RTCP - Reduce Delay Variability with an
End-to-end Approach

Longbo Huang
IIIS, Tsinghua University
Beijing, China
longbohuang @tsinghua.edu.cn

Abstract—Many important applications in modern network
systems are sensitive to delay and delay variability. To ensure
good performance on both metrics, in this paper, we propose a
novel transport protocol called Regulated TCP (RTCP), whose
design is inspired by the use of auxiliary variables in optimization
theory. RTCP is a light-weight protocol and it uses counters
in end devices and end-to-end delay measurements for rate
adaptation (via window adjustment). We implement RTCP in
both ns-3 and a network testbed under two workload types, i.e.,
web search and data mining. Our testbed experiments show that
compared to existing congestion control schemes such as BBR
[1] and PCC [2], RTCP guarantees a better delay performance
for urgent flows, while keeping a competitive goodput. Our ns-3
simulation results also demonstrate that RTCP performs well in
a wide range of scenarios. In particular, RTCP achieves a 9.78%
throughput increase over BBR, and a 64.22% delay reduction of
DCTCP [3] in a random sending scenario. It also reduces the
99th packet delay to less than 56% of other end-to-end TCP
versions, including LEDBAT [4], TIMELY [5] and Vegas [6], in
the large-scale incast scenario.

Index Terms—Transmission Control Protocol, Delay Variabil-
ity, End-to-end

I. INTRODUCTION

Many important network applications, such as web search,
social communication and e-sports, are sensitive to delay and
delay variability [7] [3]. For these applications, their perfor-
mance and user experience can degrade significantly with a
small increment in delay or jitter. As a result, various methods
have been proposed to tackle these two problems. For instance,
D3 [8] provides a greedy policy to handle deadline constrained
flows. The criticality-based approach pFabric [9] achieves a
near-optimal performance. Karuna [10] uses flow information
to classify flows into different types and operates different
schemes. DCTCP [3] and VCP [11] adopt an explicit conges-
tion notification (ECN) [12] based scheme. D2TCP [13] and
MCP [14] further include prior knowledge to make DCTCP
information-aware. PIAS [15] simulates shortest job first (SJF)
without knowing flow size, with the help of strict priority
queues in switches. Other schemes based on active queue
management (AQM) such as random early detection (RED)
[16] and proportional integral (PI) [17] have already been
shown not to perform well without statistical multiplexing [3].
Although the solutions above provide good performance in
different scenarios, they often require complex intermediate

ISBN 978-3-903176-28-7 2020 IFIP

Yuxing Li
IS, Tsinghua University
Beijing, China
yx-1lil7 @mails.tsinghua.edu.cn

Jean Walrand
EECS, University of California
Berkeley, CA, USA
wlr@eecs.berkeley.edu

network node configurations for packet transmission. As a
result, they may not be directly applicable to commodity
products, especially when the middle network devices remain
in black box for end-to-end users.

The past few years have also witnessed an optimization-
oriented approach for better transport protocol design, which
reverse-engineers transport layer protocols based on optimiza-
tion theory, e.g., [18], [19], and [20]. The key of this method is
to convert a static objective, often a function of flow utilities,
into a dynamic control strategy that reacts in real time to
network observations. This idea is similar to how a gradient
algorithm works. Specifically, one starts with the goal of
minimizing a function and ends up with an adjustment scheme.
The key step is to formulate the constraints of the optimization
problem properly, so that the “gradients” can be observed
easily and gradient updates can be translated into rate adaption.
For a transmission control protocol, one formulation leads to
an end-to-end TCP-like scheme, and the gradient is then the
total losses in routers, e.g., Random Early Detection or the
accumulative markers, e.g., Explicit Congestion Notification.
A different formulation may lead to a delay-based scheme,
e.g., TCP Vegas [6], while another formulation is finer and re-
sults in a back-pressure algorithm that enables dynamic routing
but requires per-flow queuing as feedback between adjacent
switches [20]. Different formulations of the constraints result
in protocols with varying flexibility and complexity.

In this paper, we adopt the optimization-oriented approach
and propose a different formulation that results in a smooth
version of TCP that we call Regulated TCP (RTCP). This
protocol is smoother than the standard TCP and results in
a small delay and delay variability. The protocol achieves a
maximum utility of flows, where different classes of flows
have different utility functions to capture their different trade-
offs between delay and throughput. To achieve optimal utility,
we maximize a weighted sum of concave functions of the
throughput of flows. Flows that are more urgent get higher
weights and therefore an implicit priority. To minimize delay
variability and interference between flows, we formulate the
optimization problem in a way that the constraints appear at
the edges instead of inside the network. Thus, the constraint
satisfaction levels appear as shadow prices, and are explicitly
visible as counters at servers and measured end-to-end delay
by time stamps, making the implementation easy and viable.

235

Fig. 1. Three connections share two links. Here, for ¢ = 0, 1, 2, x; indicates
the average transmission rate of connection %, in bits per second. Cj, j=12
denote the transmission rate of link j. Each link is equipped with a first-come-
first-served (FCFS) queue and g; is the backlog in the buffer of link j.

