. For example, one cannot
say whether a user has accessed shared data several times or
how many data sharings that a data owner has made.

4) User and Data Linkability: This requirement avoids
linking any user with data shared in the platform.

IV. THE ARCHITECTURE

This Section highlights the main architectural building
blocks constituting the platform as depicted in Figure 2.

On the user side, a user interacts with 4 following internal
components to anonymously share data with others:
Data Sharing Engine: allows a data owner to specify the data
consumers with whom it wants to share the data to construct
as well as update the corresponding auditable hidden access
control list £, which is then stored on the blockchain. The
platform is designed in an asynchronous model, meaning that
the data consumers are not required to be active (online) when

User (Data Owner, nsumer) Blockchain

[o Y /
(£ ‘

—

IPFS Network

Fig. 2. The architecture of the proposed data sharing platform

the data owner shares the data. This component helps the data
consumers to detect new data sharing from others using L.
CryptoEngine: is responsible for all cryptographic operations
in the platform. It computes hidden access control lists
on requests of Data Sharing Engine and allows encrypting,
decrypting data to protect data confidentiality. For data con-
sumers, the component is used to issue proofs of eligibility
to access shared data. Moreover, it also allows constructing
hidden transactions among users to protect their identities.
KeyManager: is responsible for storing and retrieving keys
from the database in an authenticated way.
Key Database: is a secure store of keys on the user side.
On the blockchain side, the platform has two main types
of smart contract:
Identity Key Smart Contract: The platform has a common
contract for users to register their identity public keys that are
anonymously bind to their real identities. This reassures data
owners about the existence of data consumers in the platform
before sharing data with them. In practice, users exchange
their public identity keys over a secure out-of-band channel
before sharing data. In case that a user wants to change its
own identity keys, it is required to sign the new public identity
key with the old private identity key and send both the new
public key and the resulting signature to the contract. The
mining nodes verify the validity of the signature to update
the user’s new public key.
Data Sharing Smart Contract: A data sharing smart contract
is created by a data owner to manage the location of the
shared data on the IPFS and the hidden access control list that
anonymously indicates who have the right to access the data.
The data owner can audit and make changes to the hidden
access control list over time. Data retrieval requests of data
consumers are registered into the contract. These ensure the
transparency and auditability of activities over the shared data.

V. THE CRYPTOENGINE AND KEYMANAGER
COMPONENTS

For ease of understanding the functioning of the platform,
we describe in details the CryptoEngine and KeyManager
which contain our main cryptographic contributions.

A. KeyManager

KeyManager involves in storing and retrieving keys from
the Key Database. In the platform, we classify 4 types of key,
each of which has a public key (P K) and a private key (SK):

o Identity Keys (: PK,iSK): Each user has one :PK and

one ¢SK which are bind to its identity in the system.

282

Users exchange their public identity keys in a secure
out-of-band channel to avoid violating their privacy.

o Smart Contract Keys (sPK,sSK): A user can have
many smart contract keys, but one private smart contract
key sSK is allowed to deploy only one smart contract.

o Ephemeral Keys (¢PK,eSK): An ephemeral key is a
one-time key used to sign all kinds of transaction, except
transactions needing to be signed by sSK.

o Hidden Keys (hPK;_,,hSK,_,): The aim of hidden
keys is to obscure the identities of participants in a
transaction with respect to third parties.

B. CryptoEngine

The CryptoEngine plays a vital role in the platform due to
its responsibility for all cryptographic computations. We now
describe the functionalities that it supports:

1) Key Generation, Hidden Transaction and Hidden Au-
ditable Access Control List:

a) Identity, Smart Contract, Ephemeral Keys Generation:

These keys are generated in the same way in Algorithm 1,
which depicts the case of identity keys. The main difference
among them lies in their usage purposes as outlined above.

Algorithm 1 Identity Key Generating Algorithm
Input: Given a cyclic group G of order p, generated by G.
Output: (PK,iSK

1: Chooses at random a number z € Zj.

2: Sets iSK =z and iPK = zG.

