On the Practical Detection of Hierarchical Heavy
Hitters

Jalil Moraney, Danny Raz
Computer Science Department
Technion - Israel Institute of Technology
{jalilm, danny}@cs.technion.ac.il

Abstract—Finding the network’s heaviest flows is an important
and challenging network monitoring task and a critical building
block for many other applications. In the hierarchical heavy
hitters (HHH) problem, one needs to identify the most frequent
network IP-prefixes hierarchically. This is a challenging task since
the number of relevant IP-prefixes of flows in a busy router
is much higher than the number of counters. To address this
point, many streaming algorithms were recently developed, but
they use complex data-structures and usually have non-constant
per-packet update-time, preventing them from being deployed in
line-speed. A randomized constant-time algorithm was proposed
recently; however, it is only applicable to extremely large streams.

In this paper, we propose a constant-time algorithm for detect-
ing the HHH that does not have any convergence requirements
and achieves comparable results to state of the art. Furthermore,
our algorithm uses only efficient built-in counters available in
current network devices, making it deployable on commercially
off-the-shelf network gear. We provide an analytical study of the
problem and show, using emulation over real traffic, that our
algorithm performs at least as well as the best-known streaming
algorithms without performing expensive per-packet operations
or requiring convergence periods.

I. INTRODUCTION

The increasing popularity of cloud based systems and the
shift towards Infrastructure as a Service (IaaS) as the preferred
solution for many organizations [1], requires new approaches
and novel solutions in the area of system management. Ef-
ficient management of such infrastructure heavily rely on
efficient monitoring of the system resources and the workload.
Despite many previous works considering efficiency aspects
of many network management systems [2], [3], [4], very few
tackled the practicality of deploying efficient monitoring tasks.

A practical efficient algorithm for any network monitoring
task requires: (1) to be deployable on off the shelf network
nodes, (2) to cope with current line rates, and finally (3) to use
a limited amount of network resources which is much smaller
than the ever increasing number of active flows.

An important monitoring task that was in the spotlight of
recent research [5], [6], [7], [8], [9], [10] is the detection of
Heavy Hitters (HH) and Hierarchical Heavy Hitters (HHH).
A Heavy Hitter is a flow that is responsible for a considerable
portion of the overall traffic (i.e., flows with traffic that exceeds
a certain threshold) and a Hierarchical Heavy Hitter is an
aggregation of non-HH flows that share a common property
and is responsible, as a whole, for traffic above the threshold.

This paper takes advantage of the ability to reconfigure
counters over time in network nodes. These reconfigurations,
take place at statically provisioned periods of times, called
rounds, depending on the given monitoring interval. During
the rounds, the allocated counters simply measure the traffic of

ISBN 978-3-903176-28-7 (© 2020 IFIP

37

the assigned aggregated prefix. Thus, the per-packet operation
can be handled in line rate with no additional support of
special data structures or specialized hardware. Furthermore,
we exploit the fact that these counters can measure both
number of packets and total byte count with no additional
cost to also solve the weighted version of the problem.

We present four algorithms, following the steps of [11],
[12], [13]. In the first algorithm we assign to each counter
an aggregated set of flows starting from some level of the
hierarchy. At the end of each round, the algorithm seeks to
zoom in on interesting flows down the hierarchy, thus evaluates
the counters’ values and reassigns the counters to the top half
of the counters for the new round. The second algorithm aims
at improving the performance by increasing the length of each
round and decreasing the number of rounds. The motivation is
that longer rounds leads to more stable HH and the zooming
on process is more accurate.

Our third algorithm remedies a major limitation of the first
two algorithms, the lack of “reconsidering” mechanism. ILe.,
the ability of the algorithm’s to back off from the zooming
process if the found flows turned out to be uninteresting
and allocate the counter to previously discarded flow. This
is achieved by keeping the frontier of the hierarchy disjointly
monitored by counters over different levels. The fourth algo-
rithm, waives the request of disjointly monitoring the frontier
by monitored the highest shared ancestor that does not surpass
the threshold. The motivation is to reduce the number of
counters needed to cover the frontier and to enable deploying
the algorithm when less counters are available.

The result is a family of practical efficient monitoring
algorithms to the HHH problem which are deployable on
off the shelf network nodes (see [12] for practicality of the
approach) and can operate in line speed due to its constant
time per-packet update operation. Furthermore, the algorithms
use a configurable constant number of counters and guarantee
not to use more than the allocated counters.

We evaluate the expected performance of our algorithms
on real network traffic through an extensive simulation study
using CAIDA’s traces [14], [15]. The results indicate that our
algorithms can detect around 90% of the true HHH while
reporting only 3% non-HHH flows. These results can be
achieved in line rate, while not requiring any convergence
interval. Also, these results are comparable to the state of the
art algorithms: (1)“MST” [16] - an accurate Space Saving [17]
based algorithm that can not be deployed in line rate due to
non-constant per-packet update operation, and (2)“RHHH” [7]
a probabilistic constant update time improvement of “MST”

that requires a large convergence interval of 100M packets.

II. RELATED WORK

Various papers had addressed the efficient detection of
Hierarchical Heavy Hitters either in the field of streaming
data or in network monitoring. These papers dealt with many
aspects of the problem, including but not limited to (1) Number
of dimensions of the hierarchy, (2) Relaxation of the problem
by approximation, (3) Space requirements of the algorithms,
(4) per item (packet) update time, (5) Lower bound on required
Space, and (6) Convergence requirements of the algorithms.

The single dimension variant of the problem was introduced
and approximated by a streaming algorithm in [18]. Later, [19]
introduced an algorithm that requires O(H?/¢) space, where
H is the depth of the hierarchy and € is the allowed relative
estimation error for each single flow frequency.

Many algorithms to solve the multiple dimensions variant
of the problem were proposed, each with its own properties
[9], [16], [20], [21], [22], [23]. The common property of these
algorithms is that the depth of the multi-dimensional hierarchy
is the product of each dimension.

