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Abstract—In this paper, we show that server load correlates
with TCP SYN response time (SRT), that is, the time from
SYN to SYN+ACK segments at the server side. For this, it
applies the innovative approach of modeling the SRT with an
appropriate a-stable heavy tail distribution. We also show that
a-stable distribution parameters are related to the server load
the connection is attempted to. This approach provides a non-
intrusive way to estimate the server load, and it can be useful
to identify if a problem in a distributed application is caused by
the end system, or to distribute the load among servers. Finally,
based on obtained results, we propose a method that estimates
server load based on SRT.

Index Terms—non-intrusive measurement, «-stable distribu-
tion, traffic analysis.

I. INTRODUCTION

Network traffic has been widely monitored and analyzed to
study the network behavior, with many research papers [1], [2],
as well as several patents about this topic [3], [4]. Nevertheless,
it can also be valuable to study end systems behavior. For
instance, several zero-window announcements in a session
show that an application is receiving data at a higher rate
that the one it can process. Such a type of information can
be very useful to identify the root cause of problems [5] in
distributed systems, which are usually difficult to fix, partly
because network and system departments typically report to a
different manager, and none of them wants to take the blame
of the miss-configuration.

In this paper, we focus on how the load of a server can
be estimated based on the analysis of network traffic. In this
way, it is possible to distinguish if a problem is caused by
the network or by the server, therefore reducing the time to
identify its root causes, or, at least, the so-called mean time
to innocence (MTTTI) [6].

Moreover, this analysis can also be useful to fix other
problems that have appeared in distributed systems in recent
years. For instance, cloud computation is being incremen-
tally used by all kind of organizations, and load balancing
intended to use resources as efficiently as possible is an active
research topic [7]. Server Load is the input to a number
of proposed scheduling algorithms [8], [9]. Load measuring
without interfering significantly with applications in a server
can be difficult, partly because the measurement also affects
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the load of the server, and partly due to previously referred
organizational management.

The way in which we propose to estimate the server load
with network traffic is based on TCP SYN Response Time
(SRT). This is, the time it takes the server to answer a
connection request [10], as we will see in following sections.

The contributions of this paper are manifold:

1) We present a novel method to estimate server load
using a network-traffic-based, non-intrusive approach by
analyzing SRT distribution characteristics.

2) We show that SRT varies along the day with the
workload of the server, and its values are statistically
distributed following a heavy-tailed distribution.

3) We demonstrate that this distribution can be accurately
modeled by using an «-stable distribution. In contrast,
other typical distributions, such as Gaussian or log-
normal, do not fit well.

4) Finally, we also analyze the relation between «-stable
distribution parameters and the server load.

The rest of the paper is organized as follows. First, we
present a description of SRT and «-stable distributions, and
how they can be used to model SRT. Then, we discuss the
correlation of the statistical parameters to the server load.
Experimental data, taken from real server traffic, is presented
and discussed as well. Based on these results, we propose a
method to estimate the server load. Finally, we conclude the
paper remarking its key ideas and future research lines.

II. TCP SYN RESPONSE TIME
A. SRT measurement

TCP protocol requires a connection set-up before trans-
mitting or receiving any useful application-layer data. The
complete connection set-up involves three segments: SYN,
from client to server, SYN+ACK, from server to client, and
ACK, once again from client to server. TCP protocol does
not consider the connection established until all of them have
been successfully received. This 3-way handshake, shown in
Fig. 1, can be measured by using traffic probes [11] placed at
a vantage point.

Any of the phases delay can be used as an estimation for
Round Trip Time (RTT) [12], which has been used to estimate
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Fig. 1. SYN Response Time in the TCP handshake.

network infrastructure issues [13]. However, it should be noted
that, in contrast to these previous works, we are not going to
measure neither the RTT nor the network status. What we
present here is an innovative approach that uses SRT as an
estimator of the server load. In this case, it is important to place
the vantage point close to the server, so network influence on
measured SRT is minimized.

Note also that other approaches, based on the number of
SYN segments received by the server, do not provide an
accurate measure of the server load, as the load depends both
on this arrival rate and also on the service rate, which is usually
unknown, and not necessarily related to the transmitted data.

B. «-stable distributions

To model SRT statistics, due to the existence of heavy tails
in the measured values, we use an «-stable distribution. Note
that heavy tail distributions first and second moments are not
necessarily defined, so mean and variance may be useless in
this context. This distribution has been used to model several
traffic parameters such as bandwidth consumption in bits per
second or packets per second, or even RTT, with better results
than Gaussian or log-normal distributions [13], [14]. As far as
we know, this distribution has not been used before to model
SRT, although it is a natural extension of previous research.

From a mathematical point of view, a-stable distributions
can be considered as an extension of Gaussian and, therefore,
there is an equivalent to the central limit theorem for them. Ac-
tually, the sum of a number of a-stable distributions is also an
a-stable distribution [15]. The main inconvenient when using
this type of distributions is that there are no closed expressions
available for the probability density function (PDF) as there
are for Gaussian distributions. The equivalent is the expression
for E{exp(itX)} in Eq. (1).
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Fig. 2. «-stable distribution for 8 = 0.7, v = 1.0 and 6 = 0.0
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The a-stable parameters in Eq. (1) are not directly related to
mean or variance and can be transformed in several ways [15].
« is the stability index or characteristic exponent, 3 is the
skewness, v is the scale parameter and § is the location
parameter. Parameter « is related to the burstiness or kurtosis
of the distribution. Fig. 2 shows the influence of « parameter in
the distribution shape. Higher values of « indicate distributions
closer to Gaussian (which is the case when o = 2).

C. SRT statistical model

To check whether a-stable can model SRT we used real traf-
fic from a Fortune 500 company, obtained by a probe capturing
traffic from a mirror port of a switch that is close to the server
infrastructure in the data center, receiving connection requests
from branch offices during business hours. The obtained SRT
time series in the peak hour, when the branch offices start to
work, is shown in Fig. 3. Note the high excursion of the SRT
values, which indicates an asymmetric long-tailed distribution.

The a-stable fitting to the SRT data requires to choose a
time window long enough to capture the statistical features
of the traffic, but also short enough to consider the traffic
stationary. Between one minute and one hour, we have not
found noticeable differences in the fitting accuracy and we
decided to use a 10-min. window to compare different distribu-
tion fittings. Other options are available, as mentioned, so we
test several alternatives. Fig. 4 shows that a-stable distribution
is by far the best choice to model SRT.
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Fig. 4. SRT (in ps) distribution fittings.

D. Model accuracy

To check the model accuracy, we used the Kolmogorov-
Smirnoff approach [16]. This method uses the cumulative
distribution function (CDF) error to estimate the distribution
fitting accuracy. In Fig. 5 it can be seen the difference between
the time series CDF and the «-stable distribution CDF in
absolute value.

The maximum of the absolute CDF error is a measure of
the accuracy for the fitting. However, to really assess the
error, we have to break the dependence between the SRT
time series and the fitting distribution. This is usually made
by re-sampling both distributions and by getting again the
CDF fitting error. This approach, known as bootstrapping [17]
produces a random variable for the error that can be used as
an estimation of the quality of the model. Fig. 6 shows the
CDF error as a random variable. As shown, it resembles a
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Fig. 6. CDF fitting absolute error PDF.

Gaussian distribution with 0.52% mean, which is an excellent
result that confirms that a-stable distributions provide a very
good fit to model SRT.

E. SRT variability

Once the fitting model for the SRT is decided, we proceeded
by analyzing the SRT average evolution during a long period.
What we saw is presented in Fig. 7 for a whole week (from
Monday to Sunday). SRT average per hour changes every day
following a similar shape. The best explanation is that SRT
average is following somehow the infrastructure utilization.
During daytime, it has clearly higher values than during
nighttime. In the weekend, given that the server did not receive
connections, the SRT was similar to the nighttime. These facts
lead to link SRT and server load. To check this hypothesis, we
have set up a controlled environment, where we can measure
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Fig. 7. SRT average per hour (in us).

the SRT of connections sent to a server where we can set the
load, as explained in the following section.

III. SERVER LOAD CORRELATION WITH SRT

In order to measure the correlation between SRT and server
load we have set up an environment with a client and a server,
both multithreaded and implemented in Python 3, with one
thread per connection, connected through a Gigabit Ethernet
network switch (code is available upon request). The server
runs a Linux Kernel 3.2. The client sends TCP connection
requests (SYN segments) to the server with Poisson rate
A = b5 connections/s. This approach with Poisson arrivals
and its PASTA (Poisson arrivals see time averages) prop-
erty avoids artifacts in the SRT measurement that could be
caused if deterministic inter-arrival times were used [18]. After
the TCP connection is established, the client downloads a
random number of bytes (uniformly distributed from O to
11.5 Megabytes) from the server, and closes the connection
(FIN) once the download is completed. SRT is measured by
capturing the traffic with Wireshark in the server, where we
also use the Linux st ress command to simulate server load,
and mpstat to measure the load of the system every two
seconds. This command measures the CPU time used by the
kernel (sys), applications (usr), etc. With this set-up, we expect
the environment to be easily replicated by other researchers.

A. TCP connection inter-arrival time

To verify that SYN segments sent by the client are truly
Poisson, we have analyzed their inter-arrival time when re-
ceived at the sever. Fig. 8 shows the survival function of the
inter-arrival time with logarithmic vertical axis. It can be seen
that the distribution fairly follows an exponential function, so
SYN packet arrival can be considered Poisson. We have also
checked that the squared coefficient of variation is a value near
1, which also confirms the Poisson nature for the arrivals.

B. Server load experiment

We have run several times five different tests with different
server loads, one without using the stress command, and
other four in which we increase one worker on each test.
Therefore, we run stress —-cpu W —--io W —--vm
W —-hdd W, where W is the number of workers, from 1
to 4. Note that the stress command is affecting CPU, 1/O,
memory and hard disk at the same time, in order to mimic how
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Fig. 8. Connection inter-arrival time fit.
TABLE I
STRESS DATA
Values (%)
w usr sys lowait irq soft idle load
0 4.25 1.37 0.17 0.00 | 0.34 | 97.38 6.13
1 17.04 | 17.72 | 21.84 | 0.00 | 0.39 | 48.00 | 52.00
2 31.9 24.68 | 23.50 | 0.00 | 0.54 | 19.69 | 80.31
3 4526 | 35.94 1498 | 0.00 | 0.55 3.27 96.73
4 53.89 | 45.33 0.11 0.00 | 0.60 0.07 99.93

a system is usually loaded. The averaged load figures in the
tests are shown in Table 1. Load percentages for steal, nice and
guest were null in all cases. The server load evolution during
the five tests is shown in Fig. 9. In the case with the highest
load, there is low variation, being most of the time 100%.

C. SRT variability with server load

Using the environment described above, we got SRT sam-
ples within a 10 min. window for each load. Based on
the arrival rate, this sampling process provided about 3000
observations per round. We needed such amount of samples
to achieve good confidence bounds when fitting heavy-tailed
distributions [19]. Then, we obtained the a-stable parameters
(o, B, v, ) of the distributions that fitted these data sets.
Fig. 10 shows the SRT distributions for one of the tests.
As shown in Fig. 9, the stress conditions were stationary
during the window span, with relatively small fluctuations.
We expected a correlation between the server load and the
parameters as the TCP stack, even running in kernel space,
will be affected by the stress command. In Fig. 11 we can
see an example of the change of every parameter when stress
conditions increase.