3: return (PK, iSK

b) Hidden Key and Hidden Transaction:

In any transactions, the platform aims to protect the iden-
tities of both the Sender (S) and Recipient (R). Observe that
it is straightforward to protect the identity of S by allowing
it to sign the transaction with an ephemeral key. However,
preserving the identity of R is a non-trivial work. Intuitively,
the transaction needs to be sent to a random address so
that only R can determine that the transaction is intended
for it. In our context, R also needs to know the identity of
the sender, thus making the problem more challenging. For
example, upon receipt of data sharing, a data consumer needs
to know exactly the identity of the data owner to determine the
corresponding PRE private key for decryption. Therefore, we
make use of hidden keys and hidden transactions to effectively
overcome the problem. We assume that a Sender (S) wants
to make a hidden transaction with a Receiver (R). To this
end, S first generates an ephemeral key pair (eSK; = e and
ePK, = eG). Next, S takes as input the public identity key
iPK, of R and eSKj, then follows Algorithm 2 to obtain
a public hidden key hPK,_,.. Next, S creates a transaction,
signs it with the private ephemeral key eS K and sends it to
the address of the resulting public hidden key hPK,_,..

R needs to scan the blockchain to determine whether
a new hidden transaction inserted into the blockchain is
intended for it. That is, R must be able to correctly compute
the corresponding private hidden key hSK,_,. Given the
public ephemeral key ePK; of the hidden transaction, R

Algorithm 2 Public Hidden Key Generating Algorithm
Input: eSK; =e¢ and iPK, = z,.G
Let H be a collision-resistant hash function: {0, 1}* — Z5
Output: hPK,_,
1: Computes z = H(e.z,.G)
2: Computes hPK;_, = 2G + z,G
3: return hPK,_,

uses its private identity key iSK, to compute hPK.! , =
H(ePK,.iSK,)G + iPK, = H(ex,.G)G + z,.G. If
(hPK!._,. = hPK,_,), the hidden transaction is intended for
R, who can then compute the corresponding private hidden
key, hSK;_, = H(e.x,.G) + x,. In contrast, third parties
cannot recompute hSK,_, without ¢SK,., thus they cannot
identify the receiver of the transaction.

In order for R to know the sender of the hidden transaction,
S needs to encrypt its public identity key iPK, with the
public hidden key and embed it into the transaction. Hence,
R computes the private hidden key to decrypt i P K.

c) Auditable Hidden Access Control List:

An auditable hidden access control list £ is composed of a
set of hidden public keys of all the data consumers. The data
owner adds or revokes data consumers by adding or removing
their public hidden keys from £. A data consumer wanting to
access the shared data has to issue a proof stating the existence
of its hidden key in the list so that the proof reveals nothing
about the consumer’s identity. We achieve this by using a ring
signature scheme which is presented in the following.

2) Predicate Encryption:

Ciphertext-Policy Attribute Based Encryption (CP-ABE)
is an advanced cryptographic primitive deployed in many
data sharing platforms [8], [9]. Despite its natural suitabil-
ity for data sharing systems, CP-ABE incurs privacy issue.
Specifically, in CP-ABE, user private key is associated to its
attributes set (.9), i.e., age, name, while data is encrypted with
an access policy (P) that is composed of attributes and logical
operators. Any user with an attribute set matching with P is
able to decrypt the ciphertext. This mechanism thus allows
for fine-grained access control over encrypted data. However,
such an encryption scheme requires to store P along with the
ciphertext to help the user to decrypt it correctly. However,
storing P that contains user attributes on a dishonest storage
node obviously violates the privacy of data stakeholders. To
overcome the privacy issue of CP-ABE while still benefiting
from its advantages, we build a CP-ABE scheme supporting
hidden access policies from a revocable predicate encryption.

a) Introduction of Predicate Encryption:

Predicate Encryption (PE) is generalizing many advanced
cryptographic primitives, such as Identity-Based Encryption
and CP-ABE. We refer to [13] for its formal definition. Gen-
erally, in a PE scheme, a user private key SK is associated
with a predicate f, whereas a ciphertext is associated with
a set of attributes S. A user can decrypt the ciphertext by
using its private key if S matches the predicate f. In [14],
Katz et al. introduce a PE scheme supporting conjunctions,
disjunctions, and inner product. Also, the authors prove that

283

the scheme ensures both payload-hiding and attribute-hiding
requirements to protect both data confidentiality and privacy
of attributes associated with ciphertexts. Thus, the scheme
solves the privacy issue of CP-ABE. The construction in
[14], however, lacks an efficient revocation mechanism to
revoke users’ private keys while necessary. This feature is
indispensable in data sharing.

