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Abstract—Coresets are small, weighted summaries of larger
datasets, aiming at providing provable error bounds for machine
learning (ML) tasks while significantly reducing the communica-
tion and computation costs. To achieve a better trade-off between
ML error bounds and costs, we propose the first framework to
incorporate quantization techniques into the process of coreset
construction. Specifically, we theoretically analyze the ML error
bounds caused by a combination of coreset construction and
quantization. Based on that, we formulate an optimization
problem to minimize the ML error under a fixed budget of
communication cost. To improve the scalability for large datasets,
we identify two proxies of the original objective function, for
which efficient algorithms are developed. For the case of data on
multiple nodes, we further design a novel algorithm to allocate the
communication budget to the nodes while minimizing the overall
ML error. Through extensive experiments on multiple real-world
datasets, we demonstrate the effectiveness and efficiency of our
proposed algorithms for a variety of ML tasks. In particular, our
algorithms have achieved more than 90% data reduction with less
than 10% degradation in ML performance in most cases.

Index Terms—Coreset, quantization, distributed machine
learning, optimization

I. INTRODUCTION

The rapid development of data capturing technologies, e.g.,
wearables and Internet of Things (IoT), has fueled the explo-
sive growth of data-driven applications that employ various
machine learning (ML) models to unleash the valuable infor-
mation hidden in the data. One key challenge for such appli-
cations is the high communication cost in training ML models
over large distributed datasets. One approach to address this
challenge is federated learning [1], where distributed agents
iteratively exchange model parameters to collectively train a
global model. The exchanged parameters, however, are only
useful for a single model, and different parameters need to be
exchanged to train different models, limiting the efficiency in
simultaneously training multiple ML models. When the goal is
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to train multiple models, which is the focus of our work in this
paper, the alternative approach of collecting data summaries
at a central location (e.g., a server) is often more efficient, as
the summaries can potentially be used to train multiple ML
models, amortizing the communication cost.

To reduce the original dataset into small summaries,
several techniques have been proposed, which can be generally
classified into: 1) sketching techniques for reducing the feature
dimension [2]–[4]; and 2) coreset construction techniques for
reducing the sample dimension [5]–[7]. However, sketches
change the feature space and thus require adaptations of
the ML tasks, e.g., the feature space of a classifier needs
to be modified to be applicable to the sketching results.
In comparison, coresets only reduce the cardinality of the
datasets and preserve the feature space, making them directly
applicable to the original ML tasks. Therefore, we focus
on coreset-based data summarization. Coresets [5]–[7] are
small, weighted versions of the original dataset, lying in the
same feature space. Existing coreset construction algorithms
focus on maximally reducing the cardinality with provable
guarantees on the ML error. However, most of these algorithms
are model-specific, i.e., constructing different coresets for
training different ML models, which seriously limits their
capability in reducing the communication cost when training
multiple ML models. Recently, a robust coreset construction
(RCC) algorithm was proposed to address this issue [8], where
a clustering-based coreset was proved to be applicable for
training a variety of ML models with provable error bounds.

However, existing coreset construction algorithms only re-
duce the number of data points, but not the number of bits
required to represent each data point. The latter is the goal of
quantization, where various techniques, from simple rounding-
based quantizers to sophisticated vector quantizers, have been
proposed to transform the data points from arbitrary values
in the sample space to a set of discrete values that can be
encoded by a smaller number of bits [9].

In this work, we propose the first framework to optimally
integrate coreset construction and quantization. Intuitively,
under a given communication budget specifying the total
number of bits to collect, there is a trade-off between collecting
more data points at a lower precision and collecting fewer data
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points at a higher precision. Jointly configuring the quantizer
and the coreset construction algorithm to achieve the best
trade-off can potentially achieve a smaller ML error than
using quantization or coreset construction alone. Our goal is
to realize this potential by developing efficient algorithms to
compute the optimal configuration parameters explicitly.

In summary, our contributions include:
1) We are the first to incorporate quantization techniques

into the coreset construction process. Based on rigorous
analysis for the performance of a combination of coreset
construction and quantization, we formulate an optimiza-
tion problem to jointly configure the coreset construction
algorithm and the quantizer to minimize the ML error
under a given communication budget.

2) We propose two algorithms to solve the optimization
by identifying proxies of the objective function that can
be evaluated efficiently for large datasets. Through the-
oretical analysis as well as experimental evaluations, we
demonstrate the effectiveness of the proposed algorithms
in supporting diverse ML tasks.

3) We further propose a novel algorithm to allocate the
communication budget across multiple nodes to adapt our
solutions to the distributed setting. Experimental results
demonstrate the effectiveness of the proposed algorithm
as well as its advantages over existing solutions.

II. RELATED WORK

Coresets have been widely applied in shape fitting and
clustering problems. See the related work in [10] for a detailed
review.

However, most existing coreset construction algorithms
are model-specific [7]. That is, different coresets will be
constructed for training different ML models, increasing the
communication cost in collecting the coresets when training
multiple ML models. To address this issue, robust coreset
construction (RCC) has been recently proposed in [8], where
a single coreset can support a variety of ML models with
provable error bounds. Therefore, in this work, we focus on
RCC as our choice of coreset construction algorithm.

