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Abstract—Holographic-type Communication (HTC) has been
widely deemed as an emerging type of augmented reality (AR)
media which offers Internet users deeply immersive experiences.
In contrast to the traditional video content transmissions, the
characteristics and network requirements of HTC have been
much less studied in the literature. Due to the high bandwidth
requirements and various limitations of today’s HTC platforms,
large-scale HTC streaming has never been systematically at-
tempted and comprehensively evaluated till now. In this paper, we
introduce a novel HTC based teleportation platform leveraging
cloud-based remote production functions, also supported with
newly proposed adaptive frame buffering and end-to-end sig-
nalling techniques against network uncertainties, which for the
first time is able to provide assured user experiences at the public
Internet scale. According to our real-life experiments based on
strategically deployed cloud sites for remote production functions,
we have demonstrated the feasibility of supporting user assured
performances for such applications at the global Internet scale.

Index Terms—Holographic-type Communication, Augmented
Reality, Remote Production, Quality of Experience (QoE).

I. INTRODUCTION

Holographic-type Communication (HTC) [1] is a type of
new immersive media that combines both the Augmented and
Virtual Reality (AR/VR) technologies to display in full 3D
objects captured by RGB depth (RGB-D) sensor cameras.
It is anticipated that in the near future, HTC based tele-
portation will become an increasingly popular over-the-top
(OTT) application that allows Internet users to communicate
with more immersive experiences compared to traditional
video based applications. Moving from 2D to 3D objects
would significantly increase the demand for higher bandwidth
as compared to conventional 4K/8K video content. The 3D
content is then virtually teleported and displayed to the remote
participants’ space [2]. In this way, content consumers can
see in 6-Degree-of-Freedom (6DoF) objects (including depth)
captured by the sensors cameras in a remote place within their
physical space, in real-time by using AR/VR capable devices.

HTC applications have been regarded as one of the most
demanding content applications for the 5G and beyond net-
works [3], [4]. New holographic applications are anticipated
to emerge within the next few years with fully immersive
AR/VR experience and near-real personal communications
with holograms. Full (or near-full) immersion will be achieved
when all human senses (i.e. vision, hearing, smell, taste, touch,

and balance) are stimulated [5], requiring extremely high data
rates (in the order of Gbps or even Tbps) to convey the rich
and immersive content and even lower latency (< 20ms) for
real-time user interaction [3].

On top of these requirements, high quality holographic
applications require powerful devices to produce and render
the frames without introducing high processing delays. To
address these challenges, both academia and industry [6]
are working on shoving most of the complexity from the
hardware to software [7], enabling i) high-quality 3D-objects
with reduced rendering latency [2] and ii) a user-aware and
network-adaptive AR/VR streaming [8].

At present, the vast majority HTC applications still require
consumers to wear Head-Mounted Devices (HMD) such as
Microsoft Hololenses. In this scenario, the required data rate
is in the order of tens of Mbps per teleported object, depending
on the displayed quality of HTC objects. For example, a
single sensor (e.g. Microsoft RGB-D Kinect 2.0) may require
extremely high capacity i.e. > 1 Gbps for each teleported
object, which could be further reduced to ≈ 30 - 60 Mbps, by
applying high-quality compression techniques [9]. The traffic
generated from the sensor(s) is also directly dependent on
the number of point clouds captured in the scene. In [9], the
authors report an aggregated throughput that exceeds 1 Gb/s
for 8 sensors, whereas in [10], the frame production server
received 400 Mb/s from all 8 sensors.

Today’s HTC-based teleportation applications are still in
their infant status, in the sense that it is difficult to support
large-scale communications over the global public Internet.
This is due to the application’s requirement on stringently high
data rate and also the lack of agility in dealing with complex
and uncertain network conditions.

In this paper, we strive to identify specific barriers and
conquer them by proposing a scalable HTC based teleportation
framework that can be operating at the Internet scale with
assured user experiences for the very first time in the literature.
We specifically target at the HTC teleportation applications
requiring HMD support with the end-to-end data rate in
the order of tens of Mbps per object over public Internet
which has not been possible based on the existing HTC
(open-source) platforms. The key novelty is that we leverage
cloud-based infrastructures that are geographically close to the
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Fig. 1: High-level overview of HTC production in a) local
physical machines and b) proposed cloud-based infrastruc-
tures.

actual audiences to fulfil the real-time remote HTC content
production functionality rather than relying on local physical
machines attached to the source to make use of the powerful
cloud infrastructure and to distribute the content across the
globe, as it can be seen in Figure 1. Note that in this case, the
clients (i.e. the computers locally attached to the cameras for
pre-processing frame data) can compress the data generated by
the sensors before transmitting them to the remote cloud-based
server. Hence, the bandwidth demand required for transmis-
sion over the public Internet will not be significantly higher
than the traditional way with local production server. The
reason to locate the cloud site for remote production function
close to the audience user equipment (UE) side is as follows.
Today’s typical HMDs are based on wireless connections (e.g.
WiFi or 4G/5G), and recent works have revealed the sub-
optimal throughput performances of TCP for content delivery
across hybrid long-distance Internet paths with high round
trip time (RTT) combined with radio access networks (RANs)
due to significantly different bandwidth-delay-product (BDP)
between the two network environments [11], [12]. By locating
the server function close to the audience UE side, the long
RTT issue of the fixed Internet paths is circumvented. In this
case, to tackle the traffic throughput uncertainty between the
client side and the remote server side (which is normally
all fixed network environment), we introduce sophisticated
quality compensation mechanisms including frame buffering
and context-aware connection management operations that can
be easily supported by the high computing power in the cloud.
Details on these newly proposed techniques will be introduced
in Section III.

In the emerging softwarised network environments, the
capability of remote HTC content production can be natively
embedded in the end-to-end data delivery chain as a type of
content-aware virtual network function (VNF) at the edge of

the network where local audiences are attached. In order to
tackle dynamic and uncertain network conditions, we pro-
pose distributed HTC frame buffering and adaptive signalling
techniques that make sure the frame rate performance of
teleportation streams received at the remote destination side
is robust and seamless according to human being perceptions.

We carried out comprehensive real-life experiments at the
Internet scale to evaluate the performance of the proposed
framework and techniques. We strategically deployed 3 cloud
sites across the globe, using Amazon Web Services (AWS)
cloud infrastructure, at London, North Virginia and Seoul for
remote HTC production, catering for local content receivers
around those locations. Based on the experiments, we observed
that HTC with assured QoE can be achieved by supporting
buffering schemes on different sides and by applying the
necessary signalling and TCP connection management tech-
niques. By taking advantage of the cloud-based infrastructure
to produce and host the content close to the audience, HTC
streaming with assured QoE is also feasible at Internet-scale.

The rest of the paper is organised as follows. Section II
overviews the platform applied in this work, its inherent
limitations, and the challenges that need to be addressed
for enabling large-scale HTC. Section III presents the de-
velopment and the features incorporated in the application to
support cloud-based HTC, whilst Section IV shows the end-to-
end performance evaluation of the HTC application. Finally,
Section V concludes the paper.

II. TRADITIONAL SYSTEM AND LIMITATIONS

In this work, the open-source holographic application,
namely LiveScan3D toolkit [13] 1 is used as a representative
HTC framework that allows to capture 3D objects and stream
either the whole scene or to detect the skeletons and stream the
bodies only. This software has also, a user-friendly interface,
allowing the users to calibrate the system, select the type
of holographic experience (i.e. whole scene or bodies only),
filter out noise for reducing the effect of “flying pixels”,
and adjust the compression level. The latter should be used
when bandwidth is the bottleneck, but would reduce the image
quality.

The main advantage for LiveScan3D is the capability of
the server to collect synchronised frames from various clients-
sensors and to render them. That said, the server can produce a
frame that displays the 3D object from different angles based
on the position of the clients. Note that with the term client,
we refer to the physical machine that the sensor is connected
with. The data captured by the sensor are pre-processed at
the client, which in turn sends the processed point clouds
to the server upon request. The server is responsible for the
2nd level of rendering, by merging the frames received from
the clients and producing the output frame. Now, that the
output frame is streamed to the User-Equipments (UEs), e.g.
Microsoft Hololenses.

1LiveScan3D: https://github.com/MarekKowalski/LiveScan3D
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For each point cloud, 15 bytes are transmitted; 3 bytes
for carrying the colour information (1 for each R, G, and
B 2) and 12 bytes for the coordinates (4 bytes for each
dimension x,y,z). Since the application projects the colour
pixels into the depth space (512 x 424 px) and given that
the frames produced by the sensor at a rate of 30 Frames
Per Second (FPS), the maximum data rate required would
be (512 · 424) · (15 · 8) · 30 = 781.5 Mbps (raw data). Of
course, if data compression is applied on the client, then the
data rate would be significantly reduced as mentioned in the
previous section. Furthermore, since we are more interested
in projecting only human beings and not the whole scene, the
bandwidth required would fall below 100 Mbps for streaming
one person with the current available technology. There is also
some additional data transmitted (< 200 kbps for the skeleton
and joints information), that could be neglected due to its small
size compared to the point clouds sent.

The original system uses 11 frame types for signaling
between the client(s) and the server. Six types are for control
frames that are being exchanged in the beginning of the
connection to correctly set-up (by exchanging the settings
applied on the server) and calibrate both client(s) and server.
During the calibration, management frames are exchanged
for predicting the pose uncertainties in the Iterative Closest
Point (ICP) algorithm as described in [13]. The calibration
is initiated by the server when calibration is required (e.g.
multiple sensors are applied) and it is being triggered by the
user. Finally, during the connection establishment or when the
user changes the settings in the server, the latter signals all
the clients with the updated values (e.g. the frame carries
information about the minimum and maximum bounds that
will be displayed on the server, whether the whole scene or
only the bodies will be displayed etc.).

The remaining 5 types are for the requests, transmissions,
and signaling during the data exchanging. Note that all re-
quests are initiated by the server, whilst the client before the
actual data transmission, signals the server whether there is
any data frame; a pre-recording saved frame or a live one.

Although, LiveScan3D is functional under local networks,
it cannot cope with the long delays that large-scale commu-
nications over the public Internet impose, hence to support
cloud-based productions around the globe. The main reasons
(at the Application layer) are i) the lack of a frame buffering
system to store any frames produced at both the client and
the server and the UE side due to devices’ capabilities, which
would eliminate the possibility of losing frames between the
requests and the transmission of duplicate frames and ii) the
development of synchronous methods in both the Application
and Network layers, introducing high delays and blocking
other operations.

Both reasons would result to poor Quality of Experience
(QoE) for the end users with the application stalling frequently
due to the high delay introduced by the blocking operations

2Note that Kinect 2.0 uses RGBA, but A (which is normally for trans-
parency) is not considered in this platform.

Header Data (Point Clouds / Settings etc.)
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Octets: 1 4 4 4
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Type
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1

Compr_Flag

255

Reserved

CAPTURE FRAME,        
CALIBRATE,            
RECEIVE SETTINGS,     
REQUEST STORED FRAME, 
REQUEST LAST FRAME,   
RECEIVE CALIBRATION,  
CLEAR STORED FRAMES, 
CONFIRM CAPTURED,
CONFIRM CALIBRATED,   
SEND STORED FRAME,   
SEND LAST FRAME
NO FRAME

Fig. 2: Frame structure for the LiveScan3D platform, applied
in this work.

and due to wasting network resources by transmitting invalid
frames (e.g. replicated frames) from the Application layer.
Based on the traditional approach and using the original HTC
platform, we carried out complete local test with the FPS being
close to 20 at the client due to the blocking operations and 25,
higher than the client’s, for the server due to the transmission
of invalid frames. When the UE is moved to N. Virginia and
Seoul (the selection of the cloud-based sites is described in
Section IV), QoE severely degrades with the FPS dropping
down to 7 and 3, respectively.

As for the Network layer, LiveScan3D makes use of simple
and synchronous sockets based on TCP that provides sub-
optimal performance as mentioned in Section I. Although, the
major part of development was to introduce a frame buffering
system and to improve the signaling system of the existed
application, enhancements were also applied to decouple most
of the functions in both the server and the client and optimise
their operations in both Application and Network layers.

III. PROPOSED SCHEME AND NETWORK SUPPORT

In this section, we present our detailed design of Internet-
scale HTC framework with introduced cloud-based remote
production feature with the support of necessary buffering,
signalling and TCP connection management techniques. It is
worth mentioning that, although we implemented our design
based on the LiveScan3D platform, the proposed scheme is
generically applicable to other HTC platforms. Note that in
that case, the amount of data transmitted over the public
Internet increases compared to the local production (due to the
noise and overlapping-frame filtering occurred on the server).
However, as previously indicated, thanks to the cloudification
of the server production operation, the sever function can now
be flexibly deployed at different Internet locations close to
the audience side for local access from the server, reducing
CAPEX.

The newly designed HTC framework contains data trans-
mission, control and management operations. Control opera-
tions include the signals exchanged by the client(s) and server
such as the status of the buffer and the acknowledgment of
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the settings applied on both client(s) and server. On the other
hand, management operations include the frames exchanged
during the calibration phase, where the client(s) and server
are finally tuned. Figure 2 illustrates the frame structure for
the HTC platform applied in this work, with the type of
a frame indicating whether the frame is for management,
data, or control. The major changes from the original system
are the addition of the Timestamp field, the introduction of
additional messages indicating whether there are any new
available frames in the client to avoid any unnecessary delays
for the server waiting for frames, and the unification of all
fields as a single header used in all control, management,
and data frames produced by the application. To correctly set
the Timestamp, we apply the Network Time Protocol (NTP)
where both the clients and the server synchronise their clocks.
This feature allows to order the frames based on the time they
produced and synchronise them (in the case of multiple clients
either jointly capturing a common object or separate objects).

Receiver Mgm (In parallel)
while frames in Rx Buffer ≤ threshold do

Request for frames from client;
if frame(s) exist (client) and received (server) then

enqueue frame(s) in the Rx Buffer;
order frames (Timestamp);

else
request again after X ms;
break;

end
end
Production Mgm (In parallel)

while display interval elapsed do
dequeue frames from Rx Buffer(s) (Timestamp);
if Multiple clients then

apply frame synchronisation across all clients;
discard any frames fallen out of synchronisation window;

else
proceed to the next step;

end
aggregate fresh incoming frames to produce the output frame;
display of the constructed 3D object(s);
enqueue the output frame into the Tx Buffer;

end
Transmitter Mgm (In parallel)

while request from UE(s) do
if output frames timestamp > UE’s served frames then

select those output frames from Tx Buffer;
transmit to UE(s);
update Tx Buffer status;

else
signal UE(s) that no new output frames exist;

end
end

Algorithm 1: Pseudocode of the server functionalities

There are three core functions running in parallel on
the server in the cloud; Receiver Mgm, Production Mgm,
and Transmitter Mgm, each one of them handling specific tasks
and functions, as shown in Figure 3 and described with the
(pseudo-algorithm) Algorithm 1. The former one is responsible
for handling all information related with the connections to the
clients and the frames received by them (establishment, data
exchanging between the clients and the server). It is also the
one that checks the buffer status and requests from the clients
for new frames. The second core function is responsible for the
synchronisation of the frames and the production of the output
frame, which can be displayed on the server or be streamed to

the UEs. In particular, the frame synchronisation is required
when multiple clients / sensor cameras either jointly capture
a common object or operate remotely capturing different
objects. In that case, any input frames in the server will be
aggregated together only if their timestamps fall into the same
time window, meaning that they were originally produced at
approximately the same time, otherwise the objects displayed
with the output frame might not be synchronised. The latter
core function, Transmitter Mgm, is responsible for serving the
UEs and handling all the statistics with these connections, e.g.
up to what frame each UE has received etc.

Furthermore, we introduce a set of distributed frame buffer-
ing mechanisms for dealing with network uncertainties espe-
cially over the long-distance Internet path. This includes a
three-level buffering at the cloud-based server side as well
as on the client and UE sides. Even though, the queues are
based on the First In First Out (FIFO) method, the frames
in all buffers are organised in ascending order based on
the production timestamp. The reason of using a three-level
buffering mechanism at the server is due to the three decoupled
and distinguished operations taking place on the server, as
mentioned earlier.

The first buffer, the Rx Buffer is the one that stores the
frames received from a client side. The server holds one buffer
per client, where based on a fixed time interval checks the
status of the Rx Buffers and i) orders the frames based on
the timestamp and ii) requests a frame from a client when
the frames buffered are less than a pre-configured threshold.
The actual system performance based on different settings of
such threshold is analysed in Section IV. In particular, the
server will first wait for the frames in the buffer to be at least
equal to this threshold before starts dequeing and producing
the output frame for the first time. Since we developed these
novel features to enhance the receive/transmit capabilities of
the devices 3 by allowing multiple parallel TCP connections
per device when it is necessary for coping with high RTT [12]
which has recently been proposed in other content delivery
scenarios, and given that the frames received by a client
regardless of the number of parallel connections to the client
are enqueued in the same buffer, the frames are organised in
ascending order in this first buffer. Any outdated and invalid
frames are being discarded from this incoming buffer. Once
the X ms time interval elapses, the Production Mgm function
initiates the production of the output frames by dequeuing
the frames from the Tx Buffer based on the timestamp and
adds them to the list for rendering. Note that if multiple
clients are connected to the server, then the Production Mgm
function will only dequeue the frames belonging in the same
time window based on their timestamps, hence the frames
selected to be synchronised. For example, the frame with
timestamp TS1 from Client 0 will be merged with the frame
with timestamp TS1 from Client N, whereas the the frame
with timestamp TS2 from Client 0 will not be rendered with