In this paper, we develop a new PE scheme, called Revoca-
ble Predicate Encryption (RPE), as an extension to [14]. The
integrated revocation mechanism allows revoking private keys
of users. We integrate an efficient proxy re-encryption tech-
nique into the scheme to fulfill the forward secrecy. Specifi-
cally, when a data owner revokes some users, it computes a re-
encryption key and securely sends it to the storage nodes for
re-encrypting the shared data. Thus, the revoked users are no
longer able to decrypt the re-encrypted data even if the storage
nodes are physically corrupted afterward. The computation of
a re-encryption key is computationally lightweight. Therefore,
this approach relieves the data owner from the workload of
downloading and re-encrypting the shared data. We now detail
our RPE scheme and then introduce a way of building a CP-
ABE scheme supporting hidden access policies from RPE.

b) Revocable Predicate Encryption (RPE):

Definition 1. The Lagrange interpolation allows rebuilding
a polynomial P(x) of degree t from a set of (t + 1) points
S = {xz;, P(x;) }izo0..+ through the following formula:

t

T — T
P(x) = ZP(LB,L)ALS(Q:)’ Ai,S(l‘) = H j

- ZT;
i=0 i#jsjeloe] "

The RPE scheme consists of the following functions:
Setup(1¥): Given a security parameter k, the system generates
a cyclic group G of composite order N = p.q.r where
p,q,r are large prime numbers. Let G,, G4, G, be groups
generated by g,, 94, gr, respectively. Let é be an efficient
pairing function over G such that é : G x G — Gr. Let H be
a collison-resistant hash function such that H : {0,1}* — G.

To generate the master key (M SK) and pubic key (PK),
the system randomly chooses R ;, Ry ; € G, and hy ;, ho; €
G,. Next, it chooses v € Z;, h € G, and computes:

MSK =(p,q,r,9¢, 07, {h1,i, ha,i}i—1)
PK =(gp, gr, @ = gqRo, P = é(gp, h)", (D
{H1;=h1,R1,,Hs; = ho;Ro;}i1)
To support revocation, the system first chooses a random

number z € Z,, then forms a random polynomial P of degree
t, which allows simultaneously revoking ¢ users:

t
P(z) = Zpixi where: P(0) = z. (2)
i=0
The system chooses a random number a € Z; then computes
a master revocation key MRK, an initial unrevocation proof
URP, a public revocation key PRK:

MRK = z; PRK = (g;, 9;,); URP = g3* 3)

Encrypt(z, M, PRK): To encrypt a message m with a vector
x = (21,9, .., Tn), where x; € Z%;, the algorithm randomly
selects s, a, B € Z3 and R3;, R4, € G,, computes:

C =(C"=mP%(g;,g5)°,C1 = g;,

{Cri = H; ;Q*" Ry 3, Coy = H5 ,Q" Ra;}iy)
KeyGen(v, M SK): To generate a private key for a user
associated with a vector v = (vy,vs,..,v,), the algorithm
chooses random numbers 7y ;,72; € Z;, where i = 1..n.

Then, it continues picking randomly fi, f2 € Z3, R5 € G,
and Qs € G,. It generates the private key for the user:

“4)

1)

- 7 (&)
=1
{Kl,i — ggl,igqflvi’K2’i — ggz.iglj;zvi m)

The algorithm associates each user with a unique number
num. It also sends to the user the initial unrevocation proof
URP;,,;+ and an unrevocation key urk. The unrevocation proof
URP is a complementary element used to decrypt data, and
will be securely updated by the user using urk as soon as a
new revocation happens. The urk of the user is computed:

SK, =(K = RsQ¢h™ [[hyi" ha™

urk = P(num) (6)

SKeyUpdate(MRK, L): Suppose that the system wants to
revoke n users associated to a list of n unrevocation keys
L = {urk;}i=1.n. If (n < t), the system picks (¢t —n) random
numbers j, such these numbers were and will be never used
again, and computes urk; = P(j). Next, the system chooses
a € Z,, and computes an unrevocation update PU:

PU = (h%, {i, A"}y 4) (7)

UKeyUpdate(PU, urk,): Given PU, an unrevoked user = uses
its unrevocation key urk, to update the unrevocation proof
according to the Lagrange Interpolation. This function does
not work for revoked users.