We implement a RTCP prototype and test its performance
on both a testbed and ns-3 simulations based on the current
TCP stack. We implement RTCP as a kernel module in Linux,
while keeping the switches’ default settings unchanged. We
find that with proper settings, RTCP fits different scenarios
well, including random sending, urgent flow preemption test,
and over-subscription scenario. It improves the delay perfor-
mance while keeping the throughput competitive. For example,
RTCP achieves a 9.78% throughput increase over BBR, and
a 64.22% delay reduction over DCTCP in a random sending
scenario; it uses 1.83% throughput loss to achieve an 85.08%
delay reduction compared to TIMELY [5] in over-subscription
scenarios. We also investigate the influence of parameters on
RTCP.

Below, we first provide a simple example to illustrate
the design principle of RTCP. Then, we present the general
framework and describe RTCP for the network.

II. A SIMPLE EXAMPLE

We provide a simple example to explain the idea of Reg-
ulated TCP (RTCP). Consider a simple network as shown in
Fig. 1, where three connections share two communication links
with transmission rates C7 and Cls.

A. RTCP Design

We now introduce the formulation that leads to the RTCP
protocol. In [18] and [19], Kelly et al. introduced the mathe-
matical framework that leads to TCP. Specifically, consider

2
max : g(x) = Z Us(x;)
i=0

st. g +x1 <Cy
xg + 2 < Ch.

In this formulation, the functions U; (z;) represent flow utilities
and are often chosen to be concave increasing functions, such
as w; log(z;) for a weighted proportionally fair allocation, or
wiz;~*/(1 —), for an a-fair allocation [21]. The concavity
captures the diminishing value of additional rate when the rate
increases.

We build our work upon this formulation. However, instead
of a dual-based approach as in [18] and [19], we carry out
our design by introducing a Lyapunov function, which is first
used to stabilize the network in [22], to solve this problem.

Specifically, the first step is to rewrite the problem in the
following equivalent form:

2
max : g(7) == Y Us(v:)
=0

sty <x,1=0,1,2
:L'()+£E1 SC’l
I0+SC2 SCQ

The second step, then, is to introduce the Lyapunov function
V(Q,H) := (1/2)3,(Q3 + H}), where Q; is the backlog
in the queues at link j and H; is a virtual backlog indicating
how much the actual rate lacks behind the target rate. The
two queues evolve according to (assuming a continuous time
setting):

Qj=$0+$j—0j HjZ’yi—fEi. (1)

The shadow prices H; are obtained by a gradient algorithm,
which shows that they are proportional to the counter values,
and the counter for H; increases at rate ~; and decreases
at rate x;. Intuitively, if «; > z; for some time, then the
price of ; increases to force it to decrease when solving the
maximization problem. The introduction of ; in addition to
x; allows for a slack between the “desired rate” ~; and the
actual rate z; of flow in the network. This slack corresponds
to an intermediate queue between the transport layer and the
NIC buffer. In practice, this queue reduces the interference of
flows of different classes.

To achieve a suitable tradeoff between the small queue
(thus a small V(Q, H)) and high utility, one considers the
following combination of the utility of the rate x; (equivalently
represented by ;) and the drift of the Lyapunov function:

d
9(v) ~ 0 V(Q H) @)

By making explicit the drift of the Lyapunov function (based
on (1)), we see that the problem becomes solving the following
problem at every time:

max :

2

max : Z U; (b)) — aZQj(t)[xo(t) +;(t) — Cj]

—a Z Hi(t)[vi(t) — i(t)].

In this expression, x(t) = (xo(t), z1(t), x2(t)) is the vector
of rates of the connections at time ¢, and g(¢) is the vector
of backlogs at the two queues at time ¢. The parameter «
determines the tradeoff between congestion and utility: a large
« favors congestion reduction whereas a small o gives a
priority to a large utility. Doing so gives rise to the following

rate adaptation rules:
vi € argmax Uy () — oH; (¢)v; (3)

and
x; € argmaxx;(H; — aQs, — aQq,). 4)

236

To estimate the performance of this control scheme, let x*
be the maximizer of (2), we have

9(3(1)) - a;’twcz(0. H(D)
> 9(v") - aZQj(t)[
oY HOh i)

=0

> g(z").

- Gy

Ty + T}

Here the first inequality comes from the fact that (x(t),~y(t))
maximizes (3), and the second comes from the fact that xj 4
x} < Cj. Integrating this inequality over [0,77] and dividing
by T', we conclude that

1 /)t — a ;[WQ(T),H(T)) — V(Q(0), H(0))]

Letting T" — oo, we find that

T
lim inf %/0 g(x(t))dt > g(x*),

T—o0

which implies that this control achieves the maximum perfor-
mance asymptotically.

III. GENERAL FORMULATION

We now turn to the general formulation. Consider a network
that connects N servers. There are flows z; going from a
server s; to another server d;. The goal again is to maximize
the sum of flow utilities subject to capacity constrains. The
problem is as follows.

ZU

s.t. Ax < C.

max : g(x

In this formulation, A is the routing matrix, where A4;; = 1 if
flow ¢ traverses link j, and A;; = 0 otherwise. (Ax); denotes
the sum of the flow rates that go through a given link j and
C} is the capacity of that link.

As in the simple example, we go through three steps to
convert the problem to the following “utility plus backlog
drift” form:

max : ZU Vi) —QZQ]
,ZH

The RTCP protocol will be designed based on this formulation.