3With the term devices, we refer to all devices engaged in the HTC
framework (i.e. clients, server, UEs).
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other frames if they do not belong in the same time window
(e.g. TS2 ±10ms). Now, the output frame is being enqueued
in the second buffer, the Production Buffer, and also pushed
into the third buffer, the Tx Buffer. The server displays the
frames stored in the Production Buffer with a rate that is
similar to the one supported by the sensors (e.g. 30 FPS in
our system, which corresponds to approximately every 33ms).
Finally, the Tx Buffer holds the frames produced by the server
that are ready for transmission to the UE(s). Note that to
maintain low complexity, we have developed only one queue
for the transmission to the UEs, where only when a frame
has been sent to all available UEs is discarded by the buffer.
Hence, the Transmitter Mgm function records the stats per UE
and accordingly updates the Tx Buffer.

On the other hand, the main functionalities for the clients /
sensor cameras include the construction of the input frames
based on the object captured (1st level of rendering), the
enqueuing of these frames into the local buffer, and the
transmission of these input frames upon request from the

server. The UE(s) monitor their buffer status and request for
any output frames from the server when their local buffer is
below a threshold in a similar manner with the Receiver Mgm
taking place at the server.

Figure 4 depicts a signalling sequence chart of the frames
being exchanged between a client and a server for the HTC
system, along with the frame buffering mechanism. Once the
TCP connection has been established, the client starts storing
any frames produced into its local buffer. Only after the
calibration has been finished, the client(s) and server are ready
to exchange the data frames. The client dequeues and transmits
all available frames that are stored in the buffer upon receiving
the request by the server. Note that if the buffer in the client
is empty, which means that all frames have been sent to the
server or for any unexpected reason there have not any frames
been produced, the NO FRAME signal is used.

IV. REAL-LIFE TESTING AND PERFORMANCE
EVALUATION

Considering the complexity of such real-life performance
evaluations at the Internet scale, we adopt the following exper-
iment strategies. First of all, giving that the new bottleneck in
the end-to-end content delivery path is between the client side
and the remote production server side in the cloud, we first
evaluate the performance at the server side across different
network locations, as robust FPS performance between the
client side and the server side is a fundamental prerequisite for
end-to-end user QoE. The server operating on the AWS cloud
is located in three strategically selected Internet locations as
previously indicated in Section I, i.e. London, Seoul, and N.
Virginia. Once we have verified the assured FPS performance
on the server side, as the bottleneck, it can be inferred that the
UEs that are geographically close to the server in the cloud
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Virginia cloud site

London cloud site Seoul cloud site

Source @ Guildford in UK

Fig. 5: Sites where the HTC remote production function is
deployed.

will receive assured performance due to local content access.
To verify this, we further carried out end-to-end performance
based on the London cloud site where the UE is actually
located in Guildford which is in south England. Note that
the client/sensor 4 and the UE (for the second scenario) are
hosted by the 5G Innovation Centre at University of Surrey,
in Guildford, where the object is captured.

A. Remote Server Performance

Figure 5 shows a map of the server deployment across the
globe and a snapshot as seen from the server at N. Virginia,
where the 3D hologram is displayed. The RTT for these sites
can be observed in Figure 6a, as calculated from the client. The
selection of these three sites is due to the different RTT they
show; very small (e.g. London with approx. 4ms), medium
RTT (e.g. N. Virginia with approx. 85ms), and the extreme
high RTT (e.g. Seoul with approx. 285ms).