URPy, = gi* = g =@ """ f[gﬁ s Gk (g)
i=1
RKeyGen(URP, 4 = ggz, URPpew = ggz): To compute a re-
encryption key, an unrevoked user takes URP,jq and URP,
as inputs, then selects random numbers X € Gr,r € Z}; and
computes a re-encryption key:

kre = (g;aZH(X)vg;7Xé(ggag;)r) (9)

Re-encryption(C, k,..): Using a re-encryption key, the storage
node re-encrypts the ciphertext by converting the element C’
in the original ciphetext C into C/:

Cl, = C’é(gp_“zH(X), C1) =mP*e(H(X),g,) (10)
The re-encrypted ciphertext would be:
Cre = (Cro = mP°e(H(X), gp),
Cr = g;.Cr = g, Co = Xé(g5.95)" (1n

{C1i = H} ,Q*"Rs,Ca; = H5 ;Q"" Ry ;}i))

284

Decryption(C/C.,.., SK,, URP): Depending on the type of

ciphertext, a user decrypts it by using its private key.

- To decrypt an original ciphertext C, the user follows the

below formula:

Clé<01, K) H?:l é(Cl,i, K])i)é(CQ’i, Kg’i)
é(URP, C1)

(afi+Bf2)<z,v>

m:

(12)
= mé(gq, gq)

- To decrypt a re-encrypted ciphertext C..., an unrevoked user
uses the updated unrevocation proof URP,,,, to compute:

Cy ~ Xé(gp,95)"

X = - = — (13)
e(URPHCW7 C’r‘) e(gg“z?g;)
Then, the user derives the message from the formula:
_— Cle(Cr, K) [T e(Ch i, K1,4)é(Cai, Ko ;)
é(H(X),Cy) (14)

= mé(gq, gq)((’f1+ﬂf2)<m,v>

We observe that if < x,v >= 0, the user obtains m = m, the
exact plaintext.

¢) Constructing CP-ABE scheme supporting hidden policy:

In a CP-ABE scheme, the ciphertext is associated with an
access policy while the private key of a user is associated
with its identifying attributes. Therefore, to construct a CP-
ABE scheme supporting hidden policies from RPE, we only
need a preprocessing stage to convert an access policy into an
encryption vector z, and convert a set of attributes into a key
vector v. If the set of attributes matches the access policy,
implying that < z,v >= 0, the user with the private key
related to v can decrypt the data encrypted with x. Due to
the page limit, we refer to [15] for a simple conversion of
attributes and access policies. In our data sharing platform,
we employ CP-ABE, which is based on RPE and supports
hidden policies, to allow users to share data.

C. Ring Signature

Ring signature is a type of digital signature that allows
a user to sign a message on behalf of a group of users,
which is arbitrarily formed by the signer at the signing
time [16]. A verifier can only verify whether the signature
comes from the group, without knowing exactly the identity
of the signer. Therefore, ring signature provides users with
anonymity guarantee whose extent completely depends on
the ring size. More specifically, a signer takes its private key
SK, and all public keys S = (PK,..PK;,..PKy) of all
members in a group of size N to sign a message. A verifier
checks the validity of the signature to determine whether the
message was anonymously signed by a member of S. In this
paper, we purposely use the ring signature scheme of Herranz
et al. [17]. This scheme has been proven computationally
efficient and secure in the random oracle model. Second, this
scheme is based on Discrete Logarithm (DL) assumption,
making it compatible with the current cryptosystem in the
Ethereum blockchain and removing the need of deploying
another cryptosystem on user side.

In the platform, the ring signature scheme is used by data

consumers to issue proofs of eligibility to anonymously access
the shared data. The intuition behind the proof is that given
an auditable hidden access control list consisting of hidden
public keys (R = {hPK;}), an authorized data consumer
issues a ring signature on a random nonce on behalf of R.
While the resulting signature allows verifying the eligibility
of the consumer, it allows neither learning the consumer’s
identity nor linking its sessions. The latter is achieved due to
the randomness of ring signature, meaning that the signatures
of the same consumer are uniformly random and unlinkable.

VI. PRIVACY-PRESERVING BLOCKCHAIN-BASED DATA
SHARING PLATFORM

In this Section, we detail the operations during data sharing
in the platform.

A. User Registration

To use the platform, a user first needs to register with the
public identity key smart contract deployed on the blockchain.
To this end, it creates a wallet containing a public and private
identity key (1 PK,1SK) according to Algorithm 1. Then, the
user sends ¢ PK to the contract for registration. We emphasize
that the identity keys represent the user identity and as such
they should be carefully used not to violate user privacy.