[(Az; = Cy) (9

(o]
Socket | = d

.
B EE SR L
: !
' !

rGCs
' - '
Y i Xj »
LR SNSER Sl

Fig. 2. At the output of sender server s, there is a counter H; for the
deficit between the “desired rate” ~; and the “actual rate” z; at each socket.
Moreover, there is a queue Qs in NIC (Network Interface Controller) that all
the sending flows share.

A. Full-bisection Scenario

We first examine the case where the network has full
bisection bandwidth, i.e., there is no link in the network that
is over-subscribed. This is an idealistic situation, but it is a
good starting point. Such a network can be a complete Benes
network with packet-per-packet randomized routing [23] or
it can be any non-blocking Clos networks [24]. In practice,
these networks are expensive and one uses versions with over-
subscribed link (discussed later).

In this network, the internal capacity constraints are auto-
matically satisfied if they are satisfied at the input and output
links. Thus, in (5), the sum capacity over the links j are that
of either outputs or inputs of servers. In this expression, the
(; are backlogs at the output and input links of servers, and
no lasting backlog occurs in the switch, keeping the counter
stable will enforce the capacity constraints.

In this case, to solve (5), we similarly adopt (3) and (4),
ie.,

v; € arg max U;(;) — oH; (t)v;
x; € argmaxx;(H; — aQs, — aQq,)

Here (), and (g, denote the backlogs at the source and
destination for flow ¢, respectively. Fig. 2 shows the counters
and queues at one sender.

To implement (3), one adjusts the value of ~y;, the rate at
which H; increases, as a function of the deficit x;. As an
example, if we use the logarithm utility function, i.e.,

Ui(z) = wilog(1 + z),

then we find that
w

~i = max{0, ﬁ -
Note that ~; tends to drive H; to the value w;. In practice,
one may introduce a rate limit to 7; that corresponds to the
desired rate of the application. Observe that a flow with a large
weight typically has a large value of H;, and its service rate

gets matched to its target rate faster.
To implement (4), we use the following rule:

Z‘_{ 07 iin<Oé(Qs7;+Qd,)
L Tmax;

1}. (6)

otherwise

Here, xy,ax is the maximum rate defined by the internal dam
rate. This control turns off x; when the backlog in the output
queue (), and ()4, exceeds H;. From our previous discussion

237

about H;, we see that flows with a small weight are turned
off before the other flows. This mechanism prevents the less
urgent packets from clogging up the NIC buffer and delaying
more urgent flows, similarly for backlogs at the destinations.

B. Over-subscription Scenario

The above describes the full bisection bandwidth case. How-
ever, links are often over-subscribed in a practical network.
Thus, backlog can appear inside switches. To handle this, note
that mathematically, the summation over j in (5) includes
internal links. We have seen how to enforce the capacity
constraints at the inputs and outputs of the networks using
counters. To also enforce the constraints inside the network,
we replace

Q;(t)[(Az); — Cj]

in (5) by
di(t)[(Az); — Cy]

where d;(t) is the delay through link j. Technically, this step
is justified by replacing >, Q3 to >, a;Q7 in the original
Lyapunov function, where a; is equal to one for input and
output links of the network and a; = §/R; for an internal
link, where R; is the transmission rate of the link and ¢ is
some constant we can tune during implementation. With this
modification, the solution of the maximization objective (4)
becomes

0,
T =
xmax»

where D; is the delay experienced by flow i. To measure the
packet delay D;, we use time stamps in the packet headers. We
will describe the implementation details in the next section.

if H < a(Qs, + Qa, +6D;)
otherwise

(7

IV. IMPLEMENTATION

We have implemented a prototype of RTCP and we now
present the three main components of our implementation,
including congestion estimation, rate control and congestion
smoothing.

A. Congestion Estimation

In RTCP, we adjust the counter increasing and decreasing
rates by comparing the counter size and the ‘“degree” of
total congestion. In order to keep the RTCP implementation
minimal, we assume the end-host delay (interrupts, noisy
neighbors, etc.) as a constant and use the change in Round Trip
Time (RTT) as an estimation of the total link congestion in our
testbed experiments, e.g., as done in [6]. RTT is an available
variable calculated in the TCP stack and this approach has
been proven feasible and effective in our case.

In our ns-3 simulations, we evaluated another option to use
both the RTT changes, which implies the link congestion, plus
the sender buffer size as an indicator of total congestion. The
reason to use only the sender buffer is to avoid the potential
influence due to the stale receiver buffer information. This
also simplifies the RTCP implementation, because we do not
need to reserve new bits in packet headers for transmitting the
receiver’s data to the sender.

B. Congestion Smoothing

Since RTCP reacts to congestion and updates its counters
and rates based on network observation, it is critical to
minimize the potential impact of fluctuations of the measured
statistics. Thus, we adopt an Exponential Smoothing method
[25] to update and shape the congestion statistics showed in
(8), where S denotes the current delay estimation and NV is
the newly observed congestion size, i.e.,

S=gxS+(1—-g)xN 8)

The smoothing coefficient is chosen to be g = 0.5 to balance
the new delay observation and history.