Quantization techniques [9] aim to quantize the data points
to a set of discrete values so that each quantized value can be
encoded by a smaller number of bits. Recently, quantization
has been leveraged to reduce the size of ML models without
seriously degrading the model accuracy [11]–[13]. Existing
quantizers can be classified into scalar quantizers and vector
quantizers, where scaler quantizers apply quantization opera-
tions to each attribute of a data point, and vector quantizers
[14] apply quantization to each data point as a whole. In this
work, we focus on a simple rounding-based scalar quantizer
due to its simplicity and broad applicability. However, we note
that our analysis can be easily extended to any given quantizer.

Despite extensive studies of coreset construction and quanti-
zation separately, to our knowledge, how to optimally combine
them remains an open question. To this end, we propose the
first framework to integrate coreset construction and quanti-
zation, by formulating and solving optimization problems to

TABLE I: Main notations
Variable Definition

CS The operation of coreset construction
QT The operation of quantization
ε, εi Overall/local ML error
B, Bi Global/local communication budget
Y , Yi Total/local original dataset
S Coreset
n, k Cardinalities of Y and S

yi, yij One data point and one attribute of the data point
b0, b #bits for representing each attribute in Y and S
∆ Maximum quantization error

x, X One solution and solution space for the ML task
costpY,xq Cost function of the ML task

ρ Lipschitz constant for the ML cost function
optpkq Optimal k-means clustering cost for Y

opt8pkq Optimal k-center clustering cost for Y

me
#exponent bits in the floating point representation
of an attribute

N Number of nodes in distributed setting

jointly configure the coreset construction algorithm and the
quantizer at hand to achieve the optimal tradeoff between the
ML error and the communication cost.

Roadmap. Section III reviews the background on coreset
and quantization. Section IV formulates the main problem.
Section V presents two algorithms based on strategic reformu-
lation of the original problem. Section VI extends the solutions
to distributed setting. Section VII presents our experimental
results. At last, Section VIII concludes this paper.

III. PRELIMINARIES

In this section, we briefly review several definitions and
algorithms that will be used in subsequent sections. Frequently
used notations in this paper are listed in Table I.

A. Data Representation

Let Y denote the original dataset with cardinality n :“ |Y|,
dimension d, and precision b0. Each data point yi P Y is a
column vector in d-dimensional space, and each attribute yij
is represented as a floating point number with a sign bit, an
me-bit exponent, and a (b0´1´me)-bit significand. Let Y :“
ry1, ...,yi, ...,yns denote the matrix with column vectors yi.
For simplicity of analysis, we assume that yij’s have been nor-
malized to r´1, 1s with zero mean (i.e., 1

n

ř

i yij “ 0 for each
j). Let µpYq :“ 1

n

ř

yiPY yi denote the sample mean of Y .

B. Coreset Construction

A generic ML task can be considered as a cost minimization
problem. Using X to denote the set of possible models, and
costpY,xq to denote the mismatch between the dataset Y and
a candidate model x, the problem seeks to find the model that
minimizes costpY,xq. The cost function costpY,xq is usually
in the form of a summation costpY,xq “

ř

yPY costpy,xq
or a maximization costpY,xq “ maxyPY costpy,xq, where
costpy,xq is the per-point cost that is model-specific. For
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example, minimum enclosing ball (MEB) [6] minimizes a
maximum cost and k-means minimizes a sum cost.

A coreset S is a weighted (and often smaller) dataset that
approximates Y in terms of costs.

Definition III.1 (εCS-coreset [7]). A set S Ď Rd with weights
uq (@q P S) is an εCS-coreset for Y with respect to (w.r.t.)
costpY,xq (x P X ) if @x P X ,

p1´ εCSqcostpY, xq ď costpS, xq ď p1` εCSqcostpY, xq, (1)

where costpS,xq is defined as costpS,xq “
ř

qPSuqcostpq,xq
if costpY,xq is a sum cost, and costpS,xq “

maxqPS costpq,xq if costpY,xq is a maximum cost.

Definition III.1 also provides a performance measure for
coresets: εCS,S :“ supxPX |costpY,xq´costpS,xq|{costpY,xq
measures the maximum relative error in approximating the
ML cost function by coreset S, called the ML error of S.
The smaller εCS,S , the better S is in supporting the ML task.

Although most coreset construction algorithms only pro-
vide guaranteed performance for specific ML tasks, a recent
work [8] showed that using clustering centers, especially k-
means clustering centers, as the coreset achieves guaranteed
performances for a broad class of ML tasks with Lipschitz-
continuous cost functions. In the sequel, we denote the optimal
k-means clustering cost for Y by optpkq. It is known that the
optimal 1-means center of Y is the sample mean µpYq.

C. Quantization

Quantization reduces the number of bits required to encode
each data point by transforming it to the nearest point in a set
of discrete points, the selection of which largely defines the
quantizer. Our solution will utilize the maximum quantization
error, defined as ∆ :“ maxyPY distpy,y1q, where y1 denotes
the quantized version of data point y and distpy,y1q is
their Euclidean distance. Given a quantizer, ∆ depends on
the number of bits used to represent each quantized value.
Below we analyze ∆ for a simple but practical rounding-
based quantizer as a concrete example, but our framework
also allows other quantizers.

Let yij denote the j-th attribute of the i-th data point. The
b0-bit binary floating point representation of yij is given by
p´1qsignpyijqˆ 2eij ˆpaijp0q` aijp1qˆ 2´1` . . .` aijpb0´
1 ´meq ˆ 2´pb0´1´meqq [15]. Here, signpyijq is the sign of
yij (0: nonnegative, 1: negative), eij is an me-bit exponent,
and aijp¨q P t0, 1u are the significant digits, where aijp0q ” 1
and does not need to be stored explicitly.