B. Sharing Key Distribution

A data owner uses RPE to encrypt the data shared with
data consumers. Therefore, it needs to share decryption keys
to the data consumers for decryption. To this end, the data
owner specifies a set of attributes representing each of them.
Then, for each attribute set, it runs a KeyGen operation,
as described in our RPE scheme, to obtain a RPE private
key for the consumer. Simply sending a transaction, which
includes the RPE private key, to the public identity key 1 PK .
of the consumer will obviously violate its privacy. Moreover,
there might be many other data owners sending RPE private
keys to the same consumer, making it an appealing target to
attackers. To deal with the concern, the data owner creates a
hidden transaction as described in Algorithm 3 and sends it
to the blockchain. By scanning the blockchain, the intended

Algorithm 3 Constructing a key distribution transaction
Input: :PK. and a RPE private key.
Output: A hidden transaction.
1: Computes a public hidden key hPK,_. with consumer.
2: Creates an encryption o1 of iPK, under hPK,_..
3: Creates an encryption oo of the RPE private key under
hPK, ..
4: Creates a transaction including (o7, 02) and signs it with
a newly generated private ephemeral key eSK.
5: return The resulting hidden transaction.

consumer knows the arrival of a hidden transaction. It then
computes the private hidden key hSK,_. which is used to
decrypt o1 and o to obtain the RPE private key and the public
identity key iPK, of the data owner. Then, the consumer
inserts a pair of ¢ PK, and the RPE private key into its local

285

storage for future usage. On the other hand, by analyzing the
hidden transaction, third parties cannot determine the users
involved in the transaction.

C. Data Uploading

Before uploading data to the storage network, a data owner
first generates a smart contract key pair (sPK and sSK). It
then creates and deploys a new smart contract by using sSK
on the blockchain. In this contract, sPK is declared as the
public key of the contract owner who has all rights over it. In
principle, one smart contract only manages one upload. An
upload is referred to as a set of data that is simultaneously
encrypted under the same access policy using RPE. Then,
the data owner can start uploading the encrypted data onto
the IPFS and, in turn, receives the address where the data is
stored. The address is a hash of the encrypted data and can
also be used to verify the integrity of the data. Finally, the
data owner sends a transaction signed by sSK to the smart
contract to declare the address for future data retrieval.

D. Data Sharing

To share data with a set of data consumers, a data owner
specifies a hidden access control list £, px corresponding to
these consumers. Each element in the list contains two objects.
The first is a public hidden key hPK; corresponding to a
consumer ¢, computed from Algorithm 2. The second is an
encryption of the public identity key ¢ PK,, of the data owner
with hPK;. This object is important for the data consumers
to determine which RPE private key should be used to decrypt
the data if they are in collaboration with many data owners.
Then, the data owner creates a transaction to declare L px
in the contract. The data consumers scan the blockchain and
analyze the public hidden keys to be aware of new data shared
with them and who the owner is.

E. Data Retrieval

If a data consumer wants to access data associated with a
smart contract, it needs to fulfill two following requirements:

o Proving that it is part of the associated hidden access
control list L, pg of the smart contract, without revealing
its identity.

o Possessing a valid RPE private key to decrypt the data.
For the first requirement, an authorized consumer uses its
private hidden key hSK;, which the corresponding hidden
public key is included in £, p, to create a ring signature with
all the public hidden keys in Ly, px, then sends the signature to
the storage nodes. In parallel, a transaction containing a data
retrieval request and the ring signature is also made and sent
to the blockchain miners that verify and insert the transaction
into the blockchain. The storage nodes verify the validity of
the ring signature, and send the encrypted data to the data
consumer. Finally, these storage nodes create a transaction,
and then send it to the blockchain miners for confirming that
the data retrieval has been served.

FE. User Revocation and Data Re-encryption

If a data owner wants to revoke a set of data consumers, it
will first update all hidden address lists in its smart contracts
by excluding the addresses related to the revoked consumers.
Afterward, the consumers are no longer able to provide valid
ring signatures corresponding to the updated hidden address
lists for requesting data from storage nodes.