C. Rate Control

We adjust the window size each time RTCP receives an
acknowledgement packet, while leaves the other default stan-
dards unchanged. The rate control component of RTCP is
carried out based on (6) and (7). In particular, we project x’s
dynamic changes to “congestion window” in network stacks
as following:

tcp_cWnd/2,
2 X tcp_cWnd,

H; < a(Qs, + Qq, +0D;)
otherwise
9

Here recall that the parameter o determines the trade-off be-
tween utility and delay. Another tuning parameter ¢ represents
“tolerance” of internal link delays.

The counter value, on the other hand, can be updated more
easily using (6) and (1). To ensure the utility performance, we
choose to halve the size of v when we shall set the counter
changing rate to zero, i.e.,

tcp_cWnd = {

maxRate, if H; =0
Vi = Yi/2, if H; > w; (10)
wi/H; — 1, otherwise

V. EVALUATION

In this section, we present our evaluation setup and results
on both a testbed and ns-3 simulator. We conduct the testbed
evaluation on two types of traffic, i.e., web search (WS) and
data mining (DM), and measure the performance of RTCP in
complex scenarios in ns-3.

A. Testbed Experiments

1) Testbed Setup: Our testbed consists of 4 servers and 1
client, connected via a Cisco Nexus 3048 48-port Gigabit Eth-
ernet Switch with 9 MB shared memory. Each server is a Dell
Precision Tower 5810 machine with a 4-core Inter(R) Xeon(R)
E5-1620 3.5GHz CPU, 4G memory, a 500G hard disk and
an Intel Corporation Ethernet Connection 1217-LM (rev05)
Ethernet NIC. The client uses a Dell OptiPlex 7010 machine
with a 4-core Intel(R) Core(TM) i5-3470 3.2GHz CPU, 4G
memory, a 500G hard disk and an Intel Corporation 82579LM
Gigabit Network Connection(rev04) NIC. The servers and
client run CentOS 7.4-64bit with Linux 4.14.9-1 Kernel. The
testbed topology is shown in Fig. 3(a), which mimics a simple
data-fetching scenario and we keep default network settings,

238

3 Spines .

8 Leaves v K S

I \DGbDS
12 Servers
Servers Per Rack
(a) Topology in testbed experi-
ments.

(b) Spine-leaf in ns-3 simulation.

Fig. 3. (Left) Testbed topology: One client is connected to four servers
through a ToR switch with 1Gbps Ethernet links. (Right) ns-3 topology:
Spines and leaves are fully meshed with 40Gbps and each leaf switch (ToR)
has linked 12 servers with 10Gbps.

e.g., MTU size and TCP segmentation offload feature remain
unchanged. The basic round trip time (RTT) of our testbed is
200 ps.

*Testbed Parameter Settings. We keep the suggested de-
fault settings for each baseline congestion control algorithms
unchanged, and use a default drop-tail policy of each switch
for end-to-end congestion control algorithm. To fit different
traffic pattern, RTCP uses a fixed § = 125 and sets different
values for variable « in testbed experiments. For example,
we set a big o for the WS workload to keep a small buffer
occupation, which tends to achieve a better FCT performance
for urgent flows. For the DM workload, we use a smaller «
because the long flows are heavy and we want to keep an
overall better goodput performance.'

*Traffic Generation. We use the traffic generator borrowed
from [15], and run congestion control algorithms with two
realistic workloads, which include the web search workload
given by [3] and the data mining workload offered by [26]. The
client application periodically sends requests with a Poisson
interval to gather data with specific distribution features from
the servers. The server application responds to requests and
sends exact data to the client based on the size requested.
In our testbed experiments, we use a “separating threshold”
30KB to separate flows between “urgent” which is less than
this threshold, and “high-volume” for others. Note that one
can also use other separating thresholds to provide specific
flows with a higher priority. We set the weight of urgent flows
to 2.4 x 10* while give high-volume flows 1.2 x 10*. The
weights are used to compare with the counter to guide the
rate changes.

2) Testbed Experiments Results: We use the topology in
Fig. 3(a) to test the performance of the client-server model. In
the beginning, we use only one client and one server to run
a simple one-on-one data transfer test. The benchmarks we
compare RTCP with include Cubic [27], DCTCP, and PCC [2].
We use a fixed load expectation to generate dynamic traffics
according to the DCTCP workloads and measure each flow’s

'Goodput is defined as the ratio of flow size and flow completion time.
In simulations, we use throughput defined to be the rate of successful
message delivery over a communication channel instead for the convenience
of measurement. Note that both goodput and throughput measure how fast
messages are transmitted.

60 2100

99%FCT(ms)

Cubic DCTCP RTCP PCC

Cubic DCTCP RTCP PCC

(a) Urgent flows (b) High-volume flows

Fig. 4. Urgent and high-volume flows’ 99th FCT in one-to-one fetching.
RTCP shows a tradeoff between the urgent and high-volume flows, which
throttles the high-volume flows a little to guarantee a small FCT urgent flows.
PCC keeps high-volume flows a smaller 99th FCT. DCTCP and Cubic have
little FCT difference between urgent and high-volume flows.

Il Cubic
ElRTCP
[1DCTCP|
[18BR

380 Il Cubic
ERTCP
[1DCTCP
[1BBR

0.6 0.7 0.8 0.6 0.7 0.8
Load Load

(a) WS workload (b) DM workload

Fig. 5. Average goodput under web search (WS) and data mining (DM)
workloads in one-to-four fetching. Under WS workload, four TCP versions
show comparable goodput but RTCP shows the slowest fall with the increase
of load. Under DM workload, BBR shows the best goodput and RTCP
performs better than Cubic and DCTCP.

