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Abstract—Virtualized data centers implement overlay net-
working to provide network isolation. The key component that
makes the overlay networking possible is a hypervisor switch,
such as Open vSwitch (OVS), that is running on each compute
node and switches packets to and from virtual machines. Software
switches frequently require upgrading and customization of
network protocol’s stack to introduce novel or domain-specific
networking techniques. However, it is still difficult to extend
OVS to support new network features as it requires mastery of
network protocol design, programming expertise and familiarity
with the complex codebase of OVS. Moreover, there is currently
no solution that enables the deployment of network features in
OVS without recompilation.

In this paper, we present P4rt-OVS, an original extension of
OVS that enables runtime programming of protocol-independent
and stateful packet processing pipelines. It extends the forward-
ing model of OVS with Berkeley Packet Filter (BPF), bringing
a new extensibility mechanism. Moreover, P4rt-OVS comes with
a P4-to-uBPF compiler, which allows developers to write data
plane programs in the high-level P4 language. Our design results
in a hybrid approach that provides P4 programmability without
sacrificing the well-known features of OVS. The performance
evaluation shows that P4rt-OVS does not introduce significant
processing overhead, yet enables runtime protocol extensions and
stateful packet processing.

Index Terms—Programmable data plane, P4, Software switch,
OVS, BPF

I. INTRODUCTION

Software switches are a key component of modern vir-
tualized data centers. The software switch, such as Open
vSwitch (OVS) [1], plays the role of a hypervisor switch
forwarding packets to and from Virtual Machines (VMs) or
containers. Hypervisor switches implement a set of network
protocols to enable, among others, multi-tenant network vir-
tualization through overlay tunneling, ACL (Access Control
List) and QoS (Quality of Service) [2]. Moreover, as network
virtualization systems are getting mature, more advanced and
complex middlebox functions (such as stateful firewalls or
NATSs with connection tracking) are being implemented inside
software switches to offload VM-based network functions,
while preserving their flexibility and performance [3] [4].

Although OVS provides a high degree of programmability
through the use of the OpenFlow forwarding model [5], it is
still difficult to extend its packet processing pipeline. Develop-
ing new network feature requires domain-specific knowledge
of network protocol’s design, low-level C skills and familiarity
with the large and complex codebase of the software switch.
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Moreover, OVS adopts the stateless forwarding model of
OpenFlow, which prevents the implementation of stateful use
cases, including many security services.

The domain-specific language (DSL) P4 [6] was invented
to address the limitations of OpenFlow and enable the cus-
tomization of network devices’ protocol stack. Not only does
P4 allow the description of stateless Match-Action pipelines,
but it also exposes persistent memories on the switch, thereby
enabling stateful packet processing. In [7], PISCES has been
proposed as a programmable, protocol-independent software
switch to enhance the level of programmability provided by
OVS. PISCES enables custom protocol specification in the P4
language with negligible performance overhead and without
the need for direct modifications to the switch codebase.
PISCES, however, has two main drawbacks. First, it requires
re-compilation every time the P4 program is changed. There-
fore, if PISCES were to be used as the hypervisor switch of a
network virtualization system, it would cause an outage of the
entire infrastructure at each update of the data plane program.
In addition, such a design does not allow to inject custom,
vendor-specific data plane applications at runtime. Moreover,
PISCES does not provide mechanisms to implement stateful
data plane programs, and that limits its applications.

In this paper, we present the design and implementation of
P4rt-OVS, which allows programming protocol-independent,
runtime extensions for a software switch with P4. P4rt-OVS!
is an original extension of OVS, designed around the following
design principles:

Enable runtime programmability. We design our solution
to be programmable at runtime. Therefore, we leverage Berke-
ley Packet Filter (BPF) [8] to provide a runtime extensibility
mechanism for OVS.

Provide performance for NFV. OVS is used as a virtual
switch in a majority of Network Function Virtualization (NFV)
systems. To meet the performance requirements of NFV, the
OVS datapath has been ported to DPDK [9]. Therefore, to
provide the high performance we have built P4rt-OVS on top
of OVS-DPDK.

Support stateful operations. Many network functions re-
quire access to the state of connections to fulfill their goal.
As the P4 language provides a way to save custom data
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structures in the switch’s memory we treat the support for
stateful operations as an added value for OVS.

