
Virtual Network Functions Placement and Routing
Problem: Path formulation

Ahlam MOUACI
Orange Labs

Université Paris Dauphine- Lamsade
Paris, France

ahlam.mouaci@orange.com

Éric GOURDIN
Orange Labs
Paris, France

eric.gourdin@orange.com

Ivana LJUBIĆ
ESSEC Business School

Cergy, France
ivana.ljubic@essec.edu

Nancy PERROT
Orange Labs
Paris, France

nancy.perrot@orange.com

Abstract—Network Functions Virtualization (NFV) and Soft-
ware Defined Networking (SDN) are two promising techniques
for the next generation telecommunication networks. Their in-
troduction allows time, energy and cost minimization. Placing
Virtual Network Functions (VNFs) on network nodes and routing
data through these nodes is a very challenging combinatorial
optimization problem. Obviously, the problem becomes even
more difficult, if in addition, the data have to be routed using
the concept of Service Functions Chaining (SFC) in which VNFs
are chained according to a pre-defined order associated to each
service.

In this paper we study the Virtual Network Functions Place-
ment and Routing problem in Software Defined Networks, in
which a set of source-destination pairs representing clients
demand and a set of VNFs are given. The problem consists
in finding a routing path for each demand and the optimal
associated placement of functions while minimizing functions
installation and node activation costs. In this work, we propose
a path-based MILP formulation to model the problem and
we also demonstrate how to efficiently use it to derive high-
quality heuristic solutions within a short computational time.
We provide a case study derived from a set of scenarios in which
we vary relevant problem parameters, including arc latency,
input demand and node capacities. The study is conducted on
a benchmark set of realistic telecommunication instances from
the SNDlib library. To test the efficiency of our approach,
we also compare the obtained results with a compact MILP
formulation. Our computational study indicates that the path-
based formulation outperforms the compact model both in terms
of computing time and overall solution quality.

Index Terms—Virtual Network Functions, Software Defined
Networking, Service Functions, Service functions Chaining,
Heuristic, Combinatorial optimization.

I. INTRODUCTION

In order to provide services such as online gaming, video
streaming or web services, Network Service Providers have to
deal with an optimization problem that consists of routing the
network traffic in a cost-effective way. Each service requires
packet transfer between two nodes in the network, and has to
be handled by a specific set of Service Functions (SFs). Tradi-
tionally, Service Functions such as Firewall, Video optimizer,
or Traffic sensors, were running on a specific hardware. Their
orchestration, connection, deployment and reconfiguration are
costly, very time consuming and generate long installation
delays (caused by several manual interventions).

Network Function Virtualization (NFV) is a new paradigm
that aims to reduce costs and accelerate the deployment
of SFs for network operators by dissociating features such
as firewall or encryption, from any dedicated hardware and
moving them to virtual servers. That way, SFs are executed as
network applications only when and where they are required.
Homogeneous and heterogeneous SFs can be hosted by the
same hardware server. The SFs are then called Virtual Network
Functions (VNFs).

Software Defined Networking (SDN) is a new architecture
that aims to simplify the telecommunication networks man-
agement by separating the control plane from the data plane.
There exists a single centralized controller that has a global
view of the network state and takes the decisions regarding
the package forwarding. Each service has to be handled by
a specific set of VNFs in a pre-defined order. This order
between VNFs is called Service Functions Chain (SFC), and
the mechanism that allows orchestration of SFCs is called
Service Functions Chaining. Using SDN and NFV, VNFs
can be installed anywhere and any-when on network nodes
and packets can be routed through these nodes dynamically.
This new flexibility and dynamism faces new challenges and
creates new combinatorial optimization problems that are very
difficult to model and to solve.

The problem we consider in this paper is the Virtual
Network Functions Placement and Routing Problem (VNFP-
RP), which can be summarized as follows: we are given a set
of client demands (also called commodities), each of which
is characterized by a source and a destination node and a set
of VNFs with a specific total order. The problem consists in
finding (i) the optimal VNFs placement on nodes and (ii) the
associated feasible latency-constrained routing paths passing
through VNFs in the right order. In addition, node capacities,
function capacities, along with incompatibility rules (between
pairs of functions) must be satisfied. In [1], we proposed a
compact MILP formulation for the problem variant without
function capacity constraints. We showed that in this case,
integrality constraints on some variables can be relaxed, so
that the problem can be solved using a separable Benders
decomposition approach.