FCT and goodput. For RTCP, we choose o = 500.

For different congestion control versions, the average good-
put of these two server scenarios are almost the same (around
110Mbps) because the bandwidth is not a competing resources
at this time. Fig. 4 shows the flow completion time of urgent
and high-volume flows. We find that DCTCP does not show
a good FCT for both flows because the link is not congested
enough to mark the packets and DCTCP controls the flow
with NewReno [28] pattern most of the time. Compared to
DCTCP and PCC, Cubic is more friendly with urgent flows
and achieves a lower 99th FCT. PCC does not consider delay
during its utility function design and we find it only achieves
good FCT performance for high-volume flows. RTCP shows a
tradeoff between the urgent and high-volume flows: a higher
FCT for high-volume flows to keep urgent flows arrive in time.
Note that this tradeoff does not affect the goodput compared
to other benchmarks.

Does this tradeoff work well when scenarios get complex?
To answer this question, we use the topology above to run
a file fetching test: one client sends requests to four servers
randomly and the servers send the exact packets the client
requests back. As the average traffic load is moderate (for
example, 30% [29]) and a long-term load of over 80% is less
likely in practice [15], we test the network workload from 0.6
to 0.8, to investigate whether RTCP is robust to different link
congestion status. To match the different flow patterns, we set
tuning parameter o« = 800 for WS workload and o = 15
for DM workload. The benchmarks we use in this experiment
are Cubic, DCTCP and BBR [1]. Fig. 5 shows the average

239

100 1300
=6~ Cubic
~-RTCP

=~ Cubic

~-RTCP
DCTCP|

-0-BBR

50 900

99%FCT(ms)
99%FCT(ms)

‘‘‘‘‘‘
ol
=

0.6 0.7 0.8 0.6 0.7 0.8
Load

80

- Cubic
~-RTCP
DCTCP|
-0-BBR
£ 60 =

6~ Cubic
~-RTCP °
DCTCP -

)
@

99%FCT(s)
&

20 25
0.6 0.7 0.8 0.6 0.7 0.8

Load Load

(a) 99th FCT of urgent flows under (b) 99th FCT of high-volume flows (c) 99th FCT of urgent flows under (d) 99th FCT of high-volume flows

WS workload under WS workload

DM workload

under DM workload

Fig. 6. 99th FCT in one-to-four fetching. In both workloads, RTCP throttles the high-volume flows a little to achieve the smallest FCT for urgent flows.
Cubic does not handle urgent flows well but it keeps a good FCT for high-volume flows. BBR shows good performance for urgent flows but as the load
increases, high-volume flows of BBR suffer more than urgent flows. DCTCP achieves a mild performance in most cases but figure (d) shows that its simple

dynamic is friendly to long flows.

goodput of different versions of TCP under the two workloads.
We find that under WS workload, the goodput performance is
comparable but as the load grows, Cubic decreases faster than
other three versions. Under the DM workload, BBR is better
than the other three. Cubic has the worst performance, and
RTCP is comparable or slightly better than DCTCP. With this
goodput performance, we move our eyes to the 99th FCT,
which is showed in Fig. 6. We find that although all four
versions of TCP show comparable goodput performance in WS
workload, their FCT features are different. RTCP achieves a
smaller FCT for urgent flows shown in Fig. 6(a), but it throttles
the high-volume flows a little. Cubic works in an opposite way:
it keeps a small FCT for high-volume flows but leaves urgent
flows a higher FCT. BBR works well at load 0.6, but as the
load increases, its FCT for high-volume flows grows faster
than others. DCTCP shows a regular performance for both
urgent and high-volume flows. In DM workloads, BBR suffers
from higher FCT especially when the network gets congested
because it seeks for a better goodput performance, which
spends lots of heavy-delay packets testing the best sending
rate. DCTCP handles the queues well and shows a better FCT
for high-volume flows. RTCP keeps its better performance for
urgent flows but as the load increases, the sacrifices that high-
volume flows make are getting large. An interesting finding
is that as the load increases, Cubic prefers to keep the urgent
flows a lower FCT. We infer the reason for this FCT decrease
is that the frequent high-volume packets timeout gives up the
bandwidth for urgent flows, resulting in a smaller FCT as the
network becomes more congested.

3) Incast Experiments: Now we study whether RTCP han-
dles the incast problem well. We keep the one client and four
servers scenarios, but this time each client packet requests
(1,2,8) flows according to distribution of (0.5,0.3,0.2), i.e.,
50% packets requests data from one flow, 30% requests two
flows and 20% requests eight flows. To make RTCP sensitive
enough for the concurrent packets, we set a = 103. We
measure the request completion time (RCT) to see whether
RTCP, Cubic, DCTCP and BBR handle the incast problem
well at load 0.8 under the WS workload. Fig. 7 shows the RCT
for urgent and high-volume flows. We find that RTCP performs
well for both urgent and high-volume flows, especially for
high-volume flows as RTCP tries to keep a small queue

99%RCT(ms)

1000
Cubic DCTCP RTCP BBR

Cubic DCTCP RTCP BBR

(a) Urgent flows (b) High-volume flows

Fig. 7. 99th RCT (Request Completion Time) in incast experiments. RTCP
and BBR outperform Cubic and DCTCP for both flows. BBR outperforms
RTCP for urgent flows by a narrow margin as it finds the best sending window,
but RTCP outperfroms BBR in high-volume.

occupation in congested scenarios. BBR has a lower RCT for
urgent flows. DCTCP keeps a low RCT for short flows but the
window adjustment of DCTCP is not friendly to high-volume
flows. Cubic shows the worst performance in this incast test.