The paper is organized as follows. Section II presents the
main features of OVS, P4 and BPF. Then, we motivate our
work in section III. Section IV describes the P4rt-OVS design
and implementation. We evaluate the performance of PA4rt-
OVS in section V. In section VI, we discuss the related work.
Finally, in section VII, we present conclusions and future
work.

II. BACKGROUND

Our P4rt-OVS prototype enables the upgrade and cus-
tomization of OVS’s network protocol stack at runtime. This is
achieved by integrating P4 (providing the high-level language)
and BPF, which provides the runtime extensibility mechanism,
with OVS.

Open vSwitch. Open vSwitch [1] is widely used in vir-
tualized data centers as a hypervisor switch. It implements a
complex protocol’s stack to enable multi-tenancy in a virtual-
ized data center. In OVS, two major components participate
in packet processing. The datapath is the main component
responsible for packet forwarding and is also referred to as the
fastpath. In the case of OVS-DPDK, the datapath component
is implemented in userspace. The second component is ovs-
vswitchd, which is a userspace daemon, and is also called the
slowpath. 1t tells the fastpath how to forward incoming packets
based on flow rules in Match-Action tables. In OVS, flow
caching has been implemented to prevent packet’s forwarding
to the slowpath for every packet in the flow. Finally, the ovs-
vswitchd exposes also the OpenFlow interface to external SDN
controllers. OVS provides a wide range of OpenFlow actions
to modify packets in the fastpath. When it comes to packet’s
tunneling, OVS uses a concept of packet’s recirculation. When
a packet arrives at the switch, only the outer header is extracted
and known to the datapath. Therefore, if there are nested
packet’s headers, OVS needs to recirculate the packet, i.e.,
send it back to the beginning of the datapath processing to
extract inner headers and allow for further processing.

The BPF virtual machine. BPF is originally a pseudo-
code virtual machine in the Linux kernel [8], designed to
allow userspace processes to update the kernel’s behavior at
runtime. For example, BPF programs can be written to rewrite
incoming packets or collect statistics every time a given kernel
function is called. This runtime programming of the Linux
kernel is made possible by an interpreter coupled with a set
of JIT compilers: BPF programs are loaded as bytecode and
either compiled to assembly code and executed or interpreted
directly.

One particularity of BPF is its verifier, a static analyzer that
runs at load time to ensure loaded programs are safe to be
executed by the kernel, i.e., that they do not contain memory
errors or various other faults. In the Linux kernel, an essential
extension to BPF added persistent data structures [10], called
maps, thereby allowing stateful processing in BPF programs.
BPF maps are allocated in the kernel, outside the BPF VM,
and accessed from the BPF VM through special functions,

called helpers. These helpers are necessary whenever a BPF
program needs to perform an action restricted by the VM.
They implement safety checks to read memory from maps,
retrieve the current time, update kernel data structures, etc.

Since P4rt-OVS processes packets in userspace with DPDK,
it cannot use Linux’s BPF VM. Fortunately, several userspace
implementations of the BPF VM exist, with different sup-
ported features. P4rt-OVS relies on the userspace BPF VM
implemented for the Oko software switch [11]. This particular
implementation supports maps, can JIT compile programs to
x86-64, and includes a limited static analyzer.

The P4 language. P4 [6] is the framework for program-
ming protocol-independent packet processors. In particular, it
provides a Domain-Specific Language (DSL) for expressing
how a data plane of a programmable element (e.g. hardware
or software switches, network interface cards) should process
packets. In the P4 language, a programmer defines a set of
supported network protocols and the behavior of a network
device’s data plane in a high-level and declarative manner.
Then, the P4 program is translated by specialized compilers
into a code representation consumable by the programmable
device (called the P4 target). The most recent version of the
language, P4, [12], allows for a wide range of P4 targets.
Each target’s manufacturer has to define an abstract forwarding
model and target-specific capabilities (called P4 externs) in the
form of the architecture model, thanks to which a programmer
knows how to write P4 programs for a given platform. A
typical forwarding model has at least one programmable
parser (represented as a cyclic graph) to extract headers and at
least one programmable deparser to fill a packet’s fields before
sending a packet to the wire. Moreover, the P4 architecture
model can specify the number of Control blocks, which are
composed of a set of Match-Action tables. The Control block
is used to implement a packet processing pipeline (packet
headers’ modification, tunneling, stateful operations, etc.). At
runtime, a control plane (via P4Runtime protocol) can add,
modify or remove table entries, but it can also change the
forwarding pipeline of a programmable device by installing a
new P4 program.

IIT. MOTIVATION

We believe that our solution can be used to implement
many use cases, which are not currently supported by OVS.
To motivate our work, we present examples of use cases,
which are not provided by OVS, but can be described in
the P4 language. Thus, they can show the added value of
P4rt-OVS. The selected use cases can be divided into two
categories: stateful data plane programs and custom, domain-
specific protocol extensions.

A. Stateful data plane programs

Stateful firewall. Recent firewalls perform stateful analysis
of packets to keep track of a transport connection. It enables
firewalls to allow all packets from established connections
through and to reject new connections that are not in the ACL
list. The ACL is a stateless component and can be implemented
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by static OpenFlow rules. However, tracking TCP connections
requires stateful operations to store and update the state of a
session. The P4 language, among other features, provides the
stateful construct - the P4 register. By using P4 registers, users
can describe the connection tracking component of a firewall.
Thus, our solution enables implementing a stateful firewall on
top of OVS.

Rate limiter. Where OVS provides support for per-port rate
limiting, P4rt-OVS provides custom, arbitrary rate-limiting
algorithms by leveraging P4 registers. Moreover, P4rt-OVS’s
rate limiters may be applied in a per-flow manner.

In-network DDoS mitigation. As P4 is being considered
to implement DDoS detection and mitigation [13], it could
also be implemented using P4rt-OVS. Offloading anti-DDoS
applications from separate boxes (virtual machines) to the
virtual switches inside the data center may also significantly
improve the overall performance of the network function [3]
[14].

B. Domain-specific protocol extensions

OVS is widely used in telecommunication use cases, which
rely on specific protocol stacks. Although some extensions
to implement telco-specific protocols have already been pro-
posed, they were not integrated with OVS. Therefore, it
leads to vendor-specific forks of OVS. In this section, we
present examples of telecommunication protocols that could
be implemented in the P4 language and injected into P4rt-
OVS.

5G User Plane Function. OVS (with GPRS Tunneling
Protocol extension) has been used in a virtual Serving and
Packet Data Gateway (SPGW) of LTE as the packet for-
warding engine. According to the 5G specification, the GTP
protocol was chosen as the encapsulation protocol [15], but
other technologies are also considered [16]. P4rt-OVS allows
to describe any encapsulation technique in the P4 language
and integrate it (even at runtime) with OVS. It results in a
shorter time to market for new protocols.

BNG. The Broadband Network Gateway (BNG) provides
an access gateway for the fixed-network subscribers. Except
for control plane operations, the BNG handles data plane op-
erations such as VLAN tagging, PPPoE and MPLS tunneling.
With the use of P4rt-OVS, all of these data plane techniques
can be implemented in P4. As a result, OVS can be extended
and used to implement the data plane of BNGs.

IV. P4RT-OVS DESIGN AND IMPLEMENTATION
A. Overview

Figure 1 depicts the proposed extensions to the OVS
architecture that enable programming the packet processing
pipeline at runtime. It also shows the P4rt-OVS programming
workflow. First of all, we have extended the userspace datapath
of OVS with an additional BPF subsystem, which enables
the injection of packet forwarding programs at runtime and
their integration with the OVS forwarding pipeline. The BPF
subsystem consumes bytecode that implements the packet pro-
cessing model. In our framework, the P4-to-uBPF compiler is

utilized to generate bytecode from the P4 program. Moreover,
apart from OpenFlow, we have built the P4Runtime abstraction
layer (PART-AL). It allows the integration of P4Runtime-
compliant SDN controllers with P4rt-OVS. It results in a
hybrid approach, which can be controlled by both OpenFlow
and P4Runtime control protocols.
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Fig. 1: The overall architecture of P4rt-OVS

The P4rt-OVS programming workflow assumes the P4rt-
OVS has been compiled and run beforehand and is as follows.
In the first step, the programmer designs and creates the P4
program implementing specific network features. According
to the P4¢ specification, we also provide the P4 architecture
model, which guides the programmer on how to write a
data plane program for P4rt-OVS. Next, the user generates
BPF bytecode, the data plane code, using the P4-to-uBPF
compiler and, optionally, the P4Info metadata file to be used
by the control plane as a contract describing the data plane
implementation. Then, the BPF bytecode is injected in the
OVS forwarding pipeline by either the SDN controller or
via local CLI using the P4Runtime protocol. The data plane
program appears in the switch as the BPF program with a new
identifier. The last step for the user is to define the OpenFlow
flow rule that will invoke the appropriate BPF program. The
user can also configure BPF map entries for the BPF program
before configuring a flow rule or when the BPF program is
already in action. To modify a data plane program a user can
create a new BPF program, inject it with a new identifier and
modify flow rules to point to the new BPF program.

B. Modifications to OVS

We made four modifications to OVS in order to enable
programming protocol-independent, runtime extensions using
P4.
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The BPF subsystem for OVS. The first design princi-
ple was to provide the runtime extensibility mechanism to
OVS. We extended OVS with a new subsystem based on the
userspace BPF (uBPF) implementation (see Section II). We
retain the BPF infrastructure (abstract machine, BPF verifier
and set of external functions) of Oko [11], but we also
introduced several modifications needed to implement certain
P4 capabilities.

Unlike the Oko [11] approach, we propose to pass the
whole dp_packet structure, which represents a packet inside
the userspace datapath. The dp_packet structure contains
various information about a packet and not all of them are
needed by the BPF program. However, such a design is
necessary to implement arbitrary packet tunneling, which we
will explain further in this subsection. The BPF program takes
the dp_packet structure as an argument, which does not
represent a packet data directly. Hence, for packet data to
be processed by the BPF program, we have implemented a
new uBPF helper, ubpf_packet_data (), which retrieves
a packet’s data from the dp_packet structure. Such a
design requires a modification to the uBPF verifier to prohibit
illegitimate accesses to the dp_packet structure.

I Slow Path :
! |
: Match-Action :
: Tables |
| X :
b AT~~~ B A A
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fm— 1| ___ vY___ |- w______
| Cache Miss Datapath :
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Fig. 2: The BPF subsystem and forwarding model of OVS

Programmable actions. The implementation of the Oko
switch [11] assumes that the BPF programs are used as an
enhanced filtering program to match packets. With such a
design a user cannot modify packets, whether to write a packet
field or to encapsulate them. In contrast, we design P4rt-OVS
to allow for packet modification. Therefore, P4rt-OVS exe-
cutes BPF programs as an OpenFlow action by implementing
the new action type OVS_ACTION_ATTR_EXECUTE_PROG.
Figure 2 presents this new design for the OVS forwarding
model. In addition, contrary to Oko, because we integrate BPF
programs as OpenFlow actions, the flow caching architecture
stays unaffected. Therefore, BPF can be integrated without
significant modifications to the OVS forwarding model and
all the actions defined in the P4 program are executed in the
fastpath.

However, with the introduction of programmable actions,
we face a new problem when dealing with multi-tables

pipelines. If the BPF program modifies a packet, the OVS
datapath should recirculate the packet, but the datapath does
not have any information about how the packet is processed
inside the BPF program. Therefore, the datapath cannot decide
to recirculate the packet or not. The current implementation
assumes the BPF program is always executed in the last table
as the last action, so that recirculations are unnecessary. Nev-
ertheless, there are other options to address this problem. The
first option could be to leverage the BPF verifier to pass in-
formation to the OVS datapath, i.e., whether the BPF program
performs packet modification. Another approach could be to
force the BPF program’s programmer to set the recirculation
flag any time a packet is modified [3]. However, it requires
programmers to understand the recirculation problem and its
exact implications on packet processing. To conclude, the
described problem should be the case for further improvements
of P4rt-OVS.

Support for tunneling. An inseparable feature of the P4
language is support for arbitrary packet encapsulation. It
requires two modifications to the BPF subsystem and the
OVS datapath. First, already satisfied is the permission for
packet modification in the BPF verifier. Second is the packet’s
length adjustment. This mechanism allows BPF programs to
change the length of packets (usually adds zero bytes or
removes bytes from the head of the packet) before sending
it back to the OVS pipeline. The packet adjustment requires
access to the dp_packet structure. Therefore, to support
arbitrary tunneling, we added a new uBPF helper function,
ubpf_adjust_head (), which has access to dp_packet
and adjusts the packet’s length according to the offset value
passed as the argument to the helper.

Exposing the interface to the BPF subsystem. The next
extension we make is an implementation of the set of functions
for OVS that exposes the interface to the BPF subsystem. In
fact, these functions implement additional OpenFlow messages
that can be used to manage BPF programs and their maps.
These messages are as follows.

e LOAD_BPF_PROG to install a new BPF program.

e UNLOAD_BPF_PROG to remove an existing BPF pro-
gram with a given identifier.

o SHOW_BPF_PROG to list all BPF programs or show the
information about a given BPF program.

e UPDATE _BPF_MAP to add or update an existing entry
of the BPF map.

e DUMP_BPF_MAP to dump the content of the BPF map
of a given BPF program.

o DELETE_BPF_MAP to remove an entry with a given key
from the BPF map.

C. The P4 to uBPF compiler

In compliance with the P45 compiler’s design [12] our P4-
to-uBPF compiler implements a new backend, userspace BPF,
for the compiler’s frontend. The P4-to-uBPF compiler gener-
ates target-specific, restricted C code, that is compatible with
uBPF and can be further compiled to the BPF bytecode using
the Clang compiler. This one intermediate stage allows us to
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leverage the existing compiler optimizations implemented by
Clang.
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Fig. 3: The forwarding model of the BPF program generated
from the P4 language

Along with the implementation of the P4-to-uBPF compiler,
we have designed the architecture model for P4rt-OVS, which
in particular, describes the forwarding model of the uBPF
program. The forwarding model is tailored to the architecture
of OVS and is depicted in Figure 3. In the architecture model,
we elect to prevent P4 programs from forwarding packets
themselves; it is therefore still the responsibility of OVS to
determine an output port for a packet. As a result, the P4/BPF
program can filter, inspect or modify a packet, but the only
forwarding decision it can make is to decide whether to drop
a packet or send it back to the OVS forwarding pipeline.
This decision is due to the usage model of P4 in P4rt-OVS.
Originally, P4 is designed to describe the whole functionality
of a switch. In our case, P4 is used only to describe a specific
part of a switch, a custom action. Thus, the OVS action can
still be used to perform packet forwarding and the P4 language
is just utilized to play its role: providing a high-level language
to process packets’ headers.

The forwarding model of the BPF program generated from
the P4 language consists of three packet processing blocks:
parser, control block and deparser.

Parser. The ingress block, the Parser, is responsible
for reading a packet’s headers and copying them to the
Headers_t structure. The Parser reads each header field by
field by loading bits and shifting or masking bits, if necessary.
The output of a parsing stage is the Headers_t structure
filled with a packet headers’ data. Additionally, for each header
in the Headers_t structure, a validity bit is associated.
According to [17], if a header has been parsed correctly, the
validity bit is set. The validity bit is further used to perform
operations on headers (encapsulation or decapsulation) in
Control Block and Deparser.

Control block. The control block is composed of a set
of Match-Action tables implementing a packet processing.
In our design, to implement a packet processing pipeline,
a programmer can use read-only Match-Action tables (for
stateless network functions) or registers with read-write per-
missions to implement stateful network applications. The P4rt-
OVS provides two uBPF helpers, ubpf_map_lookup ()

and ubpf_map_update (), to read from the BPF map
(table or register) and write to the BPF map (only regis-
ters) respectively. Since P4 tables and registers are imple-
mented as BPF hashmaps, both ubpf_map_lookup () and
ubpf_map_update () have an average-case complexity
of O(l). In particular, in the Control block, the P4 pro-
gram can encapsulate or decapsulate a packet by validating
(setvalid () operation) or invalidating (setInvalid ()
operation) the validity bit of a packet’s header, respectively.
The validity bit is further used in the Deparser to define the
order of headers for an outgoing packet.

Deparser. Its function is to prepare a packet to be sent
back to the OVS pipeline. In particular, it is responsible for
modifying the packet’s headers and performing an arbitrary
packet encapsulation. The current design of the P4-to-uBPF
compiler uses post-pipeline editing. It means that all modifi-
cations of the packet’s headers are made in the Deparser. The
intermediary Match-Action tables modify the header’s meta-
data structure, which is further used to generate an outgoing
packet. To perform an arbitrary encapsulation the Deparser
makes use of the ubpf_adjust_head () helper, to adjust
the length of a packet. Before adjusting a packet’s head, the
offset is calculated. If it is negative, bytes are removed from
the head of a packet. Otherwise, zero bytes are added to the
front of a packet. In comparison to previous versions of the
language, P4¢ requires an explicit definition of the Deparser.
Thus, the programmer has to define the order of headers for the
outgoing packet in the P4 code. Then, the Deparser fills in the
packet’s payload with data from the Headers_ t structure. As
described above, the Deparser decides to append a particular
header based on the validity bit associated with each packet’s
header.

As is the case with other P4 compilers, the P4-to-uBPF
compiler also generates the P4Info metadata, which can be
used by the P4Runtime-based control plane to interface with
Match-Action tables.