In [9], trie based algorithms were proposed that requires
O(H) update time, space of O(H?/¢) and maintains a special
data structure to hold the trie and its dynamic expansion.
More recently, another trie-based solution was introduced
in [20], the Full Ancestry and Partial Ancestry, that use
O(Hlog(Ne)/e) space and requires O(Hlog(Ne)) time per
update, where NN is the stream length. Alternatively, [21]
improve the required space and update time to O(H?>/2/¢)
(regardless of V) for the two dimensional problem.

A more efficient sketch-based algorithm with strong error
and space guarantees were proposed in [16]. In their approach,
they utilized a copy of Space Saving Sketch [24] per level,
and detected the hierarchical heavy hitters by detected heavy
hitters throughout all levels of the hierarchy. The algorithm
requires O(H /¢) space and O(H) update time .

Recently, a probabilistic version of the hierarchical heavy
hitters problem was described in [7]. Exploiting this definition,
the algorithm improved the update time to O(1) on the expense
of requiring a convergence interval. That is, a minimal number
of items has to be processed before the probabilistic guarantees
of the algorithm hold. The authors argue that in practice the
algorithm’s output is of the same quality as the previous
deterministic approaches, while the convergence interval is not
a real limitation since modern networks route a continuously
increasing number of packets.

DREAM [25] is a framework for dynamically scheduling
network traffic monitoring jobs (as black boxes), by allocating
the amount of resources needed to maintain the predetermined
accuracy of each job. When a monitoring job with a given
accuracy requires more resources than available in the switch,
the framework either rejects the job or tries to perform
an expensive multi-switch resource allocation to achieve the
desired accuracy rates. Such framework effectively balances

'In the weighed version the update time is O(Hlog(1/€))

two of the most critical characteristics of monitoring jobs,
resources’ availability and monitoring accuracy, and it is a
very important and useful tool to schedule monitoring jobs in
a compatible manner.

Our paper describes a different approach to detect hierar-
chical heavy hitters, while still being usable as a black box
monitoring job in scheduling frameworks such as DREAM.
The main trait of the approach is the practicality of deploying
our algorithms on over-the-shelf network nodes while using a
given number of counters (space) to detect the hierarchical
heavy hitters. Furthermore, the per-packet update time of
proposed algorithm is O(1) without requiring any special data-
structure or any convergence interval.

III. NOTATIONS AND PROBLEM DEFINITION

A flow is a set of packets that share a common property
(usually IP header fields). For example, all packets that have
the same IP_SRC address belong to the same flow. One can
form a hierarchy of flows by considering the prefixes of the
field that specify a flow. In our example, the prefixes of the
IP_SRC addresses forms the hierarchy. More formally, the
universe of flows, U, forms a hierarchy where the dimensions
of the hierarchy is the number of fields that defines the flow
and the hierarchy levels are the various prefixes of the fields
values. Using this definition the flows in our example are of
a single dimension (we only consider one field in the header)
and a flow at level [consists of all packets that share the same
prefix of length [from the IP_SRC field.

In order to formally define the hierarchy, we define the
Generalization Relation between two hierarchy elements p, g,
denoted by p < ¢, and say that p generalizes g, if p is a proper
prefix of q with respect to a specific dimension (i.e., a field in
the packet header). The hierarchy depth, H, is the length of the
maximal path of prefixes that confirms with this generalization
relation. In our example, the depth of the hierarchy is 32 as
there are 32 bits in an IP address.

Given a stream of packets, S (sometimes referred to also
as a trace) one can ask what is the frequency of a given flow
in that stream. That is, how many packets that belong to this
specific flow appear in the stream. In the case of streams of
packets we also consider the weighted version of the frequency
of a flow, which is the total amount of bytes carried by
packets that belong to this flow. We use 7" to donate the total
frequencies of all elements, /N to denote the overall number
of packets in the stream, and B to denote the total amount
of bytes in the stream. Usually 7" = N, however when we
consider the weighted frequencies of flows T' = B.

Given a threshold ¢, an element of the hierarchy (either
a prefix or a specific flow) x, is a Heavy Hitter (HH) if its
frequency is at least ¢ of the total frequencies of all elements,
ie., fr > ¢T. The Conditioned frequency of prefix p with
respect to a set of prefixes P, cf,(P), is the sum of frequencies
of all elements that p generalizes without those of P. That is,
we subtract from the frequency of p the sum of frequencies
of the flows that are generalized by elements of the set P.

Given a threshold ¢, an element of the hierarchy (either a
prefix or a specific flow) is a Hierarchical Heavy Hitter (HHH)

38

AN \7 LT \7 T PR

(a) The hierarchical flowset f3 U f4 U(b) The non Hierarchical flowset f3U
f5 U fe can be measured by measur- f4 U fg, requires at least measuring

ing fo. f1 and fs.

Fig. 1: Example of hierarchical flowsets and non hier-
archical flowsets, for the hierarchy covered by f, =
39.128.128.128/30.

if its conditioned frequency with respect to the set of HHH
is at least ¢T. Another way to define the set of HHH for a
given a stream of packets and a threshold ¢, is to build it
recursively. The set HH Hp is the set of HH at the lowest
level of the hierarchy, i.e, HHHy = {x € U|f, > ¢T'}.
The set HH Hy, is the set of all prefixes at level [that their
conditional frequency with respect to H H H,, is at least ¢T,
ie., HHH; = {p at level l|cf,(HHH;+1) > ¢T'}. Then, the
set of all HHH from all the levels of the hierarchy is HHH =
Ullio HH H,. Table I contains the list of symbols and notations
we use throughout this paper.

Symbol | Meaning
u The universe of flow identifiers
S The stream of packets
T The total frequencies in S
N The overall number of packets in S
B The total byte count of packets in S

fz The frequency of flow x € U
cfp(P) | The conditional frequency of p in respect to P
¢ Heavy Hitter threshold
H The depth of the hierarchy
p=<q p generalize g in the hierarchy
C The number of available counters

TABLE I: A list of symbols and notations

IV. THE “SIMPLE SPLIT” ALGORITHM

In general, the term flowser [11] is used to describe the
stream formed from an aggregation of flows. In the context of
this paper we are interested only in flowsets that cover a full
hierarchy. Furthermore, it is very practical to assign counters
to measure flowsets that cover a full hierarchy, using wild-
cards matching techniques widely available in any traditional
network gear and over the shelf SDN switches [26], [27].

The main concept of this algorithm and our general ap-
proach is to facilitate the widely available easy measuring of
such flowsets to calculate a set of suspect Heavy Hitter Flows
and Hierarchical Heavy Hitter Flows. These sets are created
by following paths of suspect heavy hitters flowsets down a
prefix trie, where in each step the suspect flowset is broken
into several disjoint flowsets to be measured independently.
This follows the steps of [11], [12], [13].

In all of our algorithms, we identify each flow by a unique
string over some alphabet and each flowset by a regular ex-

pression over the same alphabet, such that all flows contained
in the flowset are the flows represented by the strings matching
the flowset’s regular expression. The motivation behind this
approach is to identify each flow by an IP address and each
flowset by a CIDR mask, such that a flowset is the group of
all flows that their corresponding binary representation of the
IP address is included in the flowset’s CIDR mask.

This definition also allows tracking multidimensional flows
(e.g., pairs of <IP_SRC,IP_DST>) by extending the string
representing the flow to 64 bits consisted from contact-
ing both strings of the IP source address and IP desti-
nation address. Also, one might consider five tuple flows
<IP_SRC,IP_DST,SRC_PORT,DST_PORT,PROTOCOL> by
contacting the binary strings of these fields from the IP header.

A main property of our general approach is that we limit
the number of counters used by the algorithms a priori. That
is, the number of counter available for monitoring is given
as input (we usually use C' to indicate this number see Table
I) and the monitoring algorithm can not use more than this
number of counters. With this limitation in hand, the main
observation that motivates the algorithm, is that each HH flow
in any level of the hierarchy mandates a HH flow in the upper
levels of the hierarchy up to the root.

We note that given a threshold ¢ there can be no more than
HHH in all the
levels together. Furthermore, a HHH flow in a given level must
be a HH flow in that level since the conditional frequency of
the a flowset is at most its frequency. Thus, the algorithm tries
to zoom in on HH flows by splitting the flowsets for which the
overall traffic is greater than the threshold down to the lower
level of the hierarchy. After detecting the suspect HH in all of
the levels, the algorithm builds in a bottom-up approach the
set of suspect HHH by calculating their conditional frequency.

A critical aspect of the algorithm is deciding when to
investigate further the suspect flowsets, i.e., when to split the
flowsets. Given the length of trace, the number of counters (C')
and the depth of the hierarchy (H), the algorithm partitions
the trace into H + 1 — log2(C') parts and performs a round
of monitoring for each part. These parts, unless specifically
stated, are usually equal. It is possible to partition the trace
either by number of packets, by byte count or by time. Parti-
tioning the trace by time is the most straightforward approach
and only requires knowing the length of the monitoring period
and could be user specific.

H HH in a given level and no more than

For each packet the algorithm updates exactly one counter,
however, the algorithm performs H + 1 — log2(C) “heavy”
steps, at the end of each round. In these steps the algorithm
decides which of the currently monitored flowsets to split into
two smaller flowsets. Such step requires O(C') operations and
happens O(H) times regardless of the number of packets.
Thus, the algorithm has a constant per-packet operation.

The static nature of the splitting and the observations about
the nature of HH and HHH flows in the hierarchy form the
base for the “Simple Split” Algorithm. The algorithm receives
as input the number of counters, the depth of the hierarchy,

39

| 0.0.0.0/8 || 1.0.0.0/8 | ‘zsa‘o.u.u,fa || 255.0.0.0;’3‘

Fig. 2: Given C = 256 counters, the algorithm partitions the
IP_SRC hierarchy (H = 32) at level 8 into disjoint sets and
assigns a counter per flowset.

the monitoring period and the threshold. As an initialization
step, the algorithm partitions the hierarchy into C' flowsets
and allocates a counter per each flowset. This means that
the algorithm assigns a counter for each flowset in the level
log2(C) of the hierarchy, as shown in figure 2.

During each round, where packets with respective values
arrive, their keys are extracted and the counter of the matching
flowset is updated with the respective value. The keys of
the packets depend on the flow definition the user is using,
usually a single dimension of the IP addresses. Furthermore,
the respective values depends on which version of the problem
we are tackling, the unweighted or the weighted version. In
the unweighted version, we count the number of packets per
flow, thus the values attached to each packets are 1. In the
weighted version, we count the byte count of each flow, thus
the values are the byte count field of the IP header.

At the end of each round, the algorithm takes decision
regarding splitting flows. This means that the algorithm exams
the aggregate values of the monitored flowsets and now should
filter out “uninteresting” flowsets to allow allocating counters
to finer (more specific) flowsets in order to move down the
hierarchy. The most obvious candidates to refine are flowsets
that had more than ¢ of the total frequency of the current
period. However, since we refining each single flowsets into
two flowsets, we have enough counter to refine the top %
flowsets. Thus, the algorithm sorts the monitored flowsets

according to their counters values, refines the top < and

reassign the C' counter to monitor these new flowsets. ’

This refinement step happens H — logs(C) times, until the
algorithm reaches that last level of the hierarchy. Then, a
bottom-up process takes place to calculate the set of candidate
hierarchical heavy hitters. This process is straightforward
calculation of the conditional frequency of each previously
monitored flowset and output those that exceed the threshold.

This calculation does not require any estimation of the
frequencies between the rounds since the rounds are equal.
This approach works extremely well if the streams are stable
over time. However, fluctuations in the flow’s frequencies
among the rounds, might cause missing some of the HH and
thus some of the HHH flows. This is, of course, the main
drawback of the “Simple Split” Algorithm.

One approach to tackle this drawback is splitting the trace
into a smaller constant number of rounds (e.g. 4). This
assumes, that the longer each round the more stable is the
flows distribution among these rounds. This is the motivation
behind the Multiple Split Algorithm presented below.

Another drawback of this algorithm is the lack of a “recon-
sidering” mechanism. That is, if the algorithm does not split
a given flowset in an early round it will never reconsider it,
even if there is some flow in this flowsets that became later
responsible for a large amount of the traffic in the trace.

V. THE “MULTIPLE SPLIT” ALGORITHM

The “Multiple Split” Algorithm follows that same motiva-
tion of the “Simple Split” Algorithm, while trying to relax its
stability assumptions. In order to achieve that, we facilitate
the ability to refine a given flowset not into just two disjoint
flowsets, but rather into several 2! disjoint flowsets.

The motivation behind this larger refinement process is that
it results in smaller number of more stable rounds. The larger
the round compared to the trace’s size, the more we expect that
it’s flows distribution is closer to the entire trace distribution.
Furthermore, this way we have a lower probability of deviating
from the real HH flows down the hierarchy, due to bursts of
other non HH flows or fluctuations in the real HH flows.

This larger refinement process allows the algorithm to
advance several levels down the hierarchy at once. Since the
algorithm is still limited to C' counters, this comes at a cost
that the algorithm can refine less flowsets than “Simple Split”
Algorithm at each round. If at a given round the algorithm
advances [levels, then to keep the limit of using C' counters,
it should refine each of the top | % | flowsets into 2! disjoint
flowsets.

The initialization step is the same as in the “Simple Split”
Algorithm with the addition of calculating the levels step. In
each step the algorithm should decide at which levels of the
hierarchy to monitor. It is clear that the first level should be
[log2(C)| level in order to cover the entire frontier of the trie.
Furthermore, the last level should be the depth of the hierarchy
H, in order to be able to calculate the set of candidate HH
and HHH correctly.

We calculate the levels to be monitored as part of the algo-
rithm initialization. This is needed in order for the algorithm
to know how many rounds of monitoring are expected so
as to partition the trace into an adequate number of parts.
One might consider a dynamic approach of calculating the
next level “as we go”, however this approach has no clear
advantage in performance and in addition it imposes a new
complication. Since in such a dynamic approach not all rounds
are equal, the algorithm must use estimation when calculating
the conditional frequencies of suspect HHH flows, possibly
as proposed in [28]. Any such estimation step adds additional
error to the final result with no clear advantage.

The rest of the algorithm is similar to the “Simple Split”
Algorithm, except the refining of the flowsets, which replaces
each candidate flowsets into 2! disjoint flowsets rather than
simply two. In fact, if the calculating levels step returns all
levels (starting form loga(C) up to H) then the algorithm
converges to the “Simple Split” Algorithm.

It is common to use the full byte levels (8,16,24,32 as
the monitored levels [29], [30]. For example, if we consider
the IP_SRC hierarchy H = 32 with 2!° = 1024 counters.

40

l 0.0.0.0/8 H 10.00/8 |“_‘ 128.0.0.0/8 H 129.0.0.0/8 ‘ [254.0.0.0/8

255.0.0.0/8

(a) First Round Frontier

0.0.0.0/1

| 12600078 {[12000058 | [24000/ | [25500078 |

‘ 128.0.0.0/16 ‘ \ 128.255.0.0/16 ‘

(b) Second Round Frontier

Fig. 3: The retraction mechanism in “Holding the Frontier”
Algorithm.

The initial step would be to assign the counters at level 10 of
the hierarchy. Then, at the end of the respective rounds, the
algorithm will advance to levels 16, 24 and 32. Previous works
that reported HH and HHH in non 1-bit granularity limited
their monitored to that specific granularity. Which means, they
can not reconstruct from the non 1-bit data any insights on
finer granularity HH and HHH. In the contrary, the “Multiple
Split” Algorithm does not suffer from this limitation. Despite
constructing the monitoring levels in non 1-bit granularity, the
algorithm reconstructs the frequencies of all the inner nodes
of the monitored trie.

VI. “HOLDING THE FRONTIER” ALGORITHM

One of the main drawbacks of the “Simple Split” and “Mul-
tiple Split” Algorithm is the lack of a retracting mechanism.
That is, once a flowset did not have enough frequency and was
split further, we will not reconsider it again. The “Holding the
Frontier” Algorithm remedies the lack of this mechanism.

We note that at the first round, the previous algorithms
partition the space of flows into disjoint flowsets depending
on the number of counters. At this initial step, all possible
flows are covered by a single flowset. However, once a splitting
decision is taken, only suspect flowsets will be partitioned and
other flowset will stop being monitored. This usually keeps a
vast part of the flow space uncovered.

In order to overcome this, the “Holding the Frontier”
Algorithm tries to retract up the hierarchy the part of the
flowsets that previously were not be monitored. This retraction
will come at a cost of not freeing those counters to measure
more refined flowsets as before. Thus, the retraction should be
to the highest level possible in the hierarchy.

When considering up to which point to retract these
flowsets, one should consider two main aspects. The first one is
retracting to the highest level while still not having a flowsets
which is above the threshold. Such flowsets are likely to split
once again at the next round. The other consideration is to
monitor flowsets which consist a frontier of the whole flow
space and still maintain a disjoint partition.

Figure 3 depicts an example of the retraction mechanism
in action for an IP_SRC hierarchy. In this figure, the CIDR

41

mask inside the nodes represents the flowset of this node.
Furthermore, nodes with full outline are the monitored nodes,
while nodes with dashed outline are non monitored nodes.

At the first round, the algorithm starts monitoring the whole
flow space at level 8. As a result of the monitoring in the
first round, the algorithm decided to split only the flowset
128.0.0.0/8 because it is the only flowset that surpassed the
threshold. Instead of simply abandoning the other flowsets, the
algorithm tries to recursively retract to the highest level.

This recursive retracting start by classifying all flowsets
at the current level into several categories: refine, keep and
retract. flowsets that are classified as refine are flowsets that
surpasses the threshold, these flowsets are interesting and the
algorithm partitions them in a lower level at the next round.
Flowsets that are siblings of refine flowsets will be classified
as keep, these flowsets did not surpass the threshold but can
not be retracted to higher level since their siblings are refined.
All other flowsets are classified as retract, and are aggregated
into their common ancestor at a higher level.

We note that once two siblings are classified as retract at
level [, then their common ancestor is added at level [— 1.
When processing the level [— 1, if this ancestor surpassed the
threshold then these two siblings will be added back to the
frontier at level [as refine of level [— 1.

However, when the algorithm decides on the refine set at
the currently monitored level, it might partition these flowsets
more than one level down the hierarchy as the case with the
“Multiple Split” Algorithm, depending on the configurations.

Subfigure 3b depicts the frontier after the retraction process.
The flowset 128.0.0.0/8 was in the refine set of level 8
and thus was refined into the flowsets 128.0.0.0/16 up to
128.255.0.0/16. The flowset 129.0.0.0/8 was classified as a
keep in level 8 since its sibling was classified as a refine in the
same level. The flowsets in the range of 0.0.0.0/8-127.0.0.0/8
were not active during the first round, and thus were retracted
up to level 1 and will be monitored by a single counter at
the flowset 0.0.0.0/1. The flowset 0.0.0.0/1 was classified as
keep at level 1 since its sibling was not present when level 1
was process, meaning it was partitioned at lower levels.

The flowsets 254.0.0.0/8,255.0.0.0/8 did not surpass the
threshold thus were not classified as refine at level 8 and thus
should be retracted, but assuming that their common ancestor
254.0.0.0/7 did surpass the threshold and were classified as
refine, they were added back to the frontier at level 8.

Up to this point we overlooked and important detail of the
retracting mechanism, the affect of retracting on the number
of available counters. In the best case scenario, the retracting
mechanism manages to retract vast parts of the frontier to
higher levels and saving enough counters, more than needed
for refining flowsets at the refine set of the current level. In
this scenario, the algorithm still managed to keep the frontier
intact, covering the whole space, and to refine the interesting
flowsets as needed. If additional counters are available, the
algorithm unretracts higher levels by refining their flowsets.

This unretacting step, happens only if we saved enough
counters, and the motivation behind is to set the algorithm

in better position for the next round. That is, since we have
spare counters after all the required refinements, we partition
flowsets at the higher position of the hierarchy into a lower
level since these flowsets are the most aggregated and are the
most prone to surpass the threshold without any actual child
that surpasses the threshold.

On the other hand, in the worst scenario the retracting
mechanism does not save enough counters to enable full
refinement of the frontier. This scenario might happen in a
balanced trace over the hierarchy where the algorithm does
not manages to retract the frontier up to the higher levels.
While the most common possibility of this scenario is that the
number of counters is in the order of the number of HHH in
the trace. In such scenario, the algorithm does not have enough
counter for full refinement and for keeping the frontier intact
since the set of suspect HH are in the order of the number
of the available counters and the algorithm track each suspect
HH by a single counter at each point.

The complexity of the retracting and unretracting step of
this algorithm is still O(HC), since at most we perform
recursive retraction over (H) levels and unretracting over the
same O(H) levels. The most important thing to note when
considering the complexity, is that at any given level we
perform at most O(C) operation and not O(2!) operations,
since at each level the algorithm monitors at most O(C)
flowsets and when performing the classification of each level
we consider only monitored flowsets.

Thus, despite complicating the per round operation the
algorithm still performs a constant per-packet operation and
a constant number of times a heavier operation that is still
linear in the number of counters and O(1) when considering
the number of packets or even the number of active flows.

VII. “SHARED ANCESTOR” ALGORITHM

One of the main limitations of the “Holding the Frontier”
Algorithm is that when the number of counters is in the
same order of the number of HH flows, even after retracting
the frontier, the algorithm can not fully refine the suspect
flowsets. In order to explain how to overcome this limitation,
we examine the state of the frontier when a retraction happens
in a sub-trie with a single refine flowset.

Figure 4 represents the frontier after retracting and refining
when the flowset 128.0.0.0/8 was the only active flow of
this sub-trie and surpassed the threshold. Since it surpassed
the threshold, it was refined into the flowset in the range
128.0.0.0/16 up to 128.255.0.0/16. Since it was the only
flowset that surpassed the threshold, the retraction step tries to
free counters however it keeps a path form the highest root that
did not surpass the threshold down to the interesting flowset.
This “wastes” several counters in the following round. None
of the flowsets 129.0.0.0/8,130.0.0./7, ...,192.0.0.0/2 could
be retracted more since their siblings are not present in the
respective level, even if they had 0 frequency in the round.

The “Shared Ancestor” Algorithm tries to save counters by
replacing the allocation for these non-interesting flowsets by
a single counter on their common ancestor. this breaks the

Algorithm “Holding the Frontier’:

Input : A stream of packets S, a threshold ¢, number of
counters C' and the depth of the hierarchy H
Output: set of HH and HHH in S

1 F =init_flowsets(C);
2 levels = calculate_levels(C, H);
3 current_level = levels[0];
4 number_rounds = |levels|;
s foreach r in {1..number_rounds} do
6 counters = assign_counters(F);
7 P = get_round_packets(r,number_of_rounds);
8 foreach counter in counters do
9 counter.value= value(p);
{peP:flow(p)Ecounter. flowset}
10 end
11 if » < number_rounds then
12 I = levels[r] — current_level;
13 to_refine, retracted =
retract_frontier(counters, F, current_level);
14 refined = refine_flowsets(to_refine,1);
15 needed_counters = |re fined U retraced|;
16 if needed_counters > C then
17 | abort();
18 end
19 else
20 retracted = unretract_frontier(C —
needed_counters, retracted);
21 end
22 F = refined U retracted,
23 end
24 end

25 return calculate_hhh_bottom_up(¢);

promise to keep a disjoint partition of the frontier. Instead
of allocating a counter per level, the algorithm allocates a
counter to the highest shared ancestor that did not surpass the
threshold. This shared ancestor counts the traffic all of its sub-
trie and then we subtract the “interesting” flowsets for which
we have separate counters.

The ellipses node in Figure 4 represents this shared ancestor
and the monitored flowsets in the example are 128.0.0.0/1
and all of the flowsets at level 16. If we compare this to
the monitored set in “Holding the Frontier” Algorithm, that
consists of the solid outline nodes, it requires 7 less counters.
While these savings seems low, they might happen at any
level of the hierarchy and in any part of the flow space, with
a compound effect of freeing enough counters to make the
algorithm deployable even with small number of counters.

One must note that in this algorithm, flowsets from various
levels are monitored together and one must be very careful
when comparing their frequencies since they set of flows
from different sizes. One might be tempted to normalize
the frequencies of the larger flowsets in order to be able to
compare them to the smaller flowsets and use the same flowset,
but in fact this might turn to be counter constructive.

The main motivation behind keeping a frontier is the ability
to retract to abandoned flows, however, if we normalize the
frequencies of large flowsets by dividing them by the number
of flows in that flowset, then this flowset will surpass the
threshold if and only if most of its flows exceed the the

42

(1280.0.0/1)

192.0.0.0/2

| 1280.00/8 | | 129.0.0.0/8
----- '\"

128.0.0.0/16 ‘ ‘ 128.255.0.0/16 I

Fig. 4: The frontier after retraction in “Holding the Frontier”
and “Shared Ancestor” with a single interesting flowset.

threshold. Usually, this means that this ancestor flowset will
never be refined again, missing the point of retracting into
abandoned flows. Details regarding the actual steps of the
algorithm are provided in Algorithm “Shared Ancestor”.

Algorithm “Shared Ancestor”:

Input : A stream of packets S, a threshold ¢, number of
counters C' and the depth of the hierarchy H
Output: set of HH and HHH in S

1 F =init_flowsets(C);
2 levels = calculate_levels(C, H);
3 current_level = levels[0];
4 number_rounds = |levels];
s foreach r in {1..number_rounds} do
6 counters = assign_counters(F);
7 P = get_round_packets(r,number_of_rounds);
8 foreach counter in counters do
9 counter.value= value(p);
{peP:flow(p)Ecounter. flowset}
10 end
11 if » < number_rounds then
12 I = levels[r] — current_level;
13 to_refine =
calculate_to_re fine(counters, F, current_level);
14 refined = refine_flowsets(to_refine,l);
15 ancestors = {};
16 foreach f in refined do
17 sa = calculate_shared_ancestor(f, F);
18 ancestors.add(sa);
19 end
20 F = refined U ancestors;
21 end
22 end

23 return calculate_hhh_bottom_up(¢);
VIII. EVALUATION

We evaluated our algorithms using the following real life
traces: (1) CAIDA’16: CAIDA Internet Traces from “Equinix-
Chicago” in 2016 [14], (2) CAIDA’18: CAIDA Internet Traces
from “Equinix-NewYork™ in 2018 [15]. We considered IP
source hierarchies in a single bit granularities, such hierarchies
were also used in [7], [16], and considered the unweighted
frequencies of items (i.e., the number of packets). Each data
point is the average of 10 runs, where each run started from
randomly selected point in the given trace.

We use the Recall and Precision metrics proposed in [31]
to evaluate the performance of the suggested algorithms. In

43

95 [- ‘ " [—e— s5°16

90 |- 4 |-= sS°18

85 |- 1 |—e— MS’16

80 | | MS18

75 - - |—~—HTF’16
= ol | |-+-HTF18
g ggf | |-=- sat6
& 6ol | |-e- SA'18

55 | .

50 | .

45 .

40 | .

| | | |

| | |
256 512 1k 2k 4k 8k 16k
Counters

Fig. 5: The Recall of the algorithms for various number of
counters on CAIDA’16 and CAIDA’18 traces.

order to compute these metrics we calculated the true set of
HH and HHH using an space intensive algorithm that allocates
a counter per flow for exact measurements. Recall is the
number of true HHHs detected by the algorithm divided by
the number of true HHHs. This metric is equivalent to the
Detection Rate of the algorithm, i.e., what is the percentage
of HHHs the algorithm detects. Precision is the number of
true HHHs detected by the algorithm divided by the number
of reported suspect HHH. This metric complements the false
positive rate of the algorithm and tries to grasp on how many
of the suspect HHHs the algorithm was mistaken.

We denote our proposed algorithms with “SS” for “Simple
Split” , “MS” for “Multiple Split” , “HTF” for “Holding
the Frontier” and “SA” for “Shared Ancestor”. Furthermore,
we use “RHHH” to denote the algorithm proposed in [7]
and “MST” to denote the algorithm proposed in [16]. These
algorithms solve an approximate version of the problem with
an accuracy parameter €, when comparing with them we
expand the set of true HHH by a slack of €T

Figure 5 shows the Recall of the various algorithms as
a function of the number of available counters. Each line
describes a single algorithm and the CAIDA trace, the runs are
on random parts of the trace of 22° packets (about one minute
of traffic) with threshold ¢ = 0.001. It is worthy to note that
the performance on CAIDA’18 trace are usually better than
those of CAIDA’16 trace, this is since in CAIDA’16 trace the
heaviest flows are not as stable as in CAIDA’18. Also note
that the number of HH in these traces at a given level of
the hierarchy is at most 200. This explains the overall poor
performance when using less counters than 512.

When considering the Recall of “Simple Split” and “Mul-
tiple Split” algorithms, one can notice an improvement as the
number of counters increase up to a point where adding more
counters does not help anymore. This limitation is explained
by the lack of retracting mechanism in these algorithms, thus
missing a portion of the HHH that start late in the monitoring
interval and more specifically after the first round.

The “Holding the Frontier” Algorithm can not be ran
properly for a very low number of counters, that is up to 1k
counters. That is due to the fact that sometimes the attempt to
retract the frontier does not free enough counters to perform

100 T T T

—eo— SS’16
05 1 | |-—m— SS’18
—e— MS’16
90 |- | |—— MS’18
——HTF’16
& 85| | |-o-HTF18
§ ~m- SA'16
A& 80 1 |-e- SA’18

75 | :

70 | :

| | | | | | |

256 512 1k 2k 4k 8k 16k
Counters

Fig. 6: The Precision of the algorithms for various number of
counters on CAIDA’16 and CAIDA’18 traces.

full refinement of the interesting flowsets. Thus, we did not
report the results for number of counters where at least one run
of the algorithm did not finish due to this reason. For higher
number of counters (starting from 2k) the algorithm manages
to breach the observed limitation at “Simple Split” and
“Multiple Split” algorithms due to its retracting mechanism.
The main advantage of ‘“Shared Ancestor” algorithm com-
pared to “Holding the Frontier” algorithm lies on the ability to
deploy it using a smaller number of counters. The difference
in the recall of the algorithms is not statistically significant,
where both reach around 90% recall on the CAIDA’18 traces.
Figure 6 depicts the Precision of the various algorithms
as a function of the number of available counters in the
same settings as Figure 5. More specifically, the figure shows
how many flows reported by the algorithm as HHH were
actually a true HHH, i.e. how precise was the algorithm in
its reports. All of our algorithm tend to report most of their
false positives, reported flows that are not HHH, in the higher
levels of the hierarchy. Due to the parts of the hierarchy that
are not monitored but still see some traffic, however, in lower
levels the algorithms have a better estimation of the flow’s
frequencies and whether they are HHH or not. Furthermore,
the higher in the hierarchy the calculation of HHH happens,
the more its prone to errors due to errors in the lower levels.
We note that the difference in precision between the two
traces in a given algorithm is not that noticeable. This is
explained by the fact that if even in CAIDA’16 the heaviest
flows are not consistent compared to CAIDA’18, the algo-
rithms manage to filter out flows that lead to splitting at higher
levels but did not remain suspect HH throughout the rounds.
Furthermore, the trend of better performance with more
counter we observed in figure 5 is less clear especially in
“Simple Split” and “Multiple Split” algorithms. That is,
sometimes more counters lead to a small decrease in the
precision of the algorithms. This might be explained by the
fact that with more counters these simple algorithms focus on
more unimportant parts down the hierarchy.
The precision of “Shared Ancestor” Algorithm reaches
more than 95% for 1k counters and even around 97% for
more than that. This means, that given enough counters this

100
—— C =8k
—a—C = 16k
951 | ——C =32k
:5, 90 |- _
~
85 - B
80 | | | | |

1 1
220 221 222 223 224 225 226

Trace Length in Packets

Fig. 7: The recall of “Shared Ancestor” Algorithm for various
length of trace on CAIDA’18.

100
95 . ’ N —o— SA

—s RHHH
—— MST

Precision
o
ot
1 1 T 1 T 1T 1 T 1T T T 1T T 17
I I I A A

L L L L L L L
220 221 222 223 224 225 226

Trace Length in Packets

Fig. 8: The precision of “Shared Ancestor” Algorithm
compared to “MST” and “RHHH” on CAIDA’16 trace, for
¢ =0.01,e = 0.001,C = & = 732 = 32k on single bit IP
source hierarchy for various lengths the trace.

algorithm detects around 90% of the true HHH and report
no more than 3% non-HHH flows. For the same reasons
mentioned before, the results of “Holding the Frontier”
Algorithm were not reported for counters less than 2k.

Figure 7 depicts the recall of “Shared Ancestor” Algorithm
(under same settings) as function of the trace length (number
of packets processed) for a given number of counters. It easy
to see that the algorithm does not require any convergence
period in order to achieve high recall. Furthermore, there is
no consistent trend in the recall of the algorithm as function of
the trace length, besides slight variations that can be explained
as fluctuations in the different parts of the trace.

Figure 8 depicts the precision of the ‘“Shared Ancestor”
algorithm as function of the trace length (number of packets
processed) compared to “MST” and “RHHH”. As expected,
“RHHH” suffers from a convergence interval, only then it
starts to keep its probabilistic guarantees of low false posi-
tive. “MST”, which requires O(H) update time per-packet,
achieves almost perfect precision (no false positive) as guar-
anteed by e. Our “Shared Ancestor” algorithm achieves
high precision rate averaged around 95% regardless of the
trace’s length, while holding O(1) per-packet update time. The

44

algorithms converges similarly on CAIDA18 traces.
IX. CONCLUSIONS

In this paper we presented several practical algorithms for
Hierarchical Heavy Hitters detection. These algorithms can be
deployed on off-the-shelf network nodes (or software devices)
and can operate in line speed due to their O(1) per-packet
operation. The current state of the art algorithms, either require
O(H) per-packet operation that makes them unfeasible to be
deployed in line rate or requires a convergence interval before
reporting satisfactory results which makes them less relevant in
many practical settings. In contrary, our algorithms perform in
line-speed with O(1) update per-packet without requiring any
convergence interval. Furthermore, no complex data structures
are needed and our algorithms only require using built-in fast
counters available in any network node.

We evaluated the algorithms on two recent real Internet
packets traces and showed that they yield a comparable results
to the state of the art without their limitations. The evaluation
showed that the best algorithm can detect up to 90% of the
HHH in a trace and report no more than 5% non HHH flows.

These algorithms could be easily extend to the case of multi-
dimensional HHH while keeping the depth of the hierarchy
linear in the number of dimensions without modifying the
O(1) update time. Also, they allow practical detection of
the weighted set of HHH flows with minimal modification
of the update operations while keeping all of the algorithms
promises. In future work, we plan to study the control mech-
anism of the algorithms and their fine deployment issues.
Furthermore, we plan to adjust the algorithms to detect DDoS
attacks by facilitating the already needed calculation of HH at
the lower level of the hierarchy.

REFERENCES

[1]1 S. Goyal, “Software as a Service, Platform as a Service, Infrastructure
as a Service - A Review,” International journal of Computer Science &
Network Solutions, vol. 1, no. 3, pp. 53-67, 2013.

[2] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 41, no. 4. ACM, 2011, pp. 254-265.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the seventh Co-
NEXT. ACM, 2011, p. 8.

[4] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernindez, and
E. Vézquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” computers & security, vol. 28, no. 1-2, pp.
18-28, 2009.

[5] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, “Heavy hitters
in streams and sliding windows,” in The 35th Annual IEEE International
Conference on Computer Communications. 1EEE, 2016, pp. 1-9.

[6] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Optimal
elephant flow detection,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications. 1EEE, 2017, pp. 1-9.

[7]1 R.Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proceedings of
the Conference of the ACM Special Interest Group on Data Communi-
cation. ACM, 2017, pp. 127-140.

[8] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, 2017, pp. 164-176.

[91 Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online
identification of hierarchical heavy hitters: algorithms, evaluation, and

applications,” in Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement. ACM, 2004, pp. 101-114.

45

[10] D. Tong and V. Prasanna, “High throughput hierarchical heavy hitter
detection in data streams,” in 2015 IEEE 22nd International Conference
on High Performance Computing (HiPC). 1EEE, 2015, pp. 224-233.
L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” in Proceedings of the 2007 con-
ference on Applications, technologies, architectures, and protocols for
computer communications - SIGCOMM ’07. NYC, NY, USA: ACM
Press, 2007, pp. 97-108.

J. Moraney and D. Raz, “Efficient detection of flow anomalies with
limited monitoring resources,” in 2016 12th International Conference
on Network and Service Management. 1EEE, oct 2016, pp. 55-63.

J. Moraney and D. Raz, “On the practical detection of the top-k
flows,” in 2018 14th International Conference on Network and Service
Management. 1EEE, 2018, pp. 81-89.

“The CAIDA UCSD Anonymized Internet Traces 2016 - equinix-
chigaco January. 21st, Direction A.” [Online]. Available: http:
/Iwww.caida.org/data/passive/passive_2016_dataset.xml

“The CAIDA UCSD Anonymized Internet Traces 2018 - equinix-nyc
2018-03-15, Direction A.” https://www.caida.org/data/monitors/passive-
equinix-nyc.xml.

M. Mitzenmacher, T. Steinke, and J. Thaler, “Hierarchical heavy hitters
with the space saving algorithm,” in 2012 Proceedings of the Four-
teenth Workshop on Algorithm Engineering and Experiments (ALENEX).
SIAM, 2012, pp. 160-174.

A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Lecture Notes in
Computer Science, ser. Lecture Notes in Computer Science, T. Eiter
and L. Libkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, vol. 3363 LNCS, pp. 398—412.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in data streams,” in Proceedings of the 29th
international conference on Very large data bases-Volume 29. VLDB
Endowment, 2003, pp. 464-475.

Y. Lin and H. Liu, “Separator: sifting hierarchical heavy hitters accu-
rately from data streams,” in International Conference on Advanced Data
Mining and Applications. Springer, 2007, pp. 170-182.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in streaming data,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 1, no. 4, p. 2, 2008.

P. Truong and F. Guillemin, “Identification of heavyweight address
prefix pairs in ip traffic,” in 2009 21st International Teletraffic Congress.
IEEE, 2009, pp. 1-8.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Diamond in
the rough: Finding hierarchical heavy hitters in multi-dimensional data,”
in Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. ACM, 2004, pp. 155-166.

J. Hershberger, N. Shrivastava, S. Suri, and C. D. Téth, “Space com-
plexity of hierarchical heavy hitters in multi-dimensional data streams,”
in Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. ACM, 2005, pp. 338-347.

A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in International
Conference on Database Theory. Springer, 2005, pp. 398-412.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
Resource Allocation for Software-defined Measurement,” in Proceedings
of the 2014 conference on Applications, technologies, architectures, and
protocols for computer communications - SSIGCOMM 14, pp. 419-430.
OpenvSwitch, “Production Quality, Multilayer Open Virtual Switch.”
“OpenFlow Switch Specification 1.5.1,” Tech. Rep., 2015.

Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online
identification of hierarchical heavy hitters: Algorithms, evaluation, and
applications,” in Proceedings of the 4th ACM SIGCOMM Conference
on Internet Measurement, ser. IMC *04. New York, NY, USA: ACM,
2004, pp. 101-114.

M. Mitzenmacher, T. Steinke, and J. Thaler, “Hierarchical heavy hitters
with the space saving algorithm,” in Proceedings of the Meeting on
Algorithm Engineering & Expermiments. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2012, pp. 160-174.
R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proceedings of
the Conference of the ACM Special Interest Group on Data Communica-
tion, ser. SIGCOMM °17. NYC, NY, USA: ACM, 2017, pp. 127-140.
G. Cormode and M. Hadjieleftheriou, “Methods for finding frequent
items in data streams,” VLDB Journal, vol. 19, no. 1, pp. 3-20, 2010.

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

(31]