The only parameter of the a-stable distribution that does not
seem to change substantially with the load is (3, whereas ~ and
0 tend to increase. o shows a heavy tailed distribution in all
iterations with load. This is, SRT distribution is asymmetric
with a heavy tail on the right, and higher loads imply a longer
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Fig. 10. o-stable fits for SRT data (in s) obtained in one of the tests for
several workloads. Tail of the distributions is not shown.

and more variable SRT. These obtained values support the use
of a-stable distributions.

Variations in v and 0 can be explained as a result of the
load increase. When the server is loaded, TCP stack has less
time available to response to SYN segments, and the time slot
the scheduler assigns to the stack is then more random. The
effect is the location of the distribution () is increased, as it is
somehow related to the distribution mean. The less predictable
slot time available for the TCP stack may be the reason why
the scale (7y) is also increasing. Counter-intuitively enough, we
have noticed a characteristic behavior for low loads in several
measurements. The & parameter does not seem to decrease

proportionally for very low CPU load, which is an open issue
to be addressed.

We have observed some consistent fluctuations in « values,
but they are not significant enough to be considered as a load
indicator without further research. Our best educated guess is
that they may be related to some behavior resembling archi-
tecture features and probably this is not easily generalized.

In conclusion, we can rely on « to estimate the server load.

IV. SERVER LOAD ESTIMATION METHOD

Based on the results provided above, we have defined the
following 3-step method to estimate the server load:

« First of all, given the dependence of this estimation on
the used hardware and software, it is necessary to obtain
the correlation curves of the a-stable parameters with the
load for the servers. This training phase would be similar
to what is shown in previous section, obtaining as a result
a regression curve useful to estimate the server load.

o After the training phase, SRT samples have to be col-
lected at the vantage point. This collection can be done
non-intrusively by capturing with a probe the SYN and
SYN+ACK segments of real TCP connections arriving to
the server.

e Once we have the collected SRT samples, we can fit
them to an a-stable distribution and obtain its parameters.
Based on the value of « and the regression curve obtained
in the first step, we can finally estimate which is the server
load.

There is a trade-off between the accuracy of the estimation
and the time it takes to collect the SRT samples. However,
usually there are more connection attempts in the most loaded
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Fig. 11. «-stable parameters vs. server load

times, so we are going to have more samples when we need
them more to diagnose the cause of the problems.

If SRT samples are collected passively, it is important
to reduce the bias caused by the non-poissonian nature of
the TCP connection arrivals [20]. For this, we propose to
apply a Bernoulli process that randomly chooses among the
measurements with probability p, given that Bernoulli arrivals
also see time averages [21]. Another possibility is to issue
SYN packets from a testing device and measure the SRT
distribution. This second approach is more intrusive, but it may
assure that a Poisson distribution is used to get the figures and
there are no artifacts in the measured SRT. Finally, it is also
advisable a combination of both approaches, to cover high and
low load periods, or when the applications work with persistent
connections.

V. CONCLUSIONS

In this paper, we have presented a novel approach, based
on the SRT time, to estimate server load without measuring
it internally. This approach is very valuable to identify bottle-

necks causing problems in distributed systems, as well as to
balance the load in server clusters.

For this, we measured the time from the SYN to the
SYN+ACK TCP segments at the server side. We have identi-
fied that SRT varies along the day in servers, following their
workload. SRT is distributed with a heavy tail, which is well
modeled by a a-stable distribution. Finally, we have found that
server load is correlated with both v and § parameters of the
a-stable distribution.

Based on these results, we have defined an estimation
method, which follows an initial training phase, where the
server load is characterized, and then, a monitoring phase
where SRT samples are taken to find the load distribution of
the server, based on the obtained «-stable parameters.

As future work, we plan to study in detail how accurate our
method is in order to estimate the server load. This analysis
can be done with respect to the number of samples or the
probability to choose a sample. This is especially important if
we use a Bernoulli process to reduce the bias of the estimation.
Other idea is to study how this method behaves when the
server load is not stationary. Finally, it is also important
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to deal with the security implications of these results, as
cybercriminals could use this technique to know when the
servers are more loaded and attack them at that time.
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