D. The P4Runtime-based control plane

To effectively use P4rt-OVS via an external SDN controller
a user needs to leverage both OpenFlow and P4Runtime
protocols in conjunction. It is the result of the hybrid design
we decided to follow for P4rt-OVS. We extend the OpenFlow
protocol to support a new OpenFlow action (prog) in the
FLOW_MOD message. The prog action invokes a given BPF
program for packets matching the corresponding flow rule.
Our implementation provides also all the OpenFlow messages
listed in the last paragraph of subsection IV-B. We also extend
the P4Runtime protocol. We introduce a new usage model
for P4 devices: P4rt-OVS may be configured with multiple
P4 programs, each of them describing a separate forwarding
element. Therefore, in order to support multiple P4 programs,
we customized the PARuntime protocol by introducing a new
field for the P4ARuntime messages, pipeline_id. The pipeline_id
field defines the P4 pipeline inside the P4 target. Thus, if
the P4 target (identified by the device_id) supports multiple
P4 pipelines running simultaneously, the P4Runtime controller
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can use the pipeline_id field to refer to a given P4 pipeline.
We have also implemented the PARuntime abstraction layer
(PART-AL) as a proof-of-concept Python application, which
allows to control BPF programs using the P4 semantics.

V. PERFORMANCE EVALUATION

In this section, we compare the packet processing perfor-
mance of P4rt-OVS, OVS [1] (the reference implementation)
and PISCES [7] (the state-of-the-art implementation of P4-
capable OVS). The goal of the evaluation was to check
1) whether P4rt-OVS introduces any performance overhead
and 2) how P4rt-OVS performs in comparison to the other
solutions. Moreover, we measure the overhead and efficiency
of P4 extensions to OVS through a set of microbenchmarks.

Switch Under Test

IXIA
Traffic Source/Sink 4_X _10_G>
€ — — — | DPDK
- ———

- ———

Fig. 4: The test topology

A. Evaluation environment

Figure 4 shows the test topology. The Switch Under Test
(SUT) running on top of the DPDK framework is installed on
the HP ProLiant DL.380 Gen9 server equipped with 2x Intel(R)
Xeon(R) CPU E5-2690 v3 running at 2.60GHz, with 128 GB
RAM and two dual-port Intel 82599ES 10GE NICs. We use
a IXTA hardware traffic generator connected directly to the
ports of the server, so that SUT handles a total of 40 Gbps
of traffic. For all experiments, we configured Linux (Ubuntu
16.04) to isolate DPDK cores from the Linux scheduler. The
DPDK framework has been configured with 4 receiving queues
per port running on 2 physical (4 logical) CPU cores. In all
experiments, IXIA generates four traffic flows per port to test
SUT with multiple flows. To measure the results, we use the
methodology described in RFC2544 [18] (we assume 0.002 %
packet loss). In end-to-end comparisons, each experiment lasts
60 seconds and we report the mean throughput in millions of
packets per second (Mpps) and the 95% confidence interval
over 10 runs. In the microbenchmarks, we measure CPU cycles
per packet using the machine’s time-stamp counter (TSC).

B. End-to-end performance

We next measured the end-to-end performance of example
network functions to illustrate the cost of the P4 programma-
bility in a near-realistic scenario.

Overhead evaluation. First, we have conducted the experi-
ment to evaluate the overhead of introducing P4 extensions to
OVS. For this purpose, we compared simple L2 forwarding
performance of OVS and P4rt-OVS with the baseline P4
program performing no operations on packets. Thus, the ex-
periment shows just the overhead introduced by our new OVS
action, which invokes the BPF program to handle packets. We
measured throughput rate in two scenarios: with microflow
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Fig. 5: L2 Forwarding performance in MPPs for input traffic
of 40 Gbps: a) microflow enabled, b) microflow disabled
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cache enabled and disabled. The results are shown in Figure 5.
As expected the average throughput was slightly higher when
microflow cache was enabled. However, the most important
observation is that invoking the BPF program to process a
packet introduces a negligible overhead. Nevertheless, a more
complex packet processing pipeline of the P4 program could
increase the overhead. Therefore, the impact is analyzed in the
next paragraph.