Consider a scalar quantizer that rounds each yij to s signif-
icant digits. The quantized value equals y1ij “ p´1qsignpyijqˆ
2eijˆpaijp0q`aijp1qˆ2´1`. . .`aijpsqˆ2´s`a1ijpsqˆ2´sq,
where a1ijpsq P t0, 1u is the result of rounding the remaining
digits (0: round down, 1: round up). As |yij ´ y1ij | ď 2eij´s

and |yij | ě 2eij , we have |yij ´ y1ij |{|yij | ď 2´s. Hence, for
Y in Rd where each attribute yij is normalized to r´1, 1s, the
maximum quantization error of this quantizer is bounded by

∆ ď 2´s ¨max
yiPY

}yi}. (2)

IV. OPTIMAL COMBINATION OF CORESET CONSTRUCTION
AND QUANTIZATION

In this section, we first analyze the ML error bounds
based on the data summary computed by a combination of
coreset construction and quantization, and then formulate an
optimization problem to minimize the ML error under a given
budget of communication cost.

A. Workflow Design

The first question in the integration of quantization (QT)
into coreset construction (CS) is to determine the order of
these two operations. Intuitively, QT is needed after CS since
the CS algorithm can result in arbitrary values that cannot
be represented using b bits as specified for the quantizer.
Therefore, we consider a pipeline where CS is followed by QT.

B. Error Bound Analysis

The error bound for CS + QT is stated as follows.

Theorem IV.1. After applying a ∆-maximum-error quantizer
to an εCS-coreset S of the original dataset Y , the quantized
coreset S 1 is an pεCS`ρ∆` εCS ¨ρ∆q-coreset for Y w.r.t. any
cost function satisfying:

1) costpy,xq ě 1
2) costpy,xq is ρ-Lipschitz-continuous in y P Y , @x P X .

Theorem IV.1 is directly implied by the following Lemma
IV.1, which gives the ML error after one single quantization.

Lemma IV.1. Given a set of points Y Ď Rd, let Y 1 be
the corresponding set of quantized points with a maximum
quantization error of ∆. Then, Y 1 is an ρ∆-coreset of Y w.r.t.
any cost function satisfying the conditions in Theorem IV.1.

Proof of Lemma IV.1. For each y P Y , we know distpy,y1q ď
∆. By the ρ-lipschitz-continuity of costp¨,xq, we have

|costpy,xq ´ costpy1,xq| ď ρ∆. (3)

Moreover, since costpy,xq ě 1, we have

|costpy,xq ´ costpy1,xq|
costpy,xq

ď ρ∆, (4)

and thus

p1´ ρ∆qcostpy,xq ď costpy1,xq ď p1` ρ∆qcostpy,xq. (5)

If costpY,xq “
ř

yPY costpy,xq, then treating Y 1 as a coreset
with unit weights, its cost is costpY 1,xq “

ř

y1PY 1 costpy1,xq.
Summing (5) over all y P Y (or y1 P Y 1), we have

p1´ρ∆qcostpY,xq ď costpY 1,xq ď p1`ρ∆qcostpY,xq. (6)

If costpY,xq “ maxyPY costpy,xq, then the cost of Y 1 is
costpY 1,xq “ maxy1PY 1 costpy1,xq. Suppose that the maxi-
mum is achieved at y1 for costpY,xq, and y12 for costpY 1,xq.
Based on (5), we have

p1´ ρ∆qcostpy1,xq ď costpy11,xq ď costpy12,xq (7a)
ď p1` ρ∆qcostpy2,xq ď p1` ρ∆qcostpy1,xq (7b)

which again leads to (6) as costpY,xq “ costpy1,xq and
costpY 1,xq “ costpy12,xq.
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Proof of Theorem IV.1. By Lemma IV.1 and Definition III.1,
we have that @x P X ,

p1´εCSqp1´ρ∆qcostpY,xqďp1´ρ∆qcostpS,xq
ďcostpS 1,xq ď p1` ρ∆qcostpS,xq
ď p1` εCSqp1` ρ∆qcostpY,xq, (8)

which yields the result.

C. Configuration Optimization

1) Abstract Formulation: Our objective is to minimize the
ML error under bounded communication costs, through the
joint configuration of coreset construction and quantization.
Given a n-point dataset in Rd and a communication budget of
B, we aim to find a quantized coreset S with k points and a
precision of b bits per attribute, that can be represented by no
more than B bits. Our goal is to Minimize the Error under a
given Communication Budget (MECB), formulated as

min
b,k

εCSpkq ` ρ∆pbq ` εCSpkq ¨ ρ∆pbq (9a)

s.t. b ¨ k ¨ d ď B, (9b)
b, k P Z`, (9c)

where εCSpkq represents the ML error of a k-point coreset
constructed by the given coreset construction algorithm, and
∆pbq is the maximum quantization error of b-bit quantization
by the given quantizer. We want to find the optimal values
of k and b to minimize the error bound (9a) according to
Theorem IV.1, under the given budget B. Note that our focus
is on finding the optimal configuration of known CS/QT
algorithms instead of developing new algorithms.