Our contribution. A compact MILP formulation to model
the problem has been proposed in a recent literature. Unfor-ISBN 978-3-903176-28-7 ©2020 IFIP

55

tunately, due to the large number of variables and constraints,
it has been shown that the computational performance of this
formulation is fairly limited. Some papers divide the problem
into two parts, and treat the VNFs placement and the routing
problems separately. A large body of literature deals with
heuristics for each part of the problem, or for their relaxed
versions. In this paper we propose a computationally effective
path-based MILP formulation to model the Virtual Network
Functions Placement and Routing Problem. The Path Formu-
lation (PF) uses Yen’s algorithm to find the elementary latency-
constrained shortest paths associated to each commodity. If all
feasible paths are taken into the model, the PF model provides
an exact problem formulation and can be used to calculate the
optimal solution. Alternatively, if only a subset of feasible
paths is included in the model, the result of the PF model
provides a high quality heuristic solution. We demonstrate the
effectiveness of the PF model (when compared to the compact
MILP formulation) on a set of realistic benchmark instances
derived from the SNDLib library. In addition, we analyze
the effects of varying relevant problem parameters (like arc
latency, input demand and node capacities) on the solution
cost.

Outline of the paper. Section II contains a review of re-
lated literature. In Section III we provide a formal problem
definition and introduce the notation. Section IV is devoted to
the Path Formulation. In Section V we present computational
results and a sensitivity analysis in which we vary the input
parameters and discuss the results. In Section VI we provide
some concluding remarks.

II. RELATED WORKS

Some articles were proposed in the literature to define how
and where to place ordered chains of VNFs. According to
[2], these studies can be divided into two categories: ILP-
based and greedy-heuristic-based. Different objective func-
tions were considered as well, such as: minimizing the number
of activated nodes, minimizing the end-to-end latency [3],
minimizing the energy consumption [4], or the bandwidth [5].

Authors in [6] propose an ILP formulation and a heuristic
for the problem of placing chained VNFs on a physical
infrastructure while minimizing the number of VNFs. In [7],
the authors consider both VNFs placement and path selection
with precedence constraints, while maximizing the number of
treated demands. The authors in [3] model the VNFs place-
ment problem as a Mixed Integer Quadratically Constrained
Program with two possible different objectives: minimizing
the number of activated nodes or minimizing the paths latency.
Their model was tested on small instances and solved using
Gurobi Optimizer. Addis et al. in [8] model the VNFP-RP as
a MILP considering flow constraints, paths latency constraints
and resource capacities, while minimizing the number of used
nodes and links. Also, authors in [8] propose a math-heuristic
approach for the problem. Mijumbi et al. in [9] consider the
problem of online mapping and scheduling VNFs without any
routing aspect.

Cohen et al. in [10] provide a near-optimal approxima-
tion algorithm to address the problem of placing VNFs on
physical network without order constraints. Their objective is
the minimization of the installation and paths costs. In order
to minimize the number of used network functions, Sang et
al. in [11] fix the routing paths and focus their attention on
the placement of VNFs without any order constraints. They
leave the chaining constraints for their future works. Addis
et al. in [12] address the Virtual Network Function Place-
ment and Routing problem. They suppose that all demands
require the same service and each demand can be routed only
through a simple path. To deal with the problem they propose
two formulations whose goal is to minimize the number of
VNFs installed. Tomassilli [2] proposes two approximation
algorithms for the tree network topology in order to address
the SFC placement problem.

The closest work to ours is presented by Allybokus et
al. in [13]. The authors propose a heuristic and different
MILP formulations to model the VNF placement and routing
problem by considering partial order, end-to-end latency, anti-
affinity rules, resource limitations and capacity constraints.
They deal with two objectives: minimizing the total network
deployment cost, or minimizing the total number of rejected
demands. The proposed heuristic is based on the continuous
relaxation of one of the MILP formulations. The tests show
that the heuristic minimising the number of rejected demands
is very efficient on instances generated with GEANT topology.
However, the proposed MILP formulations cannot solve to
optimality the realistic instances within reasonable time.

III. PROBLEM STATEMENT

We consider a bi-directed graph = (N,A) representing a
telecommunication network: N denotes the set of nodes rep-
resenting the physical locations that support VNF installation.
Each node u in N has an associated node capacity cu, referring
to the maximum number of SFs that can be installed at that
node. A represents the set of arcs between nodes. The graph
being bi-directed, we assume that, for each arc (u, v) in A,
the reverse arc (v, u) also exists. We denote by luv the latency
of arc (u, v), a quantity representing the time needed to send
a data package from node u to node v. The set of all VNFs
is denoted by F . A function capacity mf , representing the
maximum amount of data that can be treated, is associated
with each function f ∈ F . The cost of installing a function
f on node u is denoted by ψf

u . We denote by C the set of
all traffic demands or commodities: each demand k ∈ C is
defined by a source node sk ∈ N , a destination node dk ∈ N ,
a maximum latency denoted lk ∈ R+, and a set of pairs of
incompatible (i.e., conflicting) functions. Moreover, the order
in which the functions of each demand must be visited is
represented by the ordered set F k ⊆ F : we denote by f ≺k g
the fact that function f must be visited before function g for
demand k. We assume that if f and g are installed on the
same node u, the precedence constraints f ≺k g are trivially
satisfied. All these notations are summarized in Table (I).