B. ns-3 Simulations

In the previous section, we have conducted RTCP experi-
ments on a testbed. In this section, we present our experimental
results in ns-3 [30], to evaluate the throughput and delay
performance of RTCP flows in a system with larger scale.

1) Setup: We conduct our simulation with a spine-leaf
topology showed in Fig. 3(b). This is a multi-path, multi-
bottleneck topology which is commonly adopted in modern
data centers [10]. We have 3 spine switches and 8 leaf
switches, and each leaf switch is linked to 12 servers. The link
bandwidth between the server and leaf switch is set to 10Gbps,
and each leaf switch is linked to each spine switch with a
40Gbps bandwidth. As the topology gets complex and we want
a better delay reduction, we use § = 10* in simulations if we
do not specific the parameter settings in each scenario. The
delay of each link is set to 1us.

One important change from the testbed experiments is that
we offer RTCP the sender buffer size in ns-3 simulations,
which means that we allow RTCP to read the current buffer
size in NIC for decision making. This implementation is
essential and meaningful to evaluate how RTCP performs with
more accurate delay estimation.

2) Random sending test: We first initiate the simulation
with a random sending test. In this scenario, each server

240

x10*

2
—NewReno ——NewReno
16 RTCP —DCTCP
o Timely @ BBR
(=]
N 5 Timely
@12 = —-RTCP
] @
3 <}
c0.8 o)
£ o
=
0.4
0 0 0.1 0.2 0.3

Time series . Delay(ms)

(a) Window size changes (b) p.d.f of packets delay

Fig. 8. Window size changes and p.d.f. of packet delay in random sending
test. TIMELY accelerates the window increases compared to NewReno; RTCP
adjusts the window based on the congestion size measured. Packets under
RTCP experience a 99th delay that is only 16% of that under NewReno and
an average delay that is 35.78% of that under DCTCP. BBR shows a heavy
tail in p.d.f. and NewReno suffers from significant packet loss.

TABLE I
AVERAGE THROUGHPUT AND DELAY PERFORMANCE IN RANDOM
SENDING(RS) AND OVER-SUBSCRIPTION(OS) SCENARIOS

Avg. Throughput(Mbps) Avg. Delay(us)

Version in RS/OS in RS/OS
NewReno 4300.38/2753.2 85.4/129.9
DCTCP 3955.55/2528.9 40.8/56.6
BBR 3936.28/2418.56 87.7/113.6
TIMELY 4355.48/2839.13 107.9/156.8
RTCP 4362.38/2787.08 14.6/23.4

randomly chooses another server to start the data transmission.
We keep the setting o = 500 for RTCP in this scenario, and
use this basic test to see whether RTCP achieves a better
performance than NewReno, DCTCP, TIMELY [5] and BBR2.

We show the average throughput and delay performance
in table I and use Fig. 8 to show the window size changes
and packets delay performance. We randomly choose one
server and plot the window size changes of one determined
time series. We compare RTCP window with TIMELY and
NewReno, which show the similar throughput performances
with RTCP. We find that TIMELY accelerates the window
increment compared to NewReno, which explains its attractive
throughput and bad delay performance. NewReno increases
the window in a slow linear speed. RTCP adjusts the win-
dow size based on the congestion size each time receives a
packet, which better suits the current congestion condition.
NewReno’s packet delay distributes from 0 to 0.2ms and
more than 50% packets suffers from delay beyond 0.1ms.
Most DCTCP packets delay less than 0.1ms but DCTCP
dose not provide flows with a better throughput. BBR uses
probes to find a better sending window, which improves
the percentage of packets that experience small delay, but it
causes heavy tail for the delay p.d.f. compared to NewReno.
RTCP achieves a comparable throughput with NewReno and
TIMELY while ensuring a 99th delay that is only 16% of
that under NewReno and an average delay that is 35.78%
of that under DCTCP. It uses a moderate window changes
to achieve best throughput performance and greatly reduces

Note that the BBR module we used in ns-3 has implemented most BBR
conrol schemes. Yet, it has not supported all recent BBR features. Please
check [31] for more details.

Il Urgent Il Urgent
[IHigh-volume 4000 [IHigh-volume
60 &
- £ 3000
2 =
40 3
& £2000
(=] >
<
20 £ 1000

NewReno DCTCP

RTCP

NewReno DCTCP

RTCP

(a) Average Delay (b) Average Throughput
Fig. 9. Average throughput and delay of urgent flow in the preemption test.
RTCP achieves a better delay performance for both flows. NewReno doubles
the average delay to tradeoff a throughput increase compare to DCTCP.