2) Concrete Formulation: We now concretely formulate
and solve an instance of MECB for two practical CS/QT
algorithms. Suppose that the CS operation is by the k-
means based robust coreset construction (RCC) algorithm
in [8], which is proven to yield a ρ

a

fpkq-coreset for all
ML tasks with ρ-Lipschitz-continuous cost functions, where
fpkq :“ optpkq ´ optp2kq is the difference between the k-
means and the 2k-means costs. Moreover, suppose that the
QT operation is by the rounding-based quantizer defined
in Section III-C, which has a maximum quantization error
of ∆pbq :“ 2´pb´1´meqmaxyiPY }yi} to generate a b-bit
quantization with s “ b´ 1´me significant digits according
to (2). Then, by Theorem IV.1, the MECB problem in this
case becomes:

min
b,k

ρ
a

fpkq ` ρ∆pbq ` ρ2∆pbq
a

fpkq (10a)

s.t. b ¨ k ¨ d ď B, (10b)
b, k P Z`. (10c)

3) Straightforward Solution: In (10), only b (or k) is the
free decision variable. Thus, a straightforward way to solve
(10) is to evaluate the objective function (10a) for each
possible value of b (or k) and then select b˚ (or k˚) that
minimizes the objective value. We refer to this solution as the
EMpirical approach (EM) later in the paper. However, this
approach is computationally expensive for large datasets, as

Algorithm 1: EVD-MECB
input : A dataset Y , Lipschitz constant ρ for the targeted

ML task, communication budget B.
output: Optimal pk˚, b˚q to configure a quantized ε-coreset

S 1 for Y within budget B.

1 Calculate eigenvalues tλiu
d
i“1 for YYT ;

2 Λj Ð
řj

i“1 λi,@1 ď j ď d;
3 foreach b “ r1`me, 2`me, . . . , b0s do
4 k Ð

Y

B{d{b
]

;
5 fpkq Ð Λ2k´1 ´ Λk´1;
6 ∆pbq Ð 2´pb´1´meqmaxyiPY }yi};
7 εpk, bq Ð ρ ¨

a

fpkq ` ρ ¨∆pbq ` ρ2 ¨∆pbq ¨
a

fpkq;
8 pk˚, b˚q Ð arg min εpk, bq;
9 return pk˚, b˚q;

evaluating fpkq requires solving k-means problems for large
values of k. In fact, computing the k-means and the 2k-means
costs optpkq and optp2kq for a candidate value of k is already
NP-hard1 [17]. To address this challenge, we will develop
efficient heuristic algorithms for approximately solving (10) in
the following section by identifying proxies of the objective
function that can be evaluated efficiently.

V. EFFICIENT ALGORITHMS FOR MECB

In this section, we propose two algorithms to effectively and
efficiently solve the concrete MECB problem given in (10).

A. Eigenvalue Decomposition Based Algorithm for MECB
(EVD-MECB)

1) Re-formulating the Optimization Problem: This algo-
rithm is motivated by the following bound derived in [18].

Theorem V.1 (Bound for k-means costs [18]). The optimal
k-means cost for Y is bounded by

optpkq ě nĎy2 ´

k´1
ÿ

i“1

λi, (11)

where nĎy2 :“
řn
i“1 y

T
i yi is the total variance and λi is the

i-th principal eigenvalue of the covariance matrix YYT .

We use the bound in (11) as an approximation of k-means
cost that is much faster to evaluate than the exact k-means cost.
Replacing optpkq by this bound, we obtain an approximation
of (10), where fpkq is approximated by

fpkq « nĎy2 ´

k´1
ÿ

i“1

λi ´ pnĎy2 ´

2k´1
ÿ

i“1

λiq “
2k´1
ÿ

i“k

λi. (12)

2) EVD-MECB Algorithm: The righthand side of (12) is
easier to calculate than the exact value of fpkq, as we can
compute the eigenvalue decomposition once [19], and use the
results to evaluate

ř2k´1
i“k λi for all possible values of k. As

each number in Y has b0´1´me significant digits, the number
of feasible values for b (and hence k) is b0 ´ 1 ´ me. By

1One can compute an approximation using existing k-means heuristics,
e.g., [16], which is what we have done in evaluating EM. Nevertheless, this
algorithm is still inefficient as shown in Section VII.
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Algorithm 2: k-center cost computation
input : A dataset Y , the maximum number of centers K.
output: The costs pgpkqqKk“1 for greedy k-center clustering

for k “ 1, . . . ,K.

1 G ÐH;
2 foreach y P Y do
3 dpyq Ð 8;
4 while |G| ă K do
5 find yÐ arg maxqPY dpqq;
6 G Ð G Y tyu;
7 foreach j “ 1, . . . , |Y| do
8 dpyjq Ð minpdpyjq, distpyj ,yqq;
9 gp|G|q Ð maxyjPY dpyjq;

10 return pgpkqqKk“1;

enumerating all the feasible values, we can easily find the
optimal solution pk˚, b˚q to this approximation of (10). We
summarize the algorithm in Algorithm 1.

B. Max-distance Based Algorithm for MECB (MD-MECB)
1) Re-formulating the Optimization Problem: Alternatively,

we can bound the ML error based on the maximum distance
between each data point and its corresponding point in the
coreset. Let f2pkq :“ maxi“1,...,k maxyPYi

distpy, µpYiqq be
the maximum distance between any data point and its nearest
k-means center, where tµpYiquki“1 are the k-means clusters.
Then, a similar proof as that of Lemma IV.1 implies the
following.