The platform also ensures that the revoked consumers are
incapable of decrypting the encrypted data. To this end,
the data owner runs a SKeyUpdate operation to obtain an
unrevocation update PU that is signed with the private smart
contract key sSK, and is sent to the contract. Upon receipt
of PU, the legitimate consumers update their RPE private
keys. The UKeyUpdate operation only works for legitimate
consumers. The UKeyUpdate operation performed by the
revoked consumers results in a failure. This procedure is
to make the RPE private keys of the revoked users useless
in decrypting the data shared after their revocation. Next, a
re-encryption key k.. is generated by one of the legitimate
consumers by carrying out a RKeyGen operation. This key
is encrypted with the public keys of the storage nodes and is
then sent to them for the re-encryption phase. The revoked
consumers are then unable to decrypt the re-encrypted data.

VII. SECURITY AND PRIVACY ANALYSIS

This Section proves that the proposed platform fulfills all
the security and privacy requirements defined in Section III.

A. Data Confidentiality

1) Security Proof of the Revocable Predicate Encryption
(PRE): To ease the security proof of the RPE scheme, we
first define a Revocation Scheme, denoted by RS, as follows:
Setup: Let G be a cyclic group of order p, generated by a
generator g,,. The system chooses two random numbers a, 2 €
Z,, and computes a master revocation key MRK = z, a public
revocation key PRK = (g;,g5), and an unrevocation proof
URP = g;*. Users knowing URP will be considered legitimate
whereas the others are considered revoked.

Encrypt: To encrypt a message m, one first picks at random
s € Zy and computes the ciphertext C' = (g°, mé(gy, g;)°)-
Decrypt: To decrypt the ciphertext, an authorized user uses
its URP and computes:

~ mé(gy,9;)°
é(g5,95°)

For revoked users, who do not know URP, need to com-
pute é(gy,g5)° from a tuple of (¢, g7, g5, g;). However, the
possibility of achieving that is negligible under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption [18]. Thus, the
PS scheme is provably secure under the DBDH assumption.

The RPE scheme is developed on the PE scheme in [14],
and can be thought of as a combination between the RS
scheme and the PE scheme. The latter has also been proven
secure, our proposed RPE is thus provably secure.

286

TABLE I
DEPLOYMENT COST MEASUREMENT OF SMART CONTRACTS

Contracts Transaction Cost (gas) | Execution Cost (gas) | Total Deployment Cost (gas)
Identity Key Contract 641176 446080 1087256
Data Sharing Contract 1318303 951831 2270134
Ring Signature Contract 2442294 1802498 4244792

2) Forward Secrecy: This security requirement guarantees
that revoked users are unable to decrypt the data shared with
them in the past even in case that they can compromise
the storage nodes and retrieve the encrypted data. In the
platform, once some users are revoked access to an encrypted
data, the data owner generates a re-encryption key and sends
it to storage nodes to re-encrypt the data that only un-
revoked users can decrypt by using their private keys. For
revoked users to decrypt the re-encrypted data, they need to
compute X from the element C, = X é(gg, g;)" by using
related available information, a tuple of (g,, 9, 95, g,)- This
is, however, unfeasible under the DBDH assumption.

B. User Privacy

To share data with a set of data consumers, the data owner
S deploys a new data sharing smart contract with a random
smart contract key pair (sPK and sSK). The privacy of
the data owner is thus protected. To anonymously include a
data consumer (RR) into the hidden access control list (£), S
generates a public hidden key (hPK,_,) to R. Hereby, L is
composed of the public hidden keys of all the authorized data
consumers, and is stored on the blockchain. We now prove
that hPK_, does reveal any information about neither S
nor R. As described in Algorithm 2, hPK,_, is computed
based on an ephemeral key pair (eSK, = e;ePK, = eG)
and the public identity key (iPK, = x,G) of R so that
hPK,_, = H(e.x,.G) + z,G. Therefore, to identify the
data consumer who has been included into £ by hPK,_,, an
adversary has to try the public identity keys {iPKy}x=1.n
of all N candidates to recompute the corresponding public
hidden key hPK_j, and compare it with hPK,_,.. However,
given the available information (ePK, = eG,hPK;_;)
and {iPK}) = x,G}ir=1. N, it is computationally unfeasi-
ble to compute hPK,_j. Indeed, given (ePK = eG and
i1PK}, = z1G), the adversary cannot obtain e.zy.G, which is
required in Step 1 of Algorithm 2, due to Discrete Logarithm
Complexity assumption.