56

sets
N : Set of nodes.
A : Set of arcs.
C : Set of commodities (demands).
F : Set of functions or VNFs (Virtual Network Func-

tions).
(Fk,≺k) : Ordered set of VNFs associated to commodity k.

Sk : Set of pairwise conflicts between functions asso-
ciated to commodity k.

Parameters
cu : Capacity of node u ∈ N .
mf : Capacity of VNF f ∈ F .
bk : Amount of traffic for commodity k ∈ C.
sk : Source node for commodity k ∈ C.
dk : Destination node for commodity k ∈ C.
lk : Maximum latency of commodity k ∈ C.
luv : Latency of link (u, v) ∈ A.
ψf
u : Installation cost of function f at node u ∈ N .
ψu : Activation cost of node u ∈ N .
tpkuv : = 1 if the arc (u, v) is in the path p for the

commodity k, 0 otherwise.

TABLE I: Main notation

Definition 1: The Virtual Network Functions Placement and
Routing Problem consists of finding an optimal placement of
VNFs f ∈ F at nodes u ∈ N , so that, for each commodity
k ∈ C the VNFs are encountered, along the path used to carry
the whole commodity traffic, in the order specified by F k, and
such that the following constraints are satisfied:
• Routing constraints: for each commodity k ∈ C, the

chosen sk − dk path is elementary (no cycles allowed)
and satisfies the latency constraint (the sum of latency of
the path arcs must be less than or equal to lk).

• Node capacity constraints: the number of VNFs in-
stalled at the node u ∈ N must be less or equal to its
capacity cu.

• Functions capacity constraints: the volume of data
treated by each installed VNF f ∈ F must be less or
equal to its capacity mf .

• Precedence constraints: The functions associated with
each commodity k ∈ C must be encountered, when
traveling along the chosen path, in the order specified
by F k. We assume that no function can be installed on
the source node for any commodity k ∈ C.

• Conflict (Anti-affinity) constraints: for each commodity
k ∈ C, two functions f and g ∈ F k in conflict cannot be
installed at the same node.

As usual, a solution of the problem is called feasible if it
satisfies all the required constraints, and it is called optimal
if the associated cost is minimized. The cost of a solution is
defined as the sum of node activation cost ψu, over all u ∈ A
plus the function installation costs ψf

u , over all f ∈ F , u ∈ N .
Theorem 3.1: The Virtual Network Functions Placement

and Routing Problem (VNFP-RP) is strongly NP-Hard even
for a single commodity and without latency and precedence
constraints, and without node and function capacities [1].

IV. PATH FORMULATION

In this Section, we provide a path-based MILP formulation
for our problem. We first describe the variables, and then the
constraints defining the model.

1) Variables: Our path formulation is based on the five sets
of variables described in Table II. We denote by Pk the set of
all elementary sk − dk paths (associated with the commodity
k). We also assume Pk contains only paths that satisfy the
latency constraint. For each commodity k, we suppose that
all feasible paths Pk are given (which might be a problem
in practice, when the instances become large). Let tpkuv be the
parameter that is equal to 1 if the arc (u, v) is in the path p
for the commodity k, 0 otherwise.

Variables Type
λkp 1, if path p is chosen for commodity k; 0,

otherwise.
Binary

xfku 1, if virtual network function f is installed at or
before node u for commodity k; 0, otherwise.

Binary

yfku 1, if virtual network function f is installed at
node u for commodity k; 0, otherwise.

Binary

wu 1, if node u is activated; 0, otherwise. Binary
zfu the number of service functions f installed at

node u.
Integer

TABLE II: Decision variables of the path-based formulation

A. Constraints

1) Routing constraints:∑
p∈Pk

λkp = 1, ∀k ∈ C (1)

Each commodity k must be routed on exactly one sk − dk
path p ∈ Pk satisfying the latency constraint.

2) Installation constraints:∑
u∈N

yfku ≥ 1, ∀k ∈ C, ∀f ∈ F k (2)

Constraints (2) ensure that each virtual network function
associated to a given commodity k is indeed installed at some
node.

3) Capacity constraints:∑
f∈F

zfu ≤ cu wu, ∀u ∈ N (3)

∑
k∈C

yfku bk ≤ mfz
f
u , ∀f ∈ F, ∀u ∈ N (4)

The node capacity constraints (3) guarantee that the number
of functions installed at any activated node u does not exceed
its capacity cu. The function capacity constraints (4) ensure
that the volume of all data treated by any VNF f does not
exceed its capacity mf .

4) Incompatibility constraints:

yfku + ygku ≤ 1 ∀k ∈ C, ∀(f, g) ∈ Sk,

∀u ∈ N
(5)

Constraints (5) guarantee that two conflicting functions f and
g can not be installed at the same node u.

57

5) Precedence constraints:

(
∑
p∈Pk

(u,v)∈p

tpkuv λkp − 1) + (xfkv − xfku) ≤ yfkv ,

∀k ∈ C, ∀f ∈ F k, ∀(u, v) ∈ A

(6)

(xfku − xgku)pk(f, g) ≤ 0, ∀k ∈ C,
∀f, g ∈ F k, ∀u ∈ N

(7)

yfku ≤ xfku , ∀k ∈ C, ∀f ∈ F k, ∀u ∈ N (8)

xfksk = 0, ∀k ∈ C, ∀f ∈ F k (9)

xfkdk
= 1, ∀k ∈ C, ∀f ∈ F k (10)

Constraints (6) represent a linking between routing variables,
installation variables and precedence variables, ensuring that,
for each commodity k: (i) if the routing path p passes through
an arc (u, v), and (ii) the VNF f is installed at or before
the node v and (iii) the VNF f is not installed at or before
the node u, then the left-hand-side is forced to be equal to 1
(imposing the installation of the function f at the node v).

The second set of constraints uses the sorting parameter
pk(f, g) that is equal to -1 if VNF f must be installed before
the VNF g, equal to 1 if f must be installed after g, and
0 otherwise. Constraints (7) is hence modelling the required
precedence between functions.

Constraints (8) force the precedence variables x to be 1 if
the associated installation variables y is equal to 1. In other
words, if VNF f is installed at the node u, then it is necessary
also installed at or before u.

6) Linking constraints:

yfku ≤
∑

(v,u)∈A

∑
p∈Pk

tpkvu λkp, ∀k ∈ C,

∀f ∈ F k, ∀u ∈ N
(11)

yfku ≤ wu, ∀k ∈ C, ∀f ∈ F k, ∀u ∈ N (12)

Constraints (11) impose that the chosen path for each com-
modity k passes through the nodes where the required func-
tions are installed. Constraints (12) link the variables y and w
and ensure that if function f is installed at the node u then u
is activated.

B. Objective function

min
∑
u∈N

∑
f∈F

ψf
u zfu +

∑
u∈N

ψu wu

The objective function to be minimized is the sum node
activation and function installations costs.

C. Model

The Path-based formulation then reads as follows:

min
∑
u∈N

∑
f∈F

ψf
u zfu +

∑
u∈N

ψu wu

(λ, x, y, z, w) satisfy (1) - (12)

λkp ∈ {0, 1} ∀k ∈ C, ∀p ∈ Pk

xfku , yfku ∈ {0, 1} ∀k ∈ C, ∀u ∈ N, ∀f ∈ F
wu ∈ {0, 1} ∀u ∈ N
zfu ∈ N ∀u ∈ N, ∀f ∈ F

D. Getting routing paths

In order to generate routing paths associated with each
commodity k we use Yen’s algorithm [14]. This algorithm
aims at finding a bounded number of loopless shortest paths
between a pair of nodes. Yen’s algorithm is based on Dijkstra’s
algorithm [14]. In reasonably small instances, instead of
recovering a fixed number of paths per commodity, we can
run Yen’s algorithm to get all sk − dk paths.

In order to take into account the latency constraints (13) in
the PF model, we stop enumerating paths in Yen’s algorithm
when they exceed the latency constraint (i.e., we keep only
paths whose length is less or equal to lk, ∀k ∈ C).∑

(u,v)∈p

(luv t
pk
uv)λ

k
p ≤ lk, ∀k ∈ C, ∀p ∈ Pk (13)

Theorem 4.1: If Yen’s algorithm generates all elementary
latency-constrained paths for each commodity k ∈ C, then the
path-based formulation gives an optimal solution. Otherwise
it provides a heuristic solution for VNFP-RP.

V. NUMERICAL RESULTS

The purpose of this section is to test the efficiency and the
sensitivity of the proposed path formulation. We present some
computational results to compare the PF formulation with the
capacitated compact MILP formulation proposed in [1] (which
we extended with capacity and incompatibility constraints in
this paper). In this comparison of the two models, we focus
on the CPU time, the quality of obtained solutions and the
final gaps between the global lower and upper bounds. We
vary the input parameters and conduct a sensitivity analysis
to determine the most relevant parameters that affect the
empirical performance of the model.

All tests were made using the commercial solver CPLEX
and a machine with Intel(R) Xeon(R) CPU E5-2650 v2
processor clocked at 2.60GHz and 252GB RAM, under Linux
operating system. All methods are implemented using the
Python API for CPLEX, which is run in single-threaded mode
and all CPLEX parameters were set to their default values. A
default time limit of one hour is set for each tested instance.

A. Benchmark instances

Our benchmark instances are generated using the SNDlib
library [15] (Survivable fixed telecommunication Network
Design) which is a repository of realistic telecommunication
network design instances. The number of nodes, arcs and

58

demands vary for each instance. SNDlib provides the graph
topology, along with the node coordinates and a set of commu-
nication demands with the associated source node, destination
node and a bandwidth. The remaining parameters required for
our setting are generated as follows:

To calculate the distance between two nodes u and v in km
having only their longitude ϕu, ϕv and latitude ςu, ςv , we use
the Spherical Law of Cosine [16]. First we use the following
formula to calculate the angular distance in radians:

Suv = arc cos(cos ςu cos ςv + sin ςu sin ςv cos dϕ)

with, dϕ = ϕv − ϕu.
The distance in km is then obtained as:

duv = R× Suv,

where R is earth’s radius (R = 6378137km). The fiber
propagation delay per km is roughly equal to 10µs/km, see,
e.g., [17], [18]. To define the latency luv of an arc (u, v), we
multiply the distance between u and v by the fiber propagation
delay, and we set luv = lvu.

We consider the following six Virtual Network Functions,
typically employed in service function chaining ([5], [19]) to
construct our VNFs set, namely F = {NAT, FW, TM, WOC,
IDPS, VOC}. A detailed description of these VNFs is given in
Table III. The maximum capacity rate associated to each VNF
is given as an integer number in [a, b], where a (resp. b) is the
minimum (resp. maximum) bandwidth of all demands in the
same set of demand (i.e., a = min

k∈C
bk and b = max

k∈C
bk), the

capacity is measured on Mbits/s. The functions installation
cost ψf

u ∈ N is chosen randomly as integer in [50, 1000], and
is expressed in dollars $.

id-VNF VNF name Capacity Cost
NAT Network Address Translator

[min
k∈C

bk,max
k∈C

bk] [50, 1000]

FW Firewall
TM Traffic Monitor
WOC WAN Optimization Con-

troller
IDPS Intrusion Detection Preven-

tion System
VOC Video Optimization Con-

troller

TABLE III: Virtual Network Functions

The total number of demands varies for each SNDlib
instance. For each commodity k ∈ C the source node sk,
destination node dk and the bandwidth bk in Mbits/s are
given.

We divide the set of demands in five categories: Online
Gaming, Video Streaming, Voice over IP, Web Services, and
Other Services. Each category is characterized by a latency
value and a set of chained service functions as depicted in
Table IV.

To define the value of lk and the set of chained VNFs
associated to each demand k, the demands are first assigned
to exactly one category. To do so we calculate the shortest
path between sk and dk which is equal to the sum of the arcs

latency composing it. Based on its length, we assign randomly
our demands in one of the five categories, and so we set the
value of lk and the set of chained VNFs. For example, if the
length of the shortest path is equal to l(SPk) = 40ms then
we can assign the demand to any of the five categories, and
we randomly choose one.

Latency value Service chain Chained VNFs

≤ 60 ms Online Gaming (O-G) NAT-FW-TM-WOC-IDPS

≤ 100 ms
Video Streaming (V-S) NAT-FW-TM-VOC-IDPS

VoIP NAT-FW-TM-FW-NAT

≤ 500 ms Web Services (W-S) NAT-FW-TM-WOC-IDPS

≤ ∞ ms Other services (O-S) NAT-FW-TM-WOC-VOC

TABLE IV: Service functions chains

For each commodity k ∈ C there is at most one anti-
affinity constraint (AAC) between VNFs. We suppose that we
cannot install Firewall and Network Address Translator at the
same node. The maximum number of AAC is fixed to five per
instance, because adding too many of them can make some
instances infeasible.

In order to get feasible instances, the node capacities are
based on the number of demands and the number of VNFs
per commodity which is equal to 5, ∀k ∈ C. Thus, the node

capacity is an integer chosen randomly cu ∈ [
|C| × 5

|N |
, 2 ×

|C| × 5

|N |
], ∀u ∈ N . Node activation cost ψu ∈ N is chosen

uniformly at random from [3000, 5000] [20].

Instance type n m / bi-directed |C| |F | # AAC
Abilene 12 15/ 30 132 6 5
Atlanta 15 22/ 44 210 6 4
Dfn-bwin 10 45/ 90 90 6 0
Dfn-gwin 11 47/ 94 110 6 0
Di-yuan 11 42/ 84 22 6 0
France 25 45 / 90 300 6 5
Geant 22 36/ 72 462 6 1
Janos-us 26 84/ 168 650 6 1
Newyork 16 49/ 98 240 6 0
Nobel-eu 28 41/ 82 378 6 0
Nobel-Germany 17 26/ 52 121 6 5
Nobel-us 14 21/ 42 91 6 0
Pdh 11 34/ 68 24 6 0
Polska 12 18/ 36 66 6 1
Ta1 24 55/ 110 396 6 0

TABLE V: Details about the instances. n: the number of nodes,
m: the number of arcs, |C|: the number of demands, |F |:
the number of functions, # AAC: the number of anti affinity
constraints.

To test the efficiency of the proposed Path formulation
we considered fifteen different instances from SNDlib library.
Table V summarizes the details about the instances used in
this study. In order to vary the demand types per instance
we generated ten instances for each instance type. Table VI
summarizes the average demand per service function chain
and per instance type.

59

Instance type O-G V-S VOIP W-S O-S
Abilene 4.2 6.2 7.4 57.6 55.6
Atlanta 1.7 6.1 4.9 98.7 97.6
Dfn-bwin 0.0 22.1 21.4 21.9 23.6
Dfn-gwin 0.0 23.6 23.5 31.0 30.9
Di-yuan 0.6 1.6 1.2 8.1 9.5
France 2.5 11.0 8.8 140.1 136.6
Geant 0.8 20.9 17.5 208.1 213.7
Janos-us 10.5 24.2 22.5 302.9 288.9
Newyork 4.5 12.8 11.3 105.6 104.8
Nobel-eu 0.3 10.8 9.4 168.9 187.6
Nobel-Germany 0.0 6.6 5.7 52.0 55.7
Nobel-us 1.6 5.3 6.2 39.0 37.9
Pdh 0.0 6.3 4.9 5.5 6.3
Polska 0.0 5.0 4.1 27.5 28.4
Ta1 6.5 20.5 20.1 169.2 178.7

TABLE VI: Average demands per service function chain and
per instance type.

B. Models analysis

In this subsection we analyse the proposed path-based for-
mulation in terms of the number of variables and constraints of
the model. We also compare them with the number of variables
and constraints in the compact MILP formulation from [1]
(extended with capacity and incompatibility constraints). In the
following we put only the difference in terms of the number
of variables and constraints between the two models.

Variables: Both formulations have practically the same set
of variables, except for the routing part. For the PF formulation
there are |C| × |Pk| path variables, for the MILP compact
formulation there are |C| × |A| arc variables.

Constraints: As we are generating only latency-constrained
paths for the Path formulation we are gaining in terms of the
number of constraints. Because of that, the compact MILP
formulation has |C| × |N | more constraints.

Fig. 1: The number of variables and constraints for the two
formulations tested in this paper.

Figure 1 shows that the number of variables in the PF
formulation is on average greater than the number of variables
of the compact MILP formulation. This is due to the number
of feasible paths associated to each commodity. We can
also observe that the number of constraints in the compact

MILP formulation is on average greater than the number of
constraints in the PF formulation – this number depends on
the number of nodes and demands.

C. Obtained results

The following two settings are compared in our computa-
tional study:
• MILP : The compact MILP formulation proposed in [1],

which we have extended by the capacity and incompati-
bility constraints (3)-(5).

• PF : The path-based formulation proposed in Section IV.
In the computational results presented in Table VI we solved

10 instances of each instance type. The CPU time, GAP , and
the costs of each instance type are obtained by calculating the
average over all 10 instances for which a feasible solution was
found. We fixed the maximum number of latency-constrained
paths generated by Yen’s algorithm to 5000 paths. In order to
define the nature of the PF formulation, for each instance type,
we pre-calculate the maximum number of latency constrained
paths over all commodities. This number is shown in column
#paths in Table VII. Based on that, the second column denoted
by PF(E/H), describes the nature of the PF formulation: exact
”E” means that the maximum number of feasible paths was
below our threshold of 5000 paths per commodity; or heuristic
”H” method, meaning that not all feasible paths were taken
into consideration by the PF formulation. Path formulation is
a heuristic for only two instance types: ”Dfn-bwin” and ”Dfn-
gwin”.

In Table VII we also report the number of instances solved
to optimality by the two models. The PF formulation solves
8 instances to optimality within one hour, whereas MILP
manages to find the optimum in only 4 cases. Moreover, there
are five instances for which the compact MILP formulation
cannot provide any feasible solution within the given timelimit.
On the contrary, as demonstrated below, high quality solutions
are found for all instances, using the PF formulation.

Instance type # paths PF(E/H) # optimal no feasible so-
lution found

PF MILP PF MILP
Abilene 16 E 6 2 0 0
Atlanta 53 E 0 0 0 0
Dfn-bwin 9061 H 0 0 0 0
Dfn-gwin 8801 H 0 0 0 0
Di-yuan 1419 E 0 0 0 0
France 969 E 0 0 0 0
Geant 286 E 0 0 0 0
Janos-us 4316 E 0 0 0 0
Newyork 1588 E 0 0 0 0
Nobel-eu 977 E 0 0 0 4
Nobel-Germany 149 E 0 0 0 0
Nobel-us 45 E 0 0 0 0
Pdh 872 E 2 2 0 0
Polska 35 E 0 0 0 0
Ta1 440 E 0 0 0 1

TABLE VII: Nature of the Path formulation (exact or heuristic)
and a comparison between the two formulations with respect
to the number of instances solved to optimality (#optimal)
and the number of instances for which no feasible solution
was found.

60

Table VIII summarizes the results obtained by solving 15
SNDlib instance types with different graph topologies and
different number of commodities. Columns one and two in the
table represent the average CPU time calculated from instances
solved to optimality for PF and MILP. We observe that when
instances are solved to optimality, the PF is outperforming in
terms of CPU time. However, for most of the instances none
of the two methods manages to provide an optimal solution
within one hour. TL in the CPU time column means that the
time limit was reached. When the optimal solution is not found
after reaching the time limit, we also report the final gap in
percent calculated as GAP (%) = (UB − LB)/LB ∗ 100%,
where UB represents the best feasible solution found and the
LB represent the global lower bound found. The global upper
bound is shown in column Costs($), and the value of the LP-
relaxation of the two models is given in the last two columns.

For all instances for which PF is an exact method the final
gap provided (CPLEX exit gap) by PF is consistently better
than the final gap provided by MILP (see Figure 2). Each
coordinate (x, y) in Figure 3 indicates that for y instance types,
the average final gap provided was bellow x. From Figure 3
we can observe that all instance types solved by PF as an exact
method are solved within a gap less than 55%, while the same
instance types are solved within a gap of 75% by the MILP
compact formulation.

Fig. 2: GAP comparison between PF and MILP

Similarly, from Figure 4 we observe that PF consistently
provides solutions of a significantly higher quality when com-
pared with solutions given by the MILP compact formulation.
The difference between the two methods in terms of costs is
very visible. Figure 5 shows the relative improvement of the
LP-relaxation value provided by PF with respect to MILP. We
notice that the PF formulation provides a much better relax-
ation bound compared with the compact MILP formulation. In
Figure 5 we observe that for all solved instances the value of
the relaxation at the root node provided by the PF formulation
is always greater than or equal to the given LP-relaxation of the
compact MILP formulation, so closer to the optimal solution.

Fig. 3: GAP comparison between PF and MILP

Fig. 4: Costs comparison between PF and MILP

Fig. 5: LP-relaxation improvement by the Path formulation.

1) Sensitivity analysis: For the sensitivity analysis we vary
the instances parameters such as: latency value lk, bandwidth
bk, node capacities cu and functions capacities mf and observe
how the algorithm will behave, by putting lk = α× lk, bk =
α× bk, cu = α× cu and mf = α×mf with α ∈ {1.0, 1.5}.

61

Instance name CPU time(s) GAP(%) Costs($) Relaxation value
PF MILP PF MILP PF MILP PF MILP

Abilene 1123.64 1688.92 0.61 4.85 77158.50 79990.30 67547.38 58929.67
Atlanta TL TL 27.03 58.37 156865.60 278836.30 103478.55 92640.77
Dfn-bwin TL TL − 1.58 70717.00 70656.50 63927.16 48731.37
Dfn-gwin TL TL − 8.79 131284.00 131783.70 116131.98 100959.17
Di-yuan TL TL 8.81 20.49 30759.70 35104.00 26154.09 25435.27
France TL TL 54.87 67.97 497767.20 651469.10 213059.66 187780.30
Geant TL TL 37.50 45.80 284847.80 451038.30 127580.37 109636.63
Janos-us TL TL 0.04 4.10 13221546.20 13775446.70 13204901.84 13204901.84
Newyork TL TL 32.10 50.11 248954.50 342506.20 157088.98 141291.17
Nobel-eu TL TL 55.86 74.45 430106.33 600379.83 152708.92 139001.24
Nobel-germany TL TL 8.66 45.11 77152.50 124062.90 65700.13 58908.65
Nobel-us TL TL 21.91 38.93 97874.20 118642.50 70360.64 63906.55
Pdh 1279.91 1587.34 1.17 1.20 54508.10 54561.60 50051.47 38874.36
Polska TL TL 15.67 31.30 116640.40 137285.30 90635.47 88343.00
Ta1 TL TL 41.52 58.86 217968.22 376160.33 94323.52 78467.77

TABLE VIII: CPU time, Gap, Cost and relaxation value comparison between PF and MILP.

The aim of these tests is to show the parameters that affect
directly the solution, and so the costs.

Figures 6 and 7 show the obtained results by varying
the number of paths generated by Yen algorithm, with
max paths ∈ {5000, 500, 100, 50} and α = 1.0. Fixing the
number of paths for Yen’s algorithm means that the demands
latency are tightened. We compare the values of the best
solutions found within one hour (averaged over 10 graphs per
instance type) for each of these settings.

Instances used in Figure 6 need at most 500 paths to be
solved to optimality. For these instances we varied the number
of max paths in {50, 100, 500}. We observe that adding a
small number of paths permits PF to converge quickly to a very
good solution for ”Geant” and ”Ta1” for which the number of
required paths exceeds 200 paths. Conversely, for instances
”Atlanta” and ”Nobel-germany” which required only 53 and
149 paths, respectively, to be solved to optimality, 50 paths
were insufficient to find a high quality solution. This can be
explained by the sparsity of their graphs and the number of
demands.

Instances used in Figure 7 require more than 500 paths to be
solved to optimality. We notice that for instances ”Janos-us”,
the PF formulation was struggling to find a good quality solu-
tion. For Géant and Ta1, the increasing of costs is explained
by the fact that Cplex reaches the time limit for all instances.
Moreover, when there are too many paths (variables), Cplex
needs more time to find a good solution, while it is faster with
a fewer number of variables. We observe that in this case there
is a trade-off between the quality of heuristic solution and the
size of the underlying formulation. For all other instances we
can see that the number of fixed paths does not affect a lot
the behaviour of PF.

Figure 8 shows that increasing the function capacities allows
for a significant cost reduction for all instances by -25,96 %.
A similar effect can be achieved by increasing node capacities
up to -2,78 %.

From Figure 9 we notice that increasing bandwidth of
demands increases costs for all solved instances up to 46,34
%. On the other hand, increasing latency for ”Dfn-bwin” and
”Pdh” allows cost reduction, both instances have almost the

Fig. 6: Costs comparison between path formulation with 500,
100 and 50 paths

Fig. 7: Costs comparison between path formulation with 5000,
500, 100 and 50 paths

same sparse graph topology. Increasing the bandwidth value
for some instances like ”Polska” and ”Dfn-gwin” makes them
infeasible. Conversely increasing the latency value makes the

62

Fig. 8: Costs comparison between Path formulations with 50
path and with/without increasing node and functions capacities

Fig. 9: Costs comparison between Path formulations with 50
path and with increasing function capacities, bandwidth and
latency

problem easy to solve, so we can have an optimal solution very
quickly. Increasing the latency increase the cost by +29,96 %.

VI. CONCLUSIONS

In this paper we have studied the Virtual Network Functions
Placement and Routing Problem for which the sum of the func-
tion installation and node activation costs has to be minimized.
The studied problem was considered with routing constraints,
latency constraints, node and function capacity constraints,
incompatibility and chaining constraints. The problem is NP-
hard and finding an optimal solution in reasonable computing
time is challenging. A compact MILP formulation proposed
in the earlier literature does not seem to be strong enough for
finding a solution using an off-the-shelf solver. To tackle the
problem from a computational perspective, we have proposed
a path-based formulation which provides an optimal solution
for some realistic instances from literature.

We have compared the compact MILP formulation and the
path-based formulation in terms of the CPU time and the

quality of obtained solution. We have also tested the path
formulation with different values of problem parameters and
discussed the difference in terms of costs and (in)feasibility.

REFERENCES

[1] I. Ljubić, A. Mouaci, N. Perrot, and E. Gourdin, “Benders decomposition
for the uncapacitated virtual network functions placement and routing
problem,” Submitted to Computers & Operations Research, 2019.

[2] A. Tomassilli, “Towards Next Generation Networks with SDN and
NFV,” Ph.D. dissertation, Université Côte d’Azur, Nice, France.

[3] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on. IEEE, 2014, pp. 7–13.

[4] N. Huin, A. Tomassilli, F. Giroire, and B. Jaumard, “Energy-efficient
service function chain provisioning,” Journal of Optical Communica-
tions and Networking, vol. 10, no. 3, pp. 114–124, 2018.

[5] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service chain
provisioning,” IEEE/ACM Transactions on Networking, vol. 26, no. 3,
pp. 1320–1333, 2018.

[6] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the nfv provisioning puzzle: Efficient place-
ment and chaining of virtual network functions,” in Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium on. IEEE,
2015, pp. 98–106.

[7] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking (TON), vol. 26, no. 4,
pp. 1562–1576, 2018.

[8] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Cloud Networking
(CloudNet), 2015 IEEE 4th International Conference on. IEEE, 2015,
pp. 171–177.

[9] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2015, pp. 1–9.

[10] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 1346–1354.

[11] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[12] B. Addis, G. Carello, F. De Bettin, and M. Gao, “On a Virtual
Network Function Placement and Routing problem: properties and
formulations,” Nov. 2018, working paper or preprint. [Online].
Available: https://halshs.archives-ouvertes.fr/halshs-01643064

[13] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, “Virtual
function placement for service chaining with partial orders and anti-
affinity rules,” Networks, vol. 71, no. 2, pp. 97–106, 2018.

[14] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971.

[15] “SNDlib,” Dec 10, 2019, http://sndlib.zib.de/.
[16] T. Monawar, S. B. Mahmud, and A. Hira, “Anti-theft vehicle tracking

and regaining system with automatic police notifying using haversine
formula,” in 2017 4th International conference on Advances in Electrical
Engineering (ICAEE). IEEE, 2017, pp. 775–779.

[17] L. M. Larsen, A. Checko, and H. L. Christiansen, “A survey of the
functional splits proposed for 5g mobile crosshaul networks,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 146–172, 2018.

[18] D. Chitimalla, K. Kondepu, L. Valcarenghi, M. Tornatore, and
B. Mukherjee, “5g fronthaul-latency and jitter studies of cpri over eth-
ernet,” IEEE/OSA Journal of Optical Communications and Networking,
vol. 9, no. 2, pp. 172–182, 2017.

[19] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in 2015
IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN). IEEE, 2015, pp. 191–197.

[20] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

63