Packet processing evaluation. We selected a few scenarios,
in which different packet operations (complex packet parsing,
tunneling, packet modifications) are done to compare the
performance in a near-realistic environment. We compared the
performance of three solutions: P4rt-OVS, OVS and PISCES
to check how P4rt-OVS performs compared to these state-
of-the-art solutions. We measured the performance of the
following network functions:

o Static Destination NAT (DNAT) that matches a desti-
nation IPv4 address and translates it based on static flow
rules.

o Static Network Address Port Translation (NAPT) that
matches source and destination IPv4 addresses and source
and destination UDP ports and translates them based on
static flow rules.

« MPLS Label Edge Router (LER) that matches an
ingress port and destination IPv4 address and attaches
the MPLS label to a packet.

Figure 6 shows the performance results for SNAT, MPLS
LER and NAPT respectively. Based on these results, we
can conclude that the performance of P4rt-OVS is com-
parable to both OVS and PISCES for packet sizes of 64,
128 and 256 bytes. The mean throughput with 64B packets
for MPLS LER in P4rt-OVS is lower than for OVS or
PISCES; it may be caused by the overhead introduced by
the ubpf_adjust_head () helper, which adds zero bytes
to the head of a packet before sending it to the wire. For
larger packets (512 bytes) the performance of P4rt-OVS is
comparable to OVS and higher than the performance of
PISCES. The results show that the overhead of more realistic
P4 extensions to OVS is negligible in terms of the obtained
throughput rate.
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C. Microbenchmarks

As a next step, we evaluated each component of the BPF
program (Parser, Deparser, Match-Action pipeline) separately.
Moreover, we measured how much overhead the P4 pro-
grammability introduces in comparison to writing the BPF
program in the C language.
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Fig. 7: The performance of Parser and Deparser as more
protocols are handled.

Parser and Deparser performance. Figure 7 shows how
CPU cycles per packet increase for both Parser and Deparser
as the P4 program handles additional protocols. To parse only
the Ethernet header, Parser consumes about 20 CPU cycles
per packet, while Deparser consumes twice as many cycles,
about 40 per packet. The deparsing process is more costly if
there are a few protocols handled (up to 2). However, as the
P4 program handles more protocols (layer 4 and above) the
parser stage becomes more costly. The cost of Parser for a
protocol stack composed of seven protocol’s headers is about

2.4 times greater than the cost of Deparser. It means that the
performance results may be degraded for the P4 programs
handling more complex protocol stacks.
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are added.

Match-Action pipeline’s performance. The packet pro-
cessing pipeline is described in the Control block of the P4
program. The Control block may be composed of multiple
Match-Action tables. As our compiler generates the code
that modifies packets in the post-pipeline editing a cost of
a write action (set or modify a field) is included in the cost
of the Deparser. Therefore, the main factors that impact the
performance of the packet processing pipeline are operations
on Match-Action tables. Figure 8 shows how many CPU cycles
are required for Match-Action table’s operations (lookup, write
action) as more tables are used to process a packet. As
expected, the cost of Match-Action table’s operations grows
(almost linearly), when the number of Match-Action tables is
increased. If there is a match in the table lookup, appropriate
action is invoked. However, the overhead of invoking an action
is negligible due to post-pipeline editing. Nevertheless, a
programmer should try to minimize the number of P4 tables to
optimize the performance of the P4 program injected to P4rt-
OVS. We also measured how many CPU cycles per packet are
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required to perform table lookup and update (Figure 9). As
expected, the cost of these operations is constant regardless of
the number of entries stored in the P4 table. It is a consequence
of using hash maps to implement P4 tables. However, we can
observe that ubpf_map_update () uses many more CPU
cycles per packet than map lookup. This is due to the memory
allocation required to add new entries to the hash map.

Overhead of the P4 programmability. The data plane pro-
grams for P4rt-OVS do not necessarily have to be developed in
P4. The skillful programmer may also use the C language with
standard userspace libraries to implement runtime extensions
for P4rt-OVS. P4 provides an expressive, declarative, high-
level language, but a protocol-independence and programma-
bility come with the cost of a more complex program structure
and costly parsing and deparsing stages. In this experiment,
we compare how many CPU cycles are consumed by the BPF
program generated from P4 in comparison to the C-based
program.
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Fig. 10: The performance of data plane programs written in
P4 and C.