Figure 6 depicts the performance of the HTC application in
terms of FPS and throughput perceived at the remote server in
the cloud for various Threshold values (in terms of number of
frames) applied to the Rx Buffer; 1, 10, and 255 are the values
used, with the latter one being equal to the buffer capacity
used in our development. Five conclusions can be drawn
from this figure. First, the client produces frames close to its
maximum value, which is 30 FPS, regardless of the number
of connections due to decoupling most of the functionalities
used in the client as compared to the performance achieved
by the original HTC framework in Section II. There is only a
small variation with the site deployed in Seoul due to the high
volume of transmitted traffic after a request is received at the
client. Secondly, the FPS at the servers is also very close to
the one observed at the client, apart from the slow start that
may occur with the server at Seoul and the delay introduced
with the Threshold value. This is also due to the decoupled
functions and non-blocking operations, we developed for the
server. For example, a Threshold of 255 frames means a delay
of approx. 8 seconds (given that 30 frames are produced per
second) for the displayed hologram at the server. Thirdly, this
start-up delay can be reduced by applying multiple parallel

4Kinect 2.0 is the sensor and the client machine is an Intel(R) Core(TM)
i7-6820HQ CPU @ 2.70GHz with 32GB.

TCP connections per client, especially for the case where the
cloud-site operates in Seoul with the long RTT. Fourthly, 1
TCP connection is sufficient for the site deployed in London,
as any additional parallel connections are hardly ever used.
On the other hand, for the further sites, additional connections
slightly improve the performance by increasing the throughput
and reducing the start-up delay. Note that when multiple
parallel TCP connections are used, the device checks the status
of each connection based on a Round Robin and writes to the
connections that are available. Finally, the high throughput
and variation observed for the site deployed in Seoul is due
to the high request interval due to the fact that the client has
produced more frames that are ready for transmission (between
two consecutive requests).

Figure 7 depicts the performance metrics for the buffering
mechanism against the number of parallel TCP connections,
the Threshold, and the RTT. Six conclusions can be drawn
from this figure. First, by increasing the number of parallel
TCP connections, the number of frames stayed inside the
queues reduces due to the smoother and faster transmission
of the frames over the available channels, as explained earlier.
Secondly, as the Threshold increases, in one hand the risk
of stalling reduces but on the other hand, higher delay is
introduced and there is the risk of losing frames due to buffer
overflow. For example, when Threshold = 255, the overall
delay for producing and displaying the hologram due to the
buffering scheme is approximately 8 - 10 sec, as illustrated
in Figure 7b. In that case, the server waits until this threshold
is reached before starting dequeing and producing the output
frame. Thirdly, the time for a frame stayed in the queues drops
with the number of parallel TCP connections. This can be
seen in Figure 7c where the overall time for a frame stayed in
the queues, drops of about 4000ms and 1000ms as 5 parallel
connections are open against 1 and 3, respectively. Fourthly,
the higher RTT significantly increases the dequeing interval
from the Client Buffer, affecting the rest of the queues at
the server and of course increasing the volume transmitted by
the client after a request received, as explained earlier. Since
more frames are transmitted now, there are more frames inside
the server’s queues that are waiting for them to be dequeued.
Fifthly, this dequeing interval from the Client Buffer can be
controlled by increasing the number of parallel connections as
illustrated in Figure 7e. In particular, the maximum dequeing
interval can be reduced as frames are sent faster on the
available channel (the probability of a channel being available
increases with the number of parallel connections, especially
in links with high RTT where TCP ACK may cause additional
delays and block transmissions). Finally, Figure 7f shows the
processing delay introduced by the functions running on the
client when only 1 TCP connection is open. Note that under
the profiling mode, the client does not operate in the optimised
mode, hence the processing delays will be higher than the
ones during the optimised operation (i.e. profiling mode is
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Fig. 6: Performance metrics in both client and server: a) RTT between the client and the servers, b) FPS at the client, c) FPS
at the server against the frame buffering threshold (e.g. pre-fetching), d) FPS at the server against the number of parallel TCP
connections per client, e) throughput perceived per TCP connections, and f) aggregated throughput perceived at the server.

disabled 5). The list with the functions is:
• HO: responsible for getting the latest frame from the

sensor and the colour, depth, and body information.
• H1: responsible for the Rx socket.
• H2: responsible for the Tx socket.
• H3: create the frames for transmission.
• H4: map depth information to space.
• H5: map colour information to space.
• H6: process the colour information and draw the data.
• H7: responsible for constructing the frame based on the

depth and colour information.
Although, most of the core functions do require less than

1ms for their execution, H0, H2, and H7 have the lion’s share
of the overall processing delay. Especially, function H2 where
huge volumes of traffic are required to be transmitted to the
server. Since only 1 TCP connection is open, it is natural for
this function to “wait” longer until all available frames are
pushed to the channel.

B. End-to-End Performance
This subsection serves for the case where the cloud-based

server distributes the content to UEs. In this scenario, the
5This is another feature that we have implemented to measure the process-

ing delay of the various functions, resulting in 4-5 times lower fps due to the
logging. Of course, the performance is also affected by the capabilities of the
client machine (e.g. how powerful it is). This mode can be selected by the
user on the fly.

cloud-based server distributes the content (after the frame is
being rendered and displayed on the server) to local con-
sumers. In particular, the client/sensor and the UE are hosted
by the University of Surrey in Guildford, as described earlier,
whilst the server runs on the AWS cloud in London.

To enable the holographic experience on mobile devices,
we have extended the Hololens application 6 by incorporating
Google’s AR technology to realise HTC on Android mobile
devices. This allows the consumers to experience HTC from
the screen of their mobile phones, that i) adds flexibility
e.g. no need for wearing the bulky HMD and ii) supports
of connectivity through cellular (remote) or Wi-Fi networks,
allowing for high-scale deployments (e.g. in a stadium, concert
hall etc.) pushing the limits of connectivity. On the other
hand, this technology is prone to mobile phone’s limitations
(e.g. powerful devices are desirable). In particular, for our
experiments, we use the Samsung S9 mobile device running
Android 9, to support the highest applicable quality level 7 for
mobile phones.

Figure 8 illustrates the performance metrics for the buffering
mechanism Server - UE, since the performance for the Client -
Server is not affected by the presence of UEs. Furthermore, the
throughput and the FPS perceived at the UE are also presented

6https://github.com/MarekKowalski/LiveScan3D-Hololens.
7For the development, the Unity software was used along with the Google

HelloAR framework.
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Fig. 7: Performance metrics in both client and server in respect to the frame buffering mechanism: a) number of buffered
frames, b) time for a frame stayed in a queue per site and buffer (e.g. Client, Rx, and Production), c) impact of the parallel TCP
connections on the time spent for a frame in the queues, d) impact of the various RTT on the enqueuing/dequeuing interval, e)
impact of the parallel TCP connections on the dequeing process in the client, and f) profiling metrics for the functions running
on the client.

in this figure. Three conclusions can be drawn by this figure.
First, a similar behaviour is observed with the increase of
the Threshold, as the delay inclines as well. Secondly, the
higher Threshold implies that the UE will request more fre-
quently for frames, resulting in higher complexity and longer
delays at the Tx Buffer. Finally, by increasing the Threshold
a smaller variation in terms of FPS and throughput can
be observed in Figures 8c and 8d, as the UE Buffer has
always frame for displaying and the more frequent requests.
In particular, the buffering scheme, the functions’ decoupling,
and the use of parallel connections assure an end-to-end QoE
with FPS close to 30 and bandwidth required 40 - 50 Mbps.

Even though, up to 5 parallel connections can also be sup-
ported for the Server-UE link, QoE degradation was observed
by enabling more than 1 connection with the FPS dropping by
approximately 20-30%. The main reason for this could be the
increased complexity, that the mobile phone could not cope
with.

V. CONCLUSIONS

In this paper, we have presented an end-to-end solution for
enabling in internet-scale Holographic-type Communications
(HTC) system, with guaranteed user Quality of Experience
(QoE). The bandwidth requirement for assuring seamless and

smooth streaming of the 3D teleported object is strictly de-
pends on the object and the number of objects being captured
by the camera/sensors, with the minimum being close to 40
Mbps per teleported object.

Our HTC platform, can be developed into a type of Virtual
Network Function (VNF) based on Network Functions Virtual-
ization (VNF), by leveraging cloud-based remote production
and distribute the content across the globe based on where
the audience is. The intelligent HTC frame buffering and sig-
nalling mechanisms developed in our HTC platform along with
the context-aware TCP connection management at different
segments of the end-to-end content delivery path across the
public Internet (e.g. based on some context information such
as the distance) are able to guarantee QoE to the end user.

By incorporating cloud-based infrastructures to remotely
produce and distribute the content the network uncertainties
occurred in the long-distance transmission of holographic-
type content can be overcome and guaranteed Frame per
Second (FPS) performance to the end user can be achieved,
with the content located close to the audience. Furthermore,
flexibility is improved as the HTC server can be deployed at
different cloud sites and act as a Multi-access Edge Computing
(MEC) server, whilst at the same time the Capital Expenditure
(CAPEX) can also be reduced when compared to the local
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Fig. 8: Performance metrics for the UE: a) number of frames buffered in Tx Buffer and UE Buffer, b) time for a frame stayed
in the Tx Buffer and UE Buffer, c) FPS as perceived by the UE, and d) throughput perceived at the UE.

production. As the immersive technology advances and the
content becomes richer, networks and solutions that offer
lower latency and even higher bandwidth will be required to
support new immersive technologies.