50 50
——NewReno

——DCTCP
——RTCP

——NewReno
——DCTCP
—e—RTCP

Percentage
n
(&2}
Percentage
n
(&2}

0 0.04 0.08 0.12 0 0.04 0.08 0.12
Delay(ms) Delay(ms)

(a) Urgent flow p.d.f (b) High-volume flow p.d.f

Fig. 10. Packets delay p.d.f. in the urgent flow preemption test. RTCP reduces
the 99th delay by almost a half compared to DCTCP, and its delay is only
25% of those under NewReno for both high-volume and urgent flows. All
RTCP packets enjoy smaller delay than NewReno and DCTCP.

the delay variability compared to other TCP versions. The
moderate window size changes of RTCP also indicates that
RTCP, which adjusts the window based on congestion rather
than packet losses, achieves better fairness between servers
than NewReno and TIMELY if all servers adopt the same
RTCP congestion control scheme.

3) Urgent flow preemption test: In this scenario, we initiate
one high-volume flow to the right side adjacent server for
each server in the topology above. After that, we start one
urgent flows at each server which has the same source and
destination IP with the high-volume one. Note that in this
test, we keep the flow types “urgent” and “high-volume” from
testbed experiments to indicate that urgent flows have a higher
priority. We study how urgent flows preempt background
flows, so as to ensure fast delivery, under different priorities
of flows. We keep the mild setting of o unchanged.

Fig. 9 shows the average delay and throughput performance
of urgent and high-volume flows. For both urgent and high-
volume flows, RTCP achieves a better delay performance:
an average delay that is only 31.5% of the average delay
under DCTCP for urgent flows and 35.6% for high-volume
flows. It also throttles the high-volume flow a little bit (7%
throughput compared to NewReno) to provide urgent flow with
a good preemption: almost 4 to 7 times increase of throughput
compared to NewReno and DCTCP.

We plot the packet delay p.d.f. in Fig. 10. We see that even
for high-volume flows which are throttled for urgent flows,
RTCP significantly reduces their delay and delay variability. In
particular, it achieves a 99th delay that is almost a half of that
under DCTCP, and only about 25% of that under NewReno.
For urgent flows, RTCP narrows the packet delay distribution

241

LEDBAT|
- Vegas
——DCTCP

Timely
——RTCP

75

50

50

——NewReno

——DCTCP
Timely 25
BBR

Percentage
Percentage

25

—~—RTCP
0

0 0.1 0.2 0 0.2 0.4 0.6
Delay(ms) Delay(ms)

(a) c.d.f in the over-subscription sce- (b) c.d.f in the large scale incast test
nario

Fig. 11. c.d.f. of packets delay in over-subscription scenario and large scale
incast test. The 99th delay of RTCP is significantly better than DCTCP,
NewReno, TIMELY and BBR in the over-subscription scenario. In large scale
incast, RTCP outperforms the other three end-to-end based TCP versions and
narrows the gap from DCTCP.

and all RTCP packets enjoy smaller packets delay than under
NewReno and DCTCP.

C. Deep dive

1) Over-subscription scenario: Over-subscription occurs
commonly in practice, e.g., due to cost saving or under-
provision of network resources. Thus, we also investigate how
RTCP performs in the over-subscription scenario. We rerun the
random sending test above but links are connected in an over-
subscription fashion this time. Specifically, we keep the server
port as 10Gbps, but the bandwidth between spine switches and
leaf switches is reduced to % of the original link capacity. We
set @ = 10% in RTCP to make RTCP more sensitive to the
backlog. The throughput and delay results are also showed in
table I. RTCP handles the congestion window well. Compare
to TIMELY, it uses 1.83% throughput loss to achieve 85.08%
delay reduction. Fig. 11(a) shows the c.d.f of packet delay. We
see that the 99th delay of RTCP is significantly better than
DCTCP, NewReno, TIMELY and BBR. From the results, we
see that RTCP can effectively reduce packet delay even in this
much congested situation.

2) Large-scale incast test: End-to-end protocols may suffer
from the incast problem because they use RTT as an estimation
of link congestion. Many protocols use switches as a helper
of indicating link congestion, such as ECN or priority queues
techniques. However, if we do not seek the help of switches,
how well can these end-to-end protocols perform? In this
scenario, we test how RTCP perform compared to other RTT-
based end-to-end protocols, including LEDBAT [4], TIMELY
and Vegas. Also, we choose DCTCP, which tackles the incast
problem well with the help of ECN, as a baseline. We use
the topology above to mimic a 95 to 1 incast test. We set
the @ = 5 x 10® to make RTCP focus on delay reduction.
Also, we set the initial window of RTCP as 2 instead of the
suggested 10 [32] to avoid backlogging too many packets at
the beginning.

Figure 11(b) shows the packets c.d.f. in this scenario.
DCTCP shows the best performance with the help of ECN.
RTCP reduces the 99th packet delay to about 56% of LED-
BAD and Vegas. TIMELY suffers from heavy delay tail
compared to other RTT-based congestion control algorithms.
This test shows that RTCP can handle the incast problem

30 30

AIpha=300 Ml Delta=3000
[Alpha=600 [Delta=6000
[CJAlpha=1000 [CIDelta=10000

n
=)
N
=]

Percentage
Percentage

=)
=)

M“hium

Delay(us)
(b) The effect of §

o M“lzlotuuum o

40 0

40
Delay(us)

(a) The effect of a

Fig. 12. Comparison of p.d.f with different parameter settings. Increase the
parameter values will improve the delay performance.