Lemma V.1. The centers of the optimal k-means clustering of
Y , each weighted by the number of points in its cluster, provide
a ρf2pkq-coreset for Y w.r.t. any cost function satisfying the
conditions in Theorem IV.1.

This lemma provides an alternative error bound for the
RCC algorithm in [8], which constructs the coreset as in
Lemma V.1. Using εCS “ ρf2pkq, if we apply the rounding-
based quantization after RCC, we can apply Theorem IV.1 to
obtain an alternative error bound for the resulting quantized
coreset, which is ρf2pkq ` ρ∆pbq ` ρ2f2pkq∆pbq. We note
that minimizing f2pkq is exactly the objective of k-center
clustering [20]–[22]. Hence, we would like to use the optimal
k-center cost, denoted by opt8pkq, as a heuristic to calculate
f2pkq. By using this alternative error bound and approximating
f2pkq « opt8pkq, we can reformulate the MECB problem as
follows:

min
b,k

ρ ¨ opt8pkq ` ρ∆pbq ` ρ2 ¨ opt8pkq∆pbq (13a)

s.t. b ¨ k ¨ d ď B, (13b)
b, k P Z`, (13c)

where ∆pbq is defined as in (10).
2) MD-MECB Algorithm: The re-formulation (13) allows

us to leverage algorithms for k-center clustering to efficiently
evaluate opt8pkq. Although k-center clustering is a NP-
hard problem [23], a number of efficient heuristics have
been proposed. In particular, it has been proved [23] that
the best possible approximation for k-center clustering is 2-
approximation, achieved by a simple greedy algorithm [24]

Algorithm 3: MD-MECB
input : A dataset Y , Lipschitz constant ρ for the targeted

ML task; communication budget B.
output: Optimal pk˚, b˚q to configure a quantized ε-coreset

S1 for Y within budget B.
1 Run Algorithm 2 with input Y and K“mint

X

B
d¨p1`meq

\

, nu;
2 foreach b “ r1`me, 2`me, . . . , b0s do
3 k Ð tB{pd ¨ bqu;
4 opt8pkq Ð gpkq by the output of Algorithm 2;
5 ∆pbq Ð 2´pb´1´meqmaxyiPY }yi};
6 εpk, bq Ð ρ ¨ opt8pkq ` ρ∆pbq ` ρ2 ¨ opt8pkq∆pbq;
7 pk˚, b˚q Ð arg min εpk, bq;
8 return pk˚, b˚q;

that keeps adding the point farthest from the existing centers
to the set of centers until k centers are selected. The beauty
of this algorithm is that we can modify it to compute the k-
center clustering costs for all possible values of k in one pass,
as shown in Algorithm 2. Specifically, after adding each center
(lines 5–6) and updating the distance from each point to the
nearest center (line 8), we record the clustering cost (line 9).
As the greedy algorithm achieves 2-approximation [23], the
returned costs satisfy opt8pkq ď gpkq ď 2opt8pkq, where gp¨q
is defined in line 9. Based on this algorithm, the MD-MECB
algorithm, shown in Algorithm 3, solves an approximation of
(13) with opt8pkq approximated by gpkq.

C. Discussions

1) Performance Comparison: The straightforward solution
EM (Section IV-C3) directly minimizes the error bound (10a)
and is thus expected to find the best configuration for CS + QT.
In comparison, the two proposed algorithms (EVD-MECB and
MD-MECB) only optimize approximations of the error bound.
It is difficult to theoretically analyze or compare the ML errors
of these algorithms since the bound may be loose and the
approximations may be smaller than the bound. Instead, we
will use empirical evaluations to compare the actual ML errors
achieved by these algorithms (see Section VII).

2) Complexity Comparison: In terms of complexity, EM
involves executions of the k-means algorithm for all pk, bq
pairs, which is thus computationally complicated. In compari-
son, EVD-MECB only requires one eigenvalue decomposition
(EVD) and one matrix multiplication, while MD-MECB only
needs to invoke Algorithm 2 once. Therefore, both of them
can be implemented efficiently. As EVD can be computed
with complexity Opn3q [25], EVD-MECB has a complexity
of Opn3 ` d ` b0q. Since the computational complexity of
Algorithm 2 is Opn2q (achieved at K “ n), MD-MECB has
a complexity of Opn2 ` b0q. Hence, MD-MECB is expected
to be more efficient than EVD-MECB, which will be further
validated in Section VII.

VI. DISTRIBUTED SETTING

We now describe how to construct a quantized coreset
under a global communication budget in distributed set-
tings. Suppose that the data are distributed over N nodes
as tY1, . . . ,YNu. Our goal is to configure the construction
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Fig. 1: Illustration of step objective functions.

of local coresets tS1, . . . ,SNu such that
ŤN
i“1 Si can be

represented by no more than B bits and is an ε-coreset for
ŤN
i“1 Yi for the smallest ε. Given a distribution of the budget

to each node, we can use the algorithms in Section V to make
each Si an εi-coreset of the local dataset Yi for the smallest εi.
However, the following questions remain: (1) How is ε related
to εi’s? (2) How can we distribute the global budget B to mini-
mize ε? In this section, we answer these questions by formulat-
ing and solving the distributed version of the MECB problem.

A. Problem Formulation in Distributed Setting
In the following, we first show that ε “ maxi εi, and then

formulate the MECB problem in the distributed setting.

Lemma VI.1. If C1 and C2 are ε1-coreset and ε2-coreset for
datasets Y1 and Y2, respectively, w.r.t. a cost function, then
C1

Ť

C2 is a maxtε1, ε2u-coreset for Y1

Ť

Y2 w.r.t. the same
cost function.

Proof. We consider both sum and maximum cost functions.
Without loss of generality, we assume ε2 ě ε1.

Sum cost: Given a feasible solution x, we consider sum
cost as costpY,xq “

ř

yPY costpy,xq. According to Definition
III.1, we have p1´ε1q

ř

yPY1
costpy,xq ď

ř

cPC1
costpc,xq ď

p1 ` ε1q
ř

yPY1
costpy,xq and p1 ´ ε2q

ř

yPY2
costpy,xq ď

ř

cPC2
costpc,xq ď p1 ` ε2q

ř

yPY2
costpy,xq. Summing up

these two equations and noting that ε2 ě ε1, we can conclude
that C1

Ť

C2 is an ε2-coreset for Y1

Ť

Y2.
Maximum cost: The proof for maximum cost function is

similar as above but taking the maximum instead.

We can easily extend Lemma VI.1 to multiple nodes to
compute the global ε error as: ε “ maxi εi. Thus the objective
of minimizing ε is equivalent to minimizing the largest εi for
i P t1, . . . , Nu.

Let Bi denote the local budget for the i-th node. Intuitively,
the larger the local budget Bi, the smaller εi. Therefore, we
model εi as a non-increasing function w.r.t. the local budget
Bi, denoted by εipBiq.

Then, we can formulate the MECB problem in the dis-
tributed setting (MECBD) as follows:

min max
iPt1,...,Nu

εipBiq (14a)

s.t.
N
ÿ

i“1

Bi ď B. (14b)

Note that to compute εipBiq for a given Bi, we need to solve
an instance of the MECB problem in (10) for dataset Yi and
budget Bi.

Algorithm 4: OBA-MECBD
input : Distributed datasets tYiu

N
i“1, Lipschitz constant ρ,

communication budget B.
output: Optimal tpk˚i , b

˚
i qu

N
i“1 to configure the construction

of local quantized coresets within a global budget B.

each node i “ 1, ..., N :
1 B0 Ð 1 ¨ p1`meq ¨ d;
2 compute εipB0q by MD-MECB or EVD-MECB;
3 Ei Ð tpB0, εipB0qqu;
4 foreach integer Bi P rB0 ` 1, |Yi| ¨ b0 ¨ ds do
5 compute εipBiq by MD-MECB or EVD-MECB;
6 if εipBiq ă mintεi,j : pBi,j , εi,jq P Eiu then
7 Ei Ð Ei Y tpBi, εipBiqqu;
8 report Ei to the server;

the server:
9 E is an ordered list of ε-values in

Ť

i Ei, sorted in
descending order;

10 Imax Ð first index in E;
11 Imin Ð last index in E;
12 while true do
13 I Ð

Y

Imax`Imin
2

]

;
14 εI Ð the I-th element in E;
15 for i “ 1, . . . , N do
16 BipεIq Ð mintBi,j : pBi,j , εi,jq P Ei, εi,j ď

εIu;
17 if Imin “ Imax ` 1 then
18 send BipεIq to node i for each i “ 1, . . . , N ;
19 break while loop;
20 else
21 if

řN
i“1BipεIq ą B then

22 Imin “ I;
23 else
24 Imax “ I;

each node i “ 1, ..., N :
25 find local pk˚i , b

˚
i q under budget BipεIq given by the

server by MD-MECB or EVD-MECB;
26 return tpk˚i , b

˚
i qu

N
i“1;

B. Optimal Budget Allocation Algorithm for MECBD (OBA-
MECBD)

The MECBD problem in (14) is a minimax knapsack
problem [26], [27] with a nonlinear non-increasing objective
function. Special cases of this problem with strictly decreasing
objective functions have been solved in [27]. However, the
objective function of MECBD is a step function as shown
below, which is not strictly decreasing. Below we will develop
a polynomial-time algorithm to solve our instance of the mini-
max knapsack problem using the following property of εipBiq.

We note that εipBiq is a non-increasing step function of Bi
(see Figure 1). This is because the configuration parameters k
and b in the CS + QT procedure are integers. Therefore, there
exist intervals rBi,j , Bi,j`1q (j “ 0, 1, 2, ...) such that for any
Bi, B

1
i P rBi,j , Bi,j`1q, we have εipBiq “ εipB

1
iq, as shown

in Figure 1. Given a target value of εi, the minimum Bi for
reaching this target is thus always within the set tBi,ju.

Our algorithm, shown in Algorithm 4, has three main steps.
First, in lines 1–8, each node computes the set Ei of all pairs
of Bi,j and the corresponding εipBi,jq. This is achieved by
evaluating εipBiq according to MD-MECB or EVD-MECB
for gradually increasing Bi and recording all the points where
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εip¨q decreases. After that, the set Ei is sent to a server.
Second, the server allocates the global budget to the nodes

according to lines 9–24. To this end, it computes an ordered list
E of all possible values of the global ε :“ maxi εi. Let Bipεq
denote the smallest value of Bi such that εipBiq ď ε. The
main idea is to perform a binary search for the target value of
ε P E (lines 12–24). For each candidate value of ε, we compute
Bipεq for all i. If

ř

iBipεq ă B (i.e., we are below the budget
when targeting at the current choice of ε), we will eliminate
all ε1 P E such that ε1 ą ε; otherwise, we will eliminate all
ε1 P E such that ε1 ă ε. After finding the target value of ε such
that

ř

iBipεq achieves the largest value within B, the server
sends the corresponding local budget Bipεq to each node.

Finally, each node uses MD-MECB or EVD-MECB to com-
pute its local configuration pk˚i , b

˚
i q under the given budget.

Complexity: We analyze the complexity step by step. First,
computing Ei at each node (lines 1–8) has a complexity of
Oppn2 ` b0qdb0nq if using MD-MECB and Oppn3 ` d `
b0qdb0nq if using EVD-MECB, dominated by line 5. Second,
computing the budget allocation at the server (lines 9–24)
has a complexity of Opdb0n logpdb0nqq. Specifically, as E
has Opdb0nq elements, sorting it takes Opdb0n logpdb0nqq.
The while loop is repeated Oplogpdb0nqq times, as each loop
eliminates half of the candidate ε values in E, and each loop
takes Opdb0nq, dominated by lines 15–16. Finally, computing
the local configuration at each node (line 25) takes Opn2`b0q
using MD-MECB and Opn3 ` d` b0q using EVD-MECB.

Optimality: Next, we prove the optimality of OBA-MECBD
in budget allocation. Let επi pBiq be the error bound for a given
solution π of the MECB problem for dataset Yi and budget Bi.
We show that OBA-MECBD is optimal in the following sense.

Theorem VI.1. Using a given MECB algorithm π as the
subroutine called in lines 2, 5, and 25, OBA-MECBD solves
MECBD optimally w.r.t. π, i.e., its budget allocation pBiqNi“1

is the optimal solution to (14) with εipBiq replaced by επi pBiq.

Proof. Let Bπi pεq denote the smallest value of Bi such
that επi pBiq ď ε. By lines 21–24 in Algorithm 4, Imin
and Imax should always satisfy

řN
i“1B

π
i pεImin

q ą B and
řN
i“1B

π
i pεImax

q ď B for all nontrivial values of B. Let ε˚

denote the value of εI at the end of budget allocation, which
is the value of (14a) achieved by OBA-MECBD. As I “ Imax
and Imin “ Imax ` 1 at this time, ε˚ must be the smallest
value of ε such that

řN
i“1B

π
i pεq ď B. Therefore, for any other

budget allocation pB1iq
N
i“1 such that

řN
i“1B

1
i ď B, we must

have maxi ε
π
i pB

1
iq ě ε˚.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our proposed algorithms us-
ing multiple real-world datasets for various ML tasks. Our
objective is to validate the effectiveness and efficiency of
our proposed algorithms (EVD-MECB, MD-MECB, OBA-
MECBD) against benchmarks.

A. Datasets

In our experiments, we use four real-world datasets to
evaluate our algorithms: (1) Fisher’s Iris dataset [28], with 3
classes, 50 data points in each class, 5 attributes for each data
point; (2) Facebook metric dataset [29], which has 494 data
points with 19 attributes; (3) Pendigits dataset [30], which has
7, 494 data points and 17 attributes; (4) MNIST handwritten
digits dataset in a 784-dimensional space [31], where we
use 60, 000 data points for training and 10, 000 data points
for testing. We leverage the approach in [32] to pre-process
the labels, i.e., each label is mapped to a number such that
distance between points with the same label is smaller than
distance between points with different labels. All the data are
represented in the standard IEEE 754 double-precision binary
floating-point format [15]. Due to space limitation, we will
only show the results on Pendigits and MNIST datasets, and
refer to [10] for the other results.

B. ML Tasks

We consider four ML tasks as concrete examples: 1) min-
imum enclosing ball (MEB) [6]; 2) k-means (k “ 2 in our
experiments); 3) principal component analysis (PCA); and 4)
neural network (NN) (with three layers, 100 neurons in the
hidden layer). Tasks (1–3) are unsupervised, and task (4) is
supervised. The Lipschitz constant ρ for each of these tasks
has been provided in [32] (Table II).

C. Algorithms

For the centralized setting, we consider five algorithms for
comparison. The first two are proposed by us, i.e., EVD-
MECB in Algorithm 1 (denoted by EVD), MD-MECB in
Algorithm 3 (denoted by MD). The third algorithm is the
straightforward solution EM (see Section IV-C3). The fourth
algorithm aims to Maximize the Precision (MP), i.e., using the
configuration k “

Y

B
d¨b0

]

and b “ b0 to construct coresets. The
fifth algorithm aims to Maximize the Cardinality (MC), i.e.,
using k “ minpn,

Y

B
d¨p1`meq

]

q and b “ maxp1 `me,
Y

B
d¨n

]

q

to construct coresets, where 1 `me is the minimum number
of bits required to represent a number by the rounding-based
quantizer (Section III-C). MP and MC serve as baselines,
where MP only performs coreset construction, and MC mainly
performs quantization.

For the distributed setting, we consider six algorithms for
comparison. The first five algorithms correspond to instances
of OBA-MECBD in Algorithm 4 that use EVD-MECB, MD-
MECB, EM, MP, and MC as their subroutines, respectively.
We denote these algorithms by OBA-EVD, OBA-MD, OBA-
EM, OBA-MP and OBA-MC, respectively. The sixth al-
gorithm is DRCC as proposed in [32] that optimizes the
allocation of a given coreset cardinality to individual nodes.