C. User Linkability

We prove that an adversary cannot link activities done by a
specific user. For data sharing, a data owner uses a different
smart contract key pair (sPK,sSK), which are one-time
keys, to deploy a smart contract. This is, thus, impossible to
link two contracts made by the same data owner. Similarly,
in each data sharing, a data consumer ¢ is represented by
a hidden key pair (hPK; and hSK;), in which the public
hidden key is stored on the blockchain and used to prove
the right to access the shared data. The hidden key pair is
generated randomly for every data consumer in every data

sharing. In other words, if a data consumer is involved in
N data sharing contracts, it will have N hidden key pairs,
which are computationally indistinguishable, thus making data
consumers anonymous across all the smart contracts. Within
one smart contract, the adversary cannot distinguish the access
sessions of the same user due to the randomness of the ring
signature scheme. Hence, we conclude that it is impossible to
link activities of the same user over the whole system.

D. User and Data Linkability

This is the result of the combination of the above security
and privacy guarantees. Indeed, both the confidentiality of
data and user privacy is protected, making it impossible to
determine which user has accessed to which data.

VIII. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of the platform
by measuring the computational costs of the computationally
heavyweight operations performed by users as well as the
costs of deploying the smart contracts on the blockchain.

A. Evaluation of the Smart Contract Deployment Cost

The Ethereum blockchain is maintained by miners that
are responsible for verifying and adding transactions into
the blockchain. Therefore, all operations must be paid to
the miners to be executed on the blockchain. Specifically,
gas is the unit of measurement that defines the amount
of computational effort needed to execute an operation. To
initiate a transaction, a sender must specify two variables:
gas limit and gas price. The former indicates the maximum
amount of gas that the sender is willing to pay for the
transaction while the latter indicates the price of gas. The
gas price is set based on ETH, the underlying cryptocurrency
of the Ethereum blockchain.

In the platform, there are 3 main types of contract, including
Identity Key contract, Data Sharing contract, and Ring Sig-
nature contract, which are written in the Solidity language.
As explained above, the Identity Key contract allows new
users to register to join the sharing system. To outsource an
upload, which could be a set of data, the data owner deploys
a Data Sharing contract that allows managing anonymous and
auditable access control as well as registering the location of
the data on the IPFS network. We separately deploy a Ring
Signature contract which can be called from Data Sharing
contracts to verify the eligibility of data consumers. The ring
signature scheme is implemented on the curve ECSecp256k1,
which is standardized by SECG [19]. We also open the source
code of the smart contracts in [20]. The deployment costs of
the smart contracts are illustrated in Table I.

287

ping —— ol Encryption ——

Sigr
2500 - Signature Ver
2000

1500 -

Execution time (ms)
Execution time (s)

1000 |-

500 -

0 20) 0 80 100 0 5 10 15 20

Number of members in the ring n o encry

(b) Execution time of RPE

(a) Execution time of ring signa-
ture

Fig. 3. Time execution measurement of the ring signature and RPE
B. Evaluation of Computationally Heavyweight Operations

On the user side, the main computational burden is caused
by the cryptographic operations which are performed on their
devices such as PC or mobile. We observe that the generation
of keys or hidden access control lists requires a small number
of lightweight operations, including additions and multiplica-
tions. Therefore, we concentrate on the computation costs of
the heavyweight operations which can also vary and depend
on the context: the ring signature and revocable predicate
encryption schemes. With regard to the ring signature scheme,
it consists of signing and verifying operations. While the
former is performed by data consumers, the latter is performed
by the blockchain miners and is implemented in the Ring
Signature contract in [20]. Due to the huge computation
capacity of the blockchain miners, the verifying operation can
be done nearly instantly. However, for the completeness of the
demonstration, we show the costs of both operations when
being carried out on the experimental computer.