ACKNOWLEDGMENT

This work was funded by Huawei Technologies, through
cooperation with Network Technology Laboratory, 2012Labs.
We would like to acknowledge the support of the University of
Surrey 5GIC (http://www.surrey.ac.uk/5gic) members for this
work. The authors would also like to thank the authors of
the software used in this work, Marek Kowalski and Jacek
Naruniec, for their helpful advice on various aspects of the
software’s functions. Last but not least, we would like to show
our gratitude to Dr. Change Ge his valuable assistance in this
work.

REFERENCES

[1] R. Li and Y. Miyake, “New Services and Capabilities for Network
2030: Description, Technical Gap and Performance Target Analysis,”
Doc. NET2030-O-027 in FOCUS GROUP ON TECHNOLOGIES FOR
NETWORK 2030, Geneva, 2019.

[2] S. Orts-Escolano et al., “Holoportation: Virtual 3D Teleportation in
Real-time,” Proceedings of the 29th ACM Annual Symposium on User
Interface Software and Technology, pp. 741 - 754, 2016.

[3] R. Li, “Towards a new Internet for the Year 2030 and Beyond,”
Third Annual ITU IMT-2020/5G Workshop and Demo Day
(https://www.itu.int/en/ITU-T/Workshops-and-Seminars/201807/
Documents/3 Richard%20Li.pdf), Geneva Switzerland, July 2018.

[4] D. L.-Perez, A. G.-Rodriguez, L. G.-Giordano, M. Kasslin, and K.
Doppler, “IEEE 802.11be Extremely High Throughput: The Next Gen-
eration of Wi-Fi Technology Beyond 802.11ax,” IEEE Communications
Magazine, vol. 57, no. 9, pp. 113 - 119, 2019.

[5] S.-H Jun and J.-H Kim, “5G Will Popularize Virtual and Augmented
Reality: KT’s Trials for World’s First 5G Olympics in Pyeongchang,”
Proceedings of the ACM International Conference on Electronic Com-
merce (ICEC’17), pp. 1 - 8, 2017.

[6] X. Li et al., “A Critical Review of Virtual and Augmented Reality
(VR/AR) Applications in Construction Safety,” Automation in Construc-
tion Elsevier, vol. 86, pp. 150 - 162, 2018.

[7] A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic Near-eye
Displays for Virtual and Augmented Reality,” ACM Transactions on
Graphics (TOG), vol. 36, no. 4, pp. 85:1 - 85:16, 2017.

[8] J. Park, A. P. Chou, and J.-N. Hwang, “Rate-utility Optimized Streaming
of Volumetric Media for Augmented Reality,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems 2019, vol. 9, no. 1, pp. 149
- 162, 2019.

[9] A. D. Wilson, “Fast Lossless Depth Image Compression,” Proceedings
of the 2017 ACM International Conference on Interactive Surfaces and
Spaces, pp. 100 - 105, 2017.

[10] A. Fender and J. Müller, “Velt: A Framework for Multi RGB-D Camera
Systems,” Proceedings of the 2018 ACM International Conference on
Interactive Surfaces and Spaces, pp. 73 - 83, 2018.

[11] C. Ge, N. Wang, G. Foster and M. Wilson, “Toward QoE-Assured 4K
Video-on-Demand Delivery Through Mobile Edge Virtualization With
Adaptive Prefetching,” in IEEE Transactions on Multimedia, vol. 19, no.
10, pp. 2222-2237, Oct. 2017.

[12] C. Ge, N. Wang, W.-K. Chai, and H. Hellwagner, “QoE-Assured 4K
HTTP Live Streaming via Transient Segment Holding at Mobile Edge,”
on IEEE Journal on Selected Areas in Communications, vol. 36, no. 8,
pp. 1816 - 1830, 2018.

[13] M. Kowalski, J. Naruniec and M. Daniluk, “Livescan3D: A Fast and
Inexpensive 3D Data Acquisition System for Multiple Kinect v2 Sen-
sors,” Proceedings of the 2015 International Conference on 3D Vision,
pp. 318 - 325, 2015.

144