D. Performance Metrics

We use the normalized ML cost to measure the performance
of unsupervised ML tasks. The normalized ML cost is defined
as costpY,xSq{costpY,x˚q, where xS is the model learned
from coreset S and x˚ is the model learned from the original
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Fig. 2: Evaluation on Pendigits dataset (centralized setting).

dataset Y . For supervised ML tasks, we use classification
accuracy to measure the performance. Furthermore, we report
the running time of each algorithm. All the metrics are
computed over 40 Monte Carlo runs unless stated otherwise.

E. Results in Centralized Setting

1) Unsupervised Learning: We first evaluate the unsuper-
vised learning tasks: MEB, k-means, and PCA. Figure 2 shows
the cumulative distribution function (CDF) of normalized ML
costs as well as the average running time of each algorithm,
where the budget is set to 2% of the size of the original dataset,
i.e., B “ 163, 069 bits. We also list the returned b˚ values over
the Monte Carlo runs for EVD-MECB (EVD), MD-MECB
(MD), and EM in Table II. We have the following observations:
1) Our proposed algorithms EVD-MECB and MD-MECB
yield coresets that support these ML tasks with less than 10%
degradation in performance. 2) Compared to the proposed
algorithms, EM achieves a slightly better ML performance,
but has a much higher running time. 3) Compared to EVD-
MECB, MD-MECB is not only faster, but also better in
approximating EM. 4) Compared with MP and MC that rely
on a single operation, the algorithms jointly optimizing coreset
constrution and quantization, especially EM and MD-MECB,
achieve notably better ML performance.

2) Supervised Learning: For supervised learning, we evalu-
ate neural network based classification on the MNIST dataset.
We do not evaluate EM here because its running time for this
dataset is prohibitively high.

Same as unsupervised learning, we only use 2% of the
original data, i.e., B “ 60, 211, 200 bits. Figure 3 shows the

TABLE II: Returned b˚ for Pendigits

Algorithms b˚ # of occurrences
EVD [52] [40]
MD r7, 8, 9s r4, 35, 1s

EM r7, 8, 9, 10, 11, 12s r5, 15, 6, 7, 6, 1s
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Fig. 3: Evaluation on MNIST (Neural Net Accuracies)

CDFs of classification accuracy over 10 Monte Carlo runs.
Note that in contrast to costs, a higher accuracy means better
performance. MD-MECB, EVD-MECB, and MP all achieve
over 80% accuracy, while MC only achieves less than 40%
accuracy because it changes the value of each attribute too
much. As we zoom in, we see that MD-MECB performs
the best. Moreover, MD-MECB is also relatively fast, with
a running time of approximately 15 minutes, whereas EVD-
MECB takes up to 4.5 hours due to computing eigenvalue
decomposition for a large matrix. After evaluating different
budgets (not shown here), we note that although MP happens
to perform well with 2% data, its performance is highly
sensitive to the budget B, while the proposed algorithms (MD-
MECB, EVD-MECB) adapt well to a wide range of budgets.

F. Results in Distributed Setting

In this experiment, we use the Pendigits dataset to evaluate
our proposed distributed algorithm (Algorithm 4). The original
data points are randomly distributed across 10 nodes. The
global communication budget is set to 828, 087 bits, which
corresponds to 10% of the original data.

We present the results for distributed setting in Figure 4,
from which we have the following observations: 1) With only
10% data in the distributed setting, most of the algorithms
equipped with OBA outperform DRCC with a small degra-
dation in the ML performance. 2) Compared with OBA-MP,
OBA-MC, and DRCC that only rely on one operation to
compress the data, the algorithms that jointly optimize the
operations of coreset construction and quantization, especially
OBA-MD and OBA-EM, perform notably better. 3) OBA-MD
is the most efficient over all these algorithms.

G. Summary of Experimental Results

‚ We demonstrate via real ML tasks and datasets that it
is possible to achieve reasonable ML performance (less
than 10% degradation in most cases) and substantial data
reduction (90–98% smaller than the original dataset) by
combining coreset construction with quantization.

‚ The proposed algorithms approximate the performance
of EM, with a significantly lower running time.

‚ Jointly optimizing coreset construction and quantization
achieves much better ML performance than relying on
only one of these operations.
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Fig. 4: Evaluation on Pendigits dataset (distributed setting).

‚ MD-MECB and its distributed variant (OBA-MD)
achieve the best performance-efficiency tradeoff among
all the evaluated algorithms.

VIII. CONCLUSION

In this paper, we have proposed the first framework, MECB,
to jointly configure coreset construction algorithms and quan-
tizers in order to minimize the ML error under a given com-
munication budget. We have proposed two algorithms to effi-
ciently compute approximate solutions to the MECB problem,
whose effectiveness and efficiency have been demonstrated
through experiments based on multiple real-world datasets. We
have further proposed an algorithm to extend our solutions to
the distributed setting by carefully allocating the communica-
tion budget across multiple nodes to minimize the overall ML
error, which has shown significant improvements over alterna-
tives when combined with our proposed solutions to MECB.
Our solutions only depend on a smoothness parameter of the
ML cost function, and can thus serve as a key enabler in re-
ducing the communication cost for a broad range of ML tasks.
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