TABLE II
PARAMETER COMPARISONS FOR RTCP

Parameter Settings Avg. Throughput Avg. Delay
a = 3x102, § = 10* 3180.16 Mbps 55.6 us
o =6x102, § = 10% 3208.76 Mbps 30.2 us
a=10% 6 =104 2787.08 Mbps 23.4 us
a =103, 8§ =6x103 3028.40 Mbps 24.6 us
a =103, 8§ =3x103 3073.12 Mbps ~ 29.9 us

better than other end-to-end protocols (LEDBAT, TIMELY and
Vegas). RTCP shows great flexibility to fit different scenarios.

3) Parameter issues: We have already seen that in the
above experiments the « value can be used to achieve a proper
utility-delay tradeoff in the network, i.e., a larger o prefers
congestion reduction while a smaller a favors overall utility
increase. We next try to understand how § (used in (7) to mea-
sure the link backlog) affects the RTCP performance. Table
IT compares the average throughput and delay of flows with
different parameter settings in the over-subscription scenario.
Comparing row 1, 2, 4 and 5 with row 3, we find that the
decrease of § can improve the throughput performance but
hurt delay, like the parameter « did . Fig. 12(a) and 12(b)
shows that the packet delay and jitters are reduced as the
decrement of o and ¢ value. Yet, it shall be noticed that the §
and « values cannot be made arbitrary large or small. A large
parameter value may cause an overreaction of RTCP to delay
change which improves the delay but hurts the flow throughput
severely, while a small value may increase the packet backlog
in the intermediate devices which decreases the throughput
unexpectedly(as showed in row 1).

VI. LIMITATIONS AND FUTURE WORK

RTCP is a modest congestion control scheme, which per-
forms good fairness among the servers with RTCP imple-
mentation. However, RTCP may give up a small fraction of
bandwidth in order to achieve a better delay performance when
competing with other greedy buffer-occupation algorithms,
such as NewReno and BBR.

Many recent works focusing on congestion control try to
optimize the control policy with reinforcement learning, for
example, [33] and [34]. Using reinforcement learning tech-
niques for finding proper parameters for RTCP for different
network scenarios will be an interesting yet challenging future
research problem.

242

VII. CONCLUSIONS

In this paper, we propose Regulated TCP (RTCP) based on
a novel auxiliary variable solution approach in optimization
theory. RTCP uses counters at end devices and end-to-end de-
lay measurements for rate adaptation (via window adjustment).
It requires minimal changes to existing network systems and
can be implemented with simplest switch configuration. We
implement a prototype of RTCP and evaluate RTCP through a
series of testbed experiments and ns-3 simulation. Our results
show that RTCP achieves better performance, in terms of
packet delay and goodput, compared to existing TCP protocols
including DCTCP, BBR, PCC, LEDBAT, TIMELY, Vegas,
Cubic and NewReno.

ACKNOWLEDGMENT

The work of Longbo Huang and Yuxing Li is supported
in part by the National Natural Science Foundation of China
Grant 61672316, the Zhongguancun Haihua Institute for Fron-
tier Information Technology and the Turing AI Institute of
Nanjing.

[1]

[2]

[4

=

[5

=

[6

i}

[7]

[8

[t}

[10]

(11]

(12]

[13]

REFERENCES

Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. Bbr: Congestion-based congestion control.
Queue, 14(5):20-53, 2016.

Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael
Schapira. {PCC}: Re-architecting congestion control for consistent high
performance. In /2th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15), pages 395-408, 2015.
Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 conference, pages 63-74, 2010.

Sea Shalunov, Greg Hazel, Janardhan Iyengar, Mirja Kuehlewind, et al.
Low extra delay background transport (ledbat). In RFC 6817, 2012.
Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall,
and David Zats. Timely: Rtt-based congestion control for the datacenter.
ACM SIGCOMM Computer Communication Review, 45(4):537-550,
2015.

L.S. Brakmo and L.L. Peterson. Tcp vegas: end to end congestion
avoidance on a global internet. IEEE Journal on Selected Areas in
Communications, 13(8):1465-1480, 2002.

Ali Munir, Thsan A Qazi, Zartash A Uzmi, Aisha Mushtaq, Saad N
Ismail, M Safdar Igbal, and Basma Khan. Minimizing flow completion
times in data centers. In 2013 Proceedings IEEE INFOCOM, pages
2157-2165. IEEE, 2013.

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
Better never than late: Meeting deadlines in datacenter networks. ACM
SIGCOMM Computer Communication Review, 41(4):50-61, 2011.
Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-
optimal datacenter transport. ACM SIGCOMM Computer Communica-
tion Review, 43(4):435-446, 2013.

Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. Scheduling
mix-flows in commodity datacenters with karuna. In Proceedings of the
2016 ACM SIGCOMM Conference, pages 174-187, 2016.

Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, and Shivkumar
Kalyanaraman. One more bit is enough. In Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols
for computer communications, pages 37-48, 2005.

Kadangode Ramakrishnan, Sally Floyd, David Black, et al. The addition
of explicit congestion notification (ecn) to ip. 2001.

Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. Deadline-aware
datacenter tcp (d2tcp). ACM SIGCOMM Computer Communication
Review, 42(4):115-126, 2012.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

(31]

(32]

[33]

[34]

243

Li Chen, Shