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Abstract—Using multiple network interfaces to accelerate data
transfer is an attractive feature on multi-homed endhost. The
key component in a multipath system such as MPTCP is the
scheduler, which determines how to distribute the packets over
multiple paths. In this paper, we propose GAPS, a new multipath
scheduler aiming at decreasing the out-of-order queue size (OQS)
under heterogeneous paths. In GAPS, a deep reinforcement
learning agent monitors the network states, adjusts the GAP
value of each path, and maximizes MPTCP’s reward utility.
GAPS is precise in that it searches the optimal action policy,
and only has 1.2% to 3.3% deviation from the true GAP.
It is adaptable in that it performs better in varying network
conditions and congestion control algorithms. In the controllable
and realistic experiments, GAPS decreases the subflows’ 99th
percentile OQS by up to 68.3%. It allows an increase of 12.7% in
application goodput with bulk traffic while reducing application
delay by 9.4% as compared to the state-of-the-art schedulers. For
the short and long MPTCP flows, GAPS has the flow completion
time (FCT) reduction by 13% and 21%, respectively.

I. INTRODUCTION

Currently, the most widely used multipath solution is
MPTCP [1], which enables unmodified applications to lever-
age multiple network interfaces, such as Cellular, WiFi, and
Ethernet. It has already been implemented in the linux kernel
and supported by many commercial products [2]. MPTCP adds
a shim layer between TCP and Application layer, which can
establish several TCP subflows over each network interface.
The scheduler determines the amount of packets to distribute
to each subflow from a sending queue. However, the hetero-
geneity of TCP subflows makes it challenging to design a
good scheduler. As discussed in [3]–[6], a wrong scheduler
causes severe packet out-of-order arrival at the receiver side,
when the packets scheduled on the faster path have to wait
for the packets on the slower path, and thus to arrive in a
shared out-of-order queue of the receiver. This phenomenon
is also known as head-of-line (HoL) blocking [7]. Because of
delaying the packets delivery, HoL makes the application less
interactive and results in poor user experience.

Endhost must maintain a large buffer size to reorganize
the out-of-order packets. If the host buffer is limited, it will
cause a dramatic reduction in application performance, as the
receive buffer has to exclude some packets. Besides, a data-
level acknowledgement (Data ACK) of the blocking packets in
the slower subflow will cause bursting traffic [6], as the faster
subflow accumulates huge free send windows (SWND) during
the waiting time. If the in-network buffer is not bigger enough

to store these bursting packets, it will cause severe packet loss
and congestion window capping.

Several works have been made to address these problems.
DAPS [8] firstly proposes the concept of out-of-order sending
for in-order arrival. BLEST [9] calculates the waiting packets
of the faster subflow based on the properties of paths, such
as round-trip-time (RTT), congestion windows (CWND), and
SWND. Inheriting these ideas, ECF [4] adds a deviation to
calibrate the value of waiting packets and achieves better per-
formance than DAPS and BLEST. STMS [6] finally maintains
a GAP value for each subflow to preallocate future packets,
which performs better than ECF. Through simple formula-
derivation in Section.II-B, we find that DAPS, BLEST, and
ECF are also the GAP-based scheduler, which transforms the
uncontrollable OQS problem from the receiver side to the
adjustable GAP value at the sender side.

Our experiment shows that GAP-based schedulers decrease
the OQS with their improvement of algorithms. However, they
are inadaptable to various network environments, especially
when the packet loss rate (PLR), the available bandwidth,
and default buffer [9] are changeable. As none of the GAP-
based schedulers detect these factors to distribute the sending
packets. Moreover, the congestion controller (CC) algorithms
greatly affect the OQS, since most schedulers take CWND as
the main parameter to adjust their GAP value. We also observe
that the GAP values are imprecise when MPTCP maintains
more than three active subflows because their human experi-
ences only consider partial factors to calculate the blocking
packets and suit the specific scenarios.

In this paper, we design GAPS, which leverages a Deep
Deterministic Policy Gradient (DDPG) [10] to train four deep
neural networks (DNNs) through wide experiences in state
space and generates the continuous control policy for adjusting
GAP value. For each round of Data ACK, it gets OQS as
the reward utility to optimize the overall performance of
MPTCP. Extensive experiments show that GAPS significantly
outperforms the state-of-the-art schedulers in various network
conditions. The main contributions and results of this paper
are summarized as follows.

• We present a DDPG-based deep reinforcement learning
(DRL) framework, which realizes our experience-driven
philosophy on MPTCP packet scheduling. We utilize
DNNs as the function approximator to learn the GAP
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adjusting actions according to the runtime states without
relying on any accurate mathematical model.

• We integrate a Transformer network [11] as the represen-
tation layer of the actor-critic networks to encode the raw
states of dynamic subflows. With positional encoding,
each subflow obtains a unique label to determine its GAP
value. The relevant degree between any two subflows is
calculated by the self-attention layer, which increases the
accuracy of GAP.

• We add a new flag-bit in the reserved area of Data
Sequence Signal (DSS) option for each Data ACK. Co-
operating with the A-bit in the MP CAPABLE option,
the OQS is carried back from the receiver side to the
scheduler at the sender side as the reward utility of critic
network.

• We implement GAPS in the Linux kernel and evaluate
it over controllable and realistic conditions. The experi-
ments show that GAPS decreases the subflows’ 99th per-
centile OQS by 68.3%, improves the aggregated goodput
by up to 12.7%, and reduces the application delay by
9.4% as compared to the state-of-the-art schedulers.

II. BACKGROUND AND MOTIVATION

A. State-of-the-practice schedulers

Whenever the MPTCP stack is ready to send data, its
scheduler is invoked to execute two procedures: (a) choosing
an available subflow among the set of TCP subflows and (b)
deciding which segment to send considering the properties
of the subflow. We describe a modular scheduler function
analogous to [2]. The pseudo-code implementation of this
behavior is illustrated in Algorithm.1, which allows us to
design the scheduler in a modular infrastructure.

Within the modular framework, we begin with a simple
round-robin scheduler (RR), which fully utilizes the capacity
of each path but ignores the external influences on subflows. If
any active subflow is poor or broken, RR suffers a long-term
blocking or even severe packet retransmission. Considering
these heterogeneous subflows where significant delay differ-
ences are observed between them [12], [13], we discuss the
popular delay-based schedulers [3], [14], including Minimum
RTT First (MinRTT) with Retransmission Penalization (RP)
and Bufferbloat Mitigation (BM) mechanism.

Algorithm 1 An MPTCP connection ready to send data.
mptcp→sched represents the specific callback of schedulers

1: subflow = mptcp→sched→get subflow();
2: while subflow != NULL do
3: data = mptcp→sched→get data(subflow);
4: while data != NULL do
5: send data(subflow, data);
6: data = mptcp→sched→get data(subflow);
7: end while
8: subflow = mptcp→sched→get subflow();
9: end while

MinRTT reduces the delay for the interactive applications
but still suffers out-of-order arrival [14], head-of-line blocking
[7], and receive-window limitation [15]. Through calculating
RTT difference, RP and BM reinjects the blocking segment
and drains the in-network buffer by capping CWND. Due
to their opportunistic nature, RP and BM can not always
reduce the RTT to the optimal value but cause a recurrence of
blocking [9]. Their frequent reinjection also wastes available
bandwidth and transmission time. Besides, MPTCP bursting
pattern exacerbates the in-network bufferbloat, which is un-
solved and detailedly discussed in [6]. To overcome these
challenges, we take more factors into account to explore the
following GAP-based schedulers, including DAPS, BLEST,
ECF, and STMS.

B. State-of-the-art schedulers
We demonstrate a case with only two active subflows

and denote CWNDf , CWNDs, RTTf , RTTs as the available
CWND and RTT of the faster subflows and slower subflows.
Assuming that there are 100 packets in the sending queue,
which have not been assigned to any subflow. As shown
in Fig.1, if RTTf has redundant CWNDf , the packets are
scheduled to it. If RTTf does not have available space, the
packets are scheduled to the RTTs with CWNDs. Rather than
taking packets whose sequence numbers are right after those
transmitted on the faster path, the slower subflow sends packets
with bigger sequence numbers. It leaves a sequencing GAP
for the faster path to send the corresponding packets in the
future. By the time the packets from the slower path arrive,
all packets from the faster path (including GAP) have already
arrived without any interval.

Delay Aware Packet Scheduler (DAPS) aims for in-order
arrival at the receiver to prevent its buffer from blocking. It
leverages RTT and the available CWND to calculate the GAP
value. The sequence number of the packets transmitted on the
slower path is determined by the ratio between the two paths,
and the available congestion window on the faster path. Then
the GAP value of DAPS is estimated as:

GAPf = min(bRTTs
RTTf

c, CWNDf − unACKf ) (1)

BLocking ESTimation-based scheduler (BLEST) pro-
poses a proactive scheduler to decide at packet scheduling
time whether sending packets over the slower subflow blocks
the SWND or not. It assumes that all segments will occupy
space in SWND for at least one RTTs, if they are sent on
the slower subflow. Therefore, the amount of data that be sent
on the faster subflow during RTTs is the value of GAP, and
derived as:

GAPf = (CWNDf +

RTTs
RTTf

2
) ∗ (RTTs

RTTf
− 1) (2)

Earliest Completion First scheduler (ECF) monitors
subflow not only RTT estimates but also the bandwidths. By
determining whether using a slower path for the injected traffic
will cause faster paths to become idle. ECF more efficiently
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Fig. 1. The demonstration of GAP concept with green and blue for packets over the faster and slower subflows respectively.

utilizes faster paths by removing the idle periods. Thus, the
GAP value is the packets injection of faster subflow during
the idle time. By using a hysteresis value β and a standard
deviation δ of RTT, the formulation of ECF is then transformed
as:

GAPf =
(2 ∗RTTf + δ) ∗ CWNDs

RTTs
−

((1 + β) ∗ (RTTs + δ)−RTTf ) ∗ CWNDf

RTTf

(3)

Slide Together Multipath Scheduler (STMS) realizes
the Data ACKed reflects the degree of OQS. Denoting
delta gap and adjust interval as the adjusting step and
interval, STMS monitors the data acked for each Data ACK,
then if data acked is bigger than two and sent from the
slower path, delta gap = data acked; otherwise, delta gap
= - data acked. An exponentially weighted moving average
(EWMA) of delta gap over adjust interval adjusts its value
as below:

GAPf+ = EWMA(delta gap, adjust interval) (4)

After passing GAP as an argument to the callback function
get data(subflow,GAP ) in Algorithm. 1, the design diffi-
culty is then translated to adjust the GAP value. Any bias from
its TRUE value will cause packets out-of-order arrival. We
rebuild the controllable testbed, which has been setup in STMS
or ECF. The RTTf , RTTs are randomly set with [20ms,50ms]
and [50ms,100ms]. The bandwidths of both paths are set to
50Mbps. The packet loss rate are set to 0.01%. Based on [13],
[16], the in-network buffer of routers are set to 100 packets
for WiFi and 3000 packets for LTE. With a coupled balia [17],
both receive and send buffers are set to the Linux default size
(6MB). Unless otherwise noted, these initial setups keep the
same in this paper.

We monitor the OQS of MPTCP as the waiting bytes in the
out-of-order queue [18]. Fig. 2 shows that the average OQS of
GAP-based schedulers is smaller than the MinRTT scheduler
under various network settings. The finer GAP-adjusting in
STMS earns the smallest average OQS, which indicates that
its GAP value is more accurate and makes packets arrive in-
order. However, we also observe that PLR significantly affects
the OQS, as none of the GAP-based schedules detect the PLR
to schedule the packets just like [19].

We consider the effects of different CCs implemented in [2].
ECF, BLEST, and DAPS are susceptible to CCs, as their GAP-
values directly derives from CWND. STMS has the smallest
deviation since it is CC agnostic [6]. For each Data ACK, the

PDR, receive windows (RWND), and Data ACKed packets
affect the OQS in a similar CCs fashion. If we consider all
these factors, the GAP value cannot be confirmed by a simple
mathematical model but with a high-dimensional tensor. This
is why the existing schedulers ignore some important attributes
of a heterogeneous network.
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Fig. 2. The distribution of OQS under various network environments.

To clarify the performance of GAP-based schedulers, we
measure the OQS by varying the number of active subflows.
As shown in Fig. 3, when MPTCP establishes more than
three subflows, MinRTT has a smaller OQS than all GAP-
based schedulers. Besides, we adjust the GAP value of each
subflow manually and search their TRUE values by inspecting
the minimum OQS. Fig. 3 shows that the above scheduler’s
GAP values deviate from the TRUE values by about 10% to
15% with the increasing active subflows. We explain that the
active subflows for each round have to be sorted solely by their
RTT, which mistakes the property of subflows and cumulates
the error of each GAP. Moreover, the design of the above
GAP-based schedulers involves parochial human experience,
which assumes a specific network environment with no more
than two subflows.

In this paper, we dissect deep reinforcement learning tech-
niques, which is the subfield of machine learning concerned
with decision making and action control. It studies how an
agent can learn to achieve goals in a complex, uncertain
environment. DRL has achieved excellent results in many chal-
lenging environments with advances in DNNs: DeepMind’s
Atari results [20] and AlphaGo [21] used DRL algorithms,
which make few assumptions about their environments and
thus can be generalized in other settings. Inspired by these
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results, we are motivated to enable DRL for automatic GAP
adjusting to adapt the heterogeneous network environments.
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Fig. 3. The relationship between OQS and GAP under multiple active
subflows.

III. APPROACH

DRL is a deep version of regular reinforcement learning
(RL), which combines insights from recent advances in deep
learning and RL. Considering a standard RL system, which
consists of an agent interacting with an environment in discrete
timesteps. At each timestep t, the agent receives an observation
of the measurement state st of the uncertain environment,
takes actions at according to its policy π, and receives a
reward rt. The goal in RL is to learn a policy π(st), which
maps its state to a deterministic action or to a probability
distribution over actions, such that the cumulative discounted
reward

∑T
t=0 γ

tr(st, at) is maximized, where γ ∈ [0, 1] is the
discounting factor.

For most practical problems, it is infeasible to learn all
possible state-action pairs as the high-dimensional state space.
Thus function approximation technique [22] is commonly
used to learn the action policy. A function approximator is
parameterized by a vector θ, whose size is much smaller
(thus mathematically tractable) than the number of all possible
state-action pairs. The function approximator can have many
forms. Deepmind designs a Deep Q-Networks (DQN) [20] to
play Atari game better than human experts, which extends the
traditional Q-learning with a DNN approximator.

DQN takes a state-action pair (st, at) as the inputs, and
outputs the corresponding Q-value Q(st, at), which represents
the expected discounted cumulative reward Q(st, at; θ) =
E[Rt|st,at ; θ]. Then, the optimal policy π∗(s) can be derived
by applying a ε-greedy strategy that follows the greedy strat-
egy with probability 1–ε, and selects a random action with
probability ε. Since DQN refers to a neural network function
approximator with weights vector θQ as a Q-network. The Q-
network can be trained or updated by minimizing a sequence
of loss functions L(θQ) that changes at each iteration.

L(θQ) = E[(Q(st, at; θ
Q)− yt)2] (5)

where yt is the target value for each state-action pair derived
from the Bellman equation.

yt = r(st, at) + γ ∗Q(st+1, µ(st+1)|θQ) (6)

Although neural network or DNN has already been used
as the function approximator before, it is known that such a

non-linear function approximator is not stable and even leads
to oscillation or divergence in the parameters. To improve the
stability of training, DQN introduces two effective techniques:
experience replay and the target network. By using experience
replay, a DRL agent stores historical state transition samples
into a replay buffer, and then updates the DNN by a mini-batch
sampling from the replay buffer instead of the immediately
collected transition. DRL agent thus breaks correlations in the
observation sequence, and learns from a more independently
and identically distributed past experience. Moreover, a sep-
arate target network is proposed for calculating target values
yt, which shares the same network structure as the original
Q-network, and copies the weights θQ

′
of the target network

from θQ.
However, DQN can only handle discrete and low-

dimensional action spaces. Many tasks of interest, such as our
GAP adjusting, have continuous and high dimensional action
spaces. As the popular approach to continuous control is the
policy gradient [23]. The actor-critic based approach called
Deep Deterministic Policy Gradient (DDPG) [10] for DRL,
which has integrated both DQN and the emerging deterministic
policy gradient for continuous control. The basic idea behind
DDPG is to maintain four DNNs simultaneously. Two DNNs,
critic Q(st, at; θ

Q) and actor µ(st; θµ) with weights θQ and
θµ, are trained on sampled mini-batches of replay buffer,
where each item represents an experienced transition tuple
(st, at, rt, st+1) during the agent interacts with the environ-
ment. The other two copying DNNs, target actor µ(st; θµ

′
) and

target critic Q(st, at; θ
Q′
) are used for smooth updates of the

actor and critic networks. For a probability state distribution
ρ and the start distribution J , the parameters θQ and θµ of
above DNNs are updated by the following gradient.

∇θQL(θQ) =E(st,at)∼ρ[(yt −Q(st, at; θ
Q))∗

∇θQQ(st, at; θ
Q)]

(7)

∇θµJ ≈Est∼ρ[∇aQ(s, a; θQ)|s=st,a=µ(st)∗
∇θµµ(s; θµ)|s=st ]

(8)

The target networks of actor and critic are then updated by
having them slowly track the two learned deep neural networks
with τ � 1, as below.

θ
′
← τθ + (1− τ)θ

′
(9)

Combining with the powerful DDPG, several works have
achieved excellent performance in network transmission sys-
tems, such as adjusting flow priority of datacenter in AUTO
[24], adapting bitrate of video streaming in Pensieve [25], and
classifying packets of high-speed switches in NeuroCuts [26].
With similar designing challenges, we carefully select the state
space, action space, and reward function, which are critical to
the ultimate performance of our system.

Because adding more parameters into the state space does
not necessarily result in noticeable performance improvement,
which instead increases the data collection overhead and
training complexity. From the experiments in section II-B,
we know that RTT, CWND, PDR, and PLR are correlated
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with GAP adjusting. Data ACKed and the host buffer size are
proved to be related to OQS-latency in [6]. Then, the value of
RTT, CWND, PDR, PLR, Data ACKed, and RWND construct
the attributes of each state input.

State space of an MPTCP flow at epoch t is st = [st1,···,
sti,···, stN ], and sti = [dti, cti, bti, lti, wti, kti], where sti is the
state of subflow i of an MPTCP connection at t; dti, cti, bti, lti,
wti, and kti are the corresponding RTT, CWND, PDR, PLR,
RWND and DATA ACKed from the subflow i respectively;
and N is the total number of the fluctuant subflows, which
are established by the MP JOIN option or closed by the RST
option.

Action space of the active subflows at epoch t is at = [gt1,···,
gti,···, gtN ], where gti specifies how much change needs to
be made to the GAP value of subflow i at t. We denote the
minimum tuning unit as one TCP packet (about 1KB), which
is finer than the STMS. Then, the positive, negative, and zero
actions lead to increasing, reducing, and staying at the same
GAP value size, respectively. Note that at each epoch t, GAPS
takes actions on one target MPTCP flow of N TCP subflows.

Reward function of the critic network at epoch t is rt =∑N
i f(i, t), where f(i, t) gives the utility function of active

TCP sublfow i. Because OQS at the receiver side is the goal of
optimizing, which is expected to construct the reward function.
As shown in Table. I, we add a Q-bit flag in the reserved area
of DSS option for each Data ACK. Cooperating with the flag
A-bit in the MP CAPABLE option, we occupy the two octets
of CHECKSUM area to return the current OQS to the sender
side when Q&A = 1. Then we denote rt = -OQS since all
active subflows share the out-of-order queue.

TABLE I
DATA ACK WITH Q-BIT FLAG

Kind Length Subtype Reserved Q F M/m A/a
Data-level Acknowledgment

Data Sequence Number
Subflow Sequence Number

Data-level Length Out-of-order Queue Size

Because of the cumulative ACK mechanism, each Data
ACK may free huge space and consume several subflow-level
RTT, which satisfies the time cost of packets scheduling round
from the sending queue at epoch t.

Except for the above considerations, the major obstacles
of GAPS focuses on three points: (a) the number of active
subflows is dynamically changed, which varies the attributes of
subflows; (b) the correlation degree between any two subflows
with their attributes is the premise of calculating the GAP
value; (c) each subflow must have a unique symbol position
to map its GAP value. Recurrent Neural Networks (RNN)
or Long Short-Term Memory (LSTM) has been widely used
to memory and encode the variable-length input sequences
for DNN in [27]–[30]. However, RNN-based methods suffer
from massive training and processing complexity [11], which
becomes critical and causes poor correlation degree at longer
input sequence lengths, as memory constraints limit batch-

ing across neural layers. Google’s Transformer model [11]
allows for significantly more parallelization and deals with the
above three obstacles by using Input-Embedding [31], Multi-
head Attention, and Positional-Encoding [32], respectively.
We, thus, integrate the stacked Transformer’s encoders as the
representation network of the DDPG framework.

IV. SYSTEM DESIGN

As illustrated in Fig.4, we present the system design and
implementation of GAPS. The core idea behind our system
is to train a DRL agent to perform accurate GAP adjusting
actions for active TCP subflows on an MPTCP connection,
and maximize the cumulative reward utility (i.e., minimizing
the OQS). As mentioned before, all the TCP active subflows
are fluctuant and only refer to a single sending buffer, where
GAPS is running between them.

Transformer Network

Critic Network Actor Network

Replay
buffer

Flow states

MPTCP
subflows

Endhost

Policy Gradient

GAP Adjusting Actions

Reward

Data Collection

Fig. 4. The system diagram of GAPS.

To realize this formulation, we design the architecture of
GAPS, which consists of the following two core elements.

Transformer network takes the raw state st of all active
TCP subflows as the input at each decision epoch t, and
generates output (i.e., a matrix with attached information),
which are then used by the actor-critic networks for deriving
actions.

As mentioned above, the major obstacle of GAPS is to
deal with the situation, in which the active subflows may
change over time. Most DNN needs to have a fixed input
sequence. A straightforward way to use a neural network
here is to zero-pad or exclude some attributes, which lead
to poor training. Considering that Transformer-model encodes
a variable input sequence into a normalized matrix. We thus
choose Transformer encoders to process the states of dynamic
subflows for the DNNs. As illustrated in Fig. 5, each encoder
is composed of two sub-layers. The first is a multi-head self-
attention layer, and the second is a simple position-wise fully
connected feed-forward network. Two normalized layer [33]
are deployed as a residual connection [34] around each of the
encoder. Each state sti is embedded into a vector through the
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Fig. 5. The stacked Transformer encoders.

Input Embedding module. The unique position of each state
sti is determined by a positional encoding. The vectors of st
are then passed to the self-attention module with long-range
dependencies [35]. After processed by Ex stacked encoders,
the output is returned as the input of the actor-critic networks.

Actor critic network is trained through Algorithm.2, which
is determined by Equation.6,7,8,9.

Algorithm 2 Actor critic algorithm for multipath scheduler
1: Randomly initialize critic network Q(s, a; θQ) and actor

policy µ(s; θµ) with weights θQ and θµ;
2: Initialize target network Q′ and µ′ with weights
θQ

′←θQ, θµ′←θµ;
3: Initialize replay buffer R←φ;
4: Initialize a random process N for action exploration;
5: Receive initial state s′ from Transformer network;
6: for each received Data ACK do
7: Select action at = µ(st; θ

µ) + Nt;
8: Execute at and observe reward rt and state st+1;
9: Store transition (st, at, rt, st+1) into R;

10: Sample transitions (si, ai, ri, si+1) from R;
11: Calculate yi = ri + γQ′(si+1, µ

′(si+1; θ
µ′
)|θQ′

);
12: Update critic network by minimizing the loss:

L = 1
N

∑
i (yi −Q(si, ai; θ

Q))2;
13: Update the actor policy by using the gradient:

∇θµJ ≈ 1
N

∑
i

∇aQ(s, a; θQ)∇θµµ(s; θµ);
14: Update the target networks:

θQ
′←τθQ + (1 - τ)θQ

′
,

θµ′←τθµ + (1 - τ)θµ′;
15: end for

Firstly the algorithm randomly initializes parameters θµ

of actor-network and θQ of the critic-network. The target
networks of actor and critic networks copy their structures
with initial parameters θµ

′
, and θQ

′
. In order to sample the

state transitions, we initialize the replay buffer R. As the

major challenge in continuous action spaces is exploration.
We initialize a noise process [36] N for action exploration.
Then the Transformer network receives the initial observation
state s′ from the TCP subflows layer and decodes it to R.
After that, we enter a training loop until the neural network
is convergence. For each received Data ACK, the action is se-
lected from at = µ(st; θµ) + Nt according to the current actor
policy and exploration noise. Then the action at is applied to
the active TCP subflows at the sender side, the reward rt and
new state st+1 are observed from the environment. The replay
buffer R stores the newest state transition (st, at, rt, st+1)
and removes the oldest tuples when the buffer is full. And
then a random minibatch of N transitions (si, ai, ri, si+1) is
sampled from the buffer R to update the neural networks.
The target value yi is calculated according to Equation.6.
Then the critic network is updated according to Equation.7
by minimizing the loss function. According to Equation.7, the
actor network is updated by using the sampled policy gradient
with N transitions. Finally, the target networks are slowly
updated according to Equation.9.

V. IMPLEMENT

In our implementation, the Transformer network is con-
structed by Ex = 6 stacked encoders. The Input Embedding of
each encoder is a vector of size 512. The actor-network has
two fully-connected hidden layers with 48 and 48 neurons.
The rectified linear function [37] is used for activation in
the two hidden layers. The hyperbolic tangent function is
used for activation in its output layer. The critic-network has
two hidden layers same as the actor-network except for one
extra output layer, which has only one linear neuron (with
no activation function). During training, we use Adam [38]
for learning the neural network parameters with a learning
rate of 10−4 and 10−3 for the actor and critic, respectively.
The soft target update is set to τ = 0.001. We set the
default weight α = 0.5 to and use a discount factor γ =
0.99, which implies that 100 future time steps will influence
current rewards. For compatibility, we leveraged the TFLearn
deep learning library’s TensorFlow API [39] to declare the
neural network during both training and testing. Thus, in the
operation of the GAPS system, it requires interaction between
the kernel and userspace. To simplify the execution logic, we
implement the packet scheduler in the kernel that executes
the GAP adjusting of each subflows from the actor-network
in the userspace by a system call setsockopt(). Besides,
we call getsockopt() to capture the raw network states and
OQS metrics. For the rest parts, we compile MPTCP v0.95
[2] into two endhosts with Ubuntu 16.04 by making kernel
configure, which includes the recent comparable schedulers
and congestion control algorithms. An Openwrt [40] router
installed with TC [41] connects the two endhosts and simulates
the network settings in the controllable lab. The endhosts are
equipped with three kinds of interface in the wild, including
Ethernet (80Mbps), WiFi (50Mbps), and LTE (30Mbps, USB
cellular modem). We maintain at most 8 subflows (each with
6 attributes) except for the wire to wire one.
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VI. EVALUATION

A. Evaluation in the lab

We first focus on the out-of-order queue size at the receiver
side with multiple active subflows. Fig. 6 shows the CDF of
OQS at the same endhost with different schedulers. GAPS
causes the smallest OQS than other schedulers. The average
OQS of STMS is around 0.31MB, but the 99th percentile
of MPTCP connection in GAPS has OQS less than 100KB,
which makes about 68.3% reduction. Simulating a poor net-
work environment with 1% PLR and 50KB in-network buffer,
We further test the GAP-value deviation under different active
subflows. Fig. 7 demonstrates that GAPS only has 1.2% to
3.3% deviation from the inspecting true GAP, which is ten
times more accurate than the existing schedulers.
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Fig. 6. The distribution of OQS.
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Fig. 8. The normalized OQS of GAPS relative to that of STMS.

By varying the default settings, we normalize the OQS of
GAPS relative to that of STMS. As the heat map is shown in
Fig. 8, GAPS is more adaptable to a heterogeneous network.
Because it has no more than half of the OQS than STMS in the
lossy environment (PLR > 0.01%). When we sysctl different

CCs, GAPS is also CCs agnostic as its OQS stays a stable
normalized ratio compared with STMS.

Because the OQS latency affects the packet delivery, we also
test the application delay of different schedulers. The result
that established 5 subflows is shown in Fig 9. It demonstrates
that GAPS has a smaller application delay in different network
settings. The reduction of its application delay reaches up to
9.4% as compared to STMS. When the network environment
is poor, GAPS reduces the application delay by up to 16.3%
as compared to DAPS.

10 5 10 4 10 3 10 2

Packet Loss Rate

0

25

50

75

100

125

150

175

Ap
pl

ica
tio

n 
De

la
y 

(m
s)

MinRTT
BLEST

GAPS
STMS

DAPS
ECF

40 50 60 70
Bandwidth (Mbps)

0

25

50

75

100

125

150

175

Ap
pl

ica
tio

n 
De

la
y 

(m
s)

MinRTT
BLEST

GAPS
STMS

DAPS
ECF

50 60 70 80
In-network Buffer (packets)

0

25

50

75

100

125

150

175

Ap
pl

ica
tio

n 
De

la
y 

(m
s)

MinRTT
BLEST

GAPS
STMS

DAPS
ECF

2 3 4 5
Host Buffer (MB)

0

25

50

75

100

125

150

175

Ap
pl

ica
tio

n 
De

la
y 

(m
s)

MinRTT
BLEST

GAPS
STMS

DAPS
ECF

Fig. 9. The application delay under various network environments.

We then investigate how our scheduler improves the aggre-
gated goodput under different buffer sizes. Fig.10 shows the
result. When the in-network buffer is limited, our scheduler
can improve the average goodput by about 12.7% as compared
to STMS. When the host buffer is extremely limited, GAPS
still has no blocking packets, and gets about 5.8% goodput
improvement than STMS. When the PLR and bandwidth are
changeable, GAPS still achieves significant goodput improve-
ments.
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Fig. 10. The goodput under various network environments.

160



B. Evaluation in the wild

We implement a web service at the server endhost, which
provides files download service with different sizes. The client
endhost has installed a browser, which is located inside four
different locations of our campus: Office, Library, Dorm,
and canteen. Fig 11 shows the improvement of aggregated
goodput and application delay in the wild, which maintains
at least three subflows. GAPS allows an increase of 11.4% in
application goodput with bulk traffic as compared to STMS
while reducing application delay by 6.3%.
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Fig. 11. The performance improvement in different locations.

We measure the FCT of downloading files with different
sizes 32MB and 512MB as the short and long MPTCP flow,
respectively. The result is shown in Fig. 12. As compared to
STMS, GAPS reduces the flow completion time by up to 13%,
21% for 32MB, and 512MB files download.

Office Dorm Library Canteen
Locations

0

1

2

3

4

5

6

Flo
w 

Co
m

pl
et

io
n 

Ti
m

e 
(s

) MinRTT
BLEST

GAPS
STMS

DAPS
ECF

Office Dorm Library Canteen
Locations

0

20

40

60

80

Flo
w 

Co
m

pl
et

io
n 

Ti
m

e 
(s

) MinRTT
BLEST

GAPS
STMS

DAPS
ECF

Fig. 12. The flow completion time in different locations.

VII. RELATED WORK

Several advanced schedulers have been proposed to op-
timize the performance of MPTCP in different application
scenarios. ReMP [42] sends duplicated data to improve relia-
bility in the cost of high redundancy. eMPTCP [43] considers
energy consumption to make scheduling decisions. MultiMob
[44] extends the MPTCP handshake to enable immediate
retransmissions. Lim et al. [45] propose a cross-layer opti-
mization model for multipath scheduling. DEMS [5] develops
theoretical analyses that making all subflows complete at the
same time is a necessary condition for achieving the optimal
performance. Different from the existing solutions, GAPS is an
experience-driven scheduler, which is self-adaptive to various
networks. To the best of our knowledge, it is the first time
that DDPG and Transformer are integrated into the design and
implementation of a realtime traffic scheduler for MPTCP.

VIII. CONCLUSION

In this work, we derive the GAP-based MPTCP schedulers
under heterogeneous path conditions. To inherit a precise
and adaptable scheduler, we design a learning-based system,
which feeds variable states of TCP subflows into a deep
reinforcement learning agent and adjusts the appended GAP-
value of each subflow accurately. We implement GAPS in the
Linux kernel and evaluate it over both controlled and real
network conditions. Our experimental results show that GAPS
outperforms state-of-the-art schedulers in diverse congestion
controllers and network settings, especially when the path is
lossy and the buffer is limit.
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[9] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “Blest: Blocking
estimation-based mptcp scheduler for heterogeneous networks,” in
2016 IFIP Networking Conference (IFIP Networking) and Workshops,
pp. 431–439, IEEE, 2016.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, pp. 5998–6008, 2017.

[12] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “Wifi, lte, or
both?: Measuring multi-homed wireless internet performance,” in Pro-
ceedings of the 2014 Conference on Internet Measurement Conference,
pp. 181–194, ACM, 2014.

[13] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in
3g/4g networks,” in Proceedings of the 2012 Internet Measurement
Conference, pp. 329–342, ACM, 2012.

161



[14] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing
and implementing a deployable multipath {TCP},” in 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
12), pp. 399–412, 2012.

[15] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath tcp,” in Proceedings of
the ninth ACM conference on Emerging networking experiments and
technologies, pp. 393–398, ACM, 2013.

[16] J. Sommers and P. Barford, “Cell vs. wifi: on the performance of
metro area mobile connections,” in Proceedings of the 2012 Internet
Measurement Conference, pp. 301–314, ACM, 2012.

[17] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath tcp: Analysis,
design, and implementation,” IEEE/ACM Transactions on networking,
vol. 24, no. 1, pp. 596–609, 2014.

[18] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen,
and R. Mijumbi, “A measurement study on multi-path tcp with multiple
cellular carriers on high speed rails,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
pp. 161–175, ACM, 2018.

[19] D. Ni, K. Xue, P. Hong, and S. Shen, “Fine-grained forward prediction
based dynamic packet scheduling mechanism for multipath tcp in
lossy networks,” in 2014 23rd International Conference on Computer
Communication and Networks (ICCCN), pp. 1–7, IEEE, 2014.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[21] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[22] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[23] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference
on Machine Learning, pp. 2829–2838, 2016.

[24] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pp. 191–205, ACM, 2018.

[25] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pp. 197–210, ACM, 2017.

[26] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,” in
Proceedings of the ACM Special Interest Group on Data Communica-
tion, SIGCOMM 2019, Beijing, China, August 19-23, 2019, pp. 256–269,
2019.

[27] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning
with neural networks,” Advances in NIPS, 2014.

[28] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path tcp meets deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1325–1336, 2019.

[29] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.
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