We implement the RPE and the ring signature schemes
on a computer with Core i7 2.81GHz processor and 8Gb
RAM. The ring signature scheme is implemented on the curve
ECSecp256k1l as mentioned above whereas the revocation
predicate encryption scheme is implemented on the curve
y* = 2 + x over the field F, for some prime ¢ = 3 mod 4.
The latter allows performing pairing of type Al, the pairing
over a group of composite order, which is the core building
block of RPE. The performance of RPE is measured according
to the dimension of encryption vectors whereas the perfor-
mance of ring signature scheme is evaluated based on the
number of members in a ring. As illustrated in Figure 3, the
ring signature scheme is practical as it takes less than 2.5s to
create a signature on behalf of a large group of 100 members.
Moreover, the signature verifying algorithm respectively only
requires 1s for such a signature. However, the revocable pred-
icate encryption is slightly inefficient as encrypting a message
with a 10-dimensions vector requires 50s and the decryption
accordingly requires 7.5s. The inefficiency of RPE is due
to the expensive cost of crytographic operations performed
over a pairing group of composite order, such as pairing and
modular exponentiation. In [21], Freeman develops a method
to convert cryptosystems built on composite-order groups,
including the original predicate encryption scheme [14], to
prime-order groups to improve performance. Applying this
method in RPE helps to greatly reduce the computational
overhead. Indeed, on our given computer, performing a pairing
over a prime-order group is around 33 times faster than the

same operation over a comparable composite-order group
(15ms versus 500ms). Similarly, 35 times is the improvement
factor with regard to modular exponentiation.

IX. CONCLUSION

In this paper, we propose a privacy-preserving blockchain-
based data sharing platform for decentralized storage systems.
The platform allows protecting data confidentiality as well as
user privacy in any activities in the system. Yet, the auditabil-
ity of data access is guaranteed through hidden access control
lists, which are stored on blockchain for public verifiability.
These features make the platform a powerful solution to data
censorship in the data outsourcing context. We also conduct
an implementation of RPE and the ring signature scheme on
the given computer to evaluate their performance.

REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE symposium on security and privacy.
IEEE, 2007, pp. 321-334.

[2] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv
preprint arXiv:1407.3561, 2014.

[3] 1. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,” in
Designing privacy enhancing technologies. Springer, 2001, pp. 46—66.

[4] R. Dingledine, M. J. Freedman, and D. Molnar, “The free haven
project: Distributed anonymous storage service,” in Designing Privacy
Enhancing Technologies. Springer, 2001, pp. 67-95.

[5] J. Shen, T. Zhou, X. Chen, J. Li, and W. Susilo, “Anonymous and
traceable group data sharing in cloud computing,” IEEE Transactions
on Information Forensics and Security, pp. 912-925, 2017.

[6] A.Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new
blockchain-based access control framework for the internet of things,”
Security and Communication Networks, pp. 5943-5964, 2016.

[71 G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain

to protect personal data,” in 2015 IEEE Security and Privacy Work-

shops. 1EEE, 2015, pp. 180-184.

J. Liu, X. Li, L. Ye, H. Zhang, X. Du, and M. Guizani, “Bpds: A

blockchain based privacy-preserving data sharing for electronic medical

records,” in GLOBECOM. 1EEE, 2018, pp. 1-6.

[9] S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for
data sharing with fine-grained access control in decentralized storage
systems,” IEEE Access, vol. 6, pp. 38 437-38450, 2018.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[11] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.

[12] “Filecoin: A decentralized storage network.”

[13] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in TCC. Springer, 2011, pp. 253-273.

[14] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting dis-
junctions, polynomial equations, and inner products,” in EUROCRYPT.
Springer, 2008, pp. 146-162.

[15] J. Lai, R. H. Deng, and Y. Li, “Fully secure cipertext-policy hiding
cp-abe,” in ISPEC. Springer, 2011, pp. 24-39.

[16] A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger defini-
tions, and constructions without random oracles,” in TCC. Springer,
2006, pp. 60-79.

[17] J. Herranz and G. Séez, “Forking lemmas for ring signature schemes,”
in INDOCRYPT. Springer, 2003, pp. 266-279.

[18] F. Laguillaumie and D. Vergnaud, “Designated verifier signatures:
anonymity and efficient construction from any bilinear map,” in Se-
cureComm. Springer, 2004, pp. 105-119.

[19] M. Qu, “Sec 2: Recommended elliptic curve domain parameters,”
Certicom Res., Mississauga, Canada, Tech. Rep. SEC2-Ver-0.6, 1999.

[20] V. H. Hoang, https://github.com/vanhoanHoang/Privacy-Preserving-
Data-Sharing-Platform.

[21] D. M. Freeman, “Converting pairing-based cryptosystems from
composite-order groups to prime-order groups,” in EUROCRYPT.
Springer, 2010, pp. 44-61.

[8

[t}

288