Figure 10 depicts the performance results for several pro-
grams written in either P4 or C. It shows that P4 introduces
the overhead in comparison to C programs, especially for
VXLAN and stateful firewall. Based on these results, we
can conclude that the performance of a data plane program
performing MPLS tunneling is comparable for both C and P4.
For this kind of program, a protocol stack is quite simple and,
therefore, the cost of parsing and deparsing is low. However,
we can observe significant overhead when comparing results
for the VXLAN tunneling example. As observed in Figure
7 the cost of parsing and deparsing in P4 increases as more
protocols are handled. This does not apply to the C program, as
there is no need to perform a costly deparsing process. We also
measured the performance for two stateful programs, namely
the rate limiter and the stateful firewall. The performance
of C and P4 implementations of the former are comparable
because there is no need to implement parser and deparser
for simple rate limiting in P4. However, the performance of a
stateful firewall written in C is higher than the corresponding

P4 program. A stateful firewall tracks the state of the TCP
connection, so the P4 program must parse headers up to layer
4. Again, due to the high cost of parsing and deparsing stage,
the stateful firewall written in P4 performs worse. Note also
that the performance of a particular BPF program depends
strongly on how the function is implemented and the results
can vary considerably from a program to a program. For
instance, we have implemented stateful firewall in C such
that the packet processing is finished just after saving the
state of connection. On contrary, the program generated from
P4 always reaches Deparser (as the P4 language does not
provide explicit keyword to stop execution such as return
in C). This is also the reason why C-based stateful firewall
performs better. In the case measurements considered for the
stateful firewall there are many outliers. These are mainly
values for map_update () operations as they are quite rare
(an update of the state is done only when a session’s state
is changed); once the session is open map_update () is
not invoked until the end of the session. To conclude, P4
introduces a notable performance overhead in comparison to
C programs. It is mostly caused by the costly parsing and
deparsing process performed in the BPF program generated
from the P4 language. Hence, there is room for performance
optimizations of our P4-to-uBPF compiler by generating more
efficient Parser and Deparser.

VI. RELATED WORK

P4-capable software switches. P4rt-OVS leverages P4
as a high-level language to describe the packet processing
pipeline. Although similar approaches exist [19] [20], P4 has
so far been the focus of the industry. However, the design
principles of P4rt-OVS may also be used with other data plane
programming technologies. There were already some attempts
[21] [7] [22] to implement P4-capable software switches.
Nevertheless, P4rt-OVS is the first solution, which allows
to implement protocol-independent and stateful programs for
OVS and deploy them at runtime. P4rt-OVS provides the P4-
to-uBPF compiler that extends a range of already developed
P4 compilers for various targets [23] [7] [24] [25] and is
the first P4 compiler for userspace BPF target. The P4-to-
uBPF compiler can be used to implement P4 support for other
software switches processing packets in userspace.

Other programmable runtime environments. There is
a large body of previous work on programmable software
switches [26] [27] [28]. From the perspective of this paper, it
is worth to outline two extensions of OVS: SoftFlow [3] and
Oko [11]. The former allows to execute network functions
as OVS actions, but is not programmable at runtime. The
latter integrates BPF with OVS and can be extended at
runtime. However, it is limited only to programmable packet
filters. There is also an effort on extending the Linux kernel’s
networking stack at runtime [8] [29]. eBPF was applied to
OVS [30] [31] to provide runtime extensibility, but the results
were not satisfying due to limitations of in-kernel BPF.

Performance of software switches. As software switches
are widely used as hypervisor switches in virtualized data
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centers, there are many research papers on performance com-
parison of different solutions [32] [33] [34] [35]. OVS-DPDK
was proved to have a satisfying performance for NFV, hence
we decided to base P4rt-OVS on it.

VII. CONCLUSION

Even though OVS provides a high degree of programmabil-
ity to the data center networking, it is still difficult to extend
its packet processing pipeline to implement novel or domain-
specific network protocols or stateful data plane programs.
In this paper, we present our design and implementation
of P4rt-OVS, an original extension of OVS that allows for
programming protocol-independent and stateful runtime exten-
sions for OVS. P4rt-OVS offers network engineers a flexible
architecture to introduce new network features to OVS’s
forwarding pipeline dynamically and, therefore, to shorten the
time to market for network protocols. The obtained perfor-
mance evaluation results show that P4rt-OVS introduces a
negligible overhead. Moreover, the microbenchmark provided
tips on how to write efficient P4 programs for P4rt-OVS.
Nevertheless, as microbenchmarks proved, there is still room
for performance optimizations.

Our future work will focus on implementing further func-
tional enhancements and performance optimizations. More-
over, we plan to implement new use cases (e.g. In-Band
Network Telemetry) to evaluate further P4rt-OVS and its
potential limitations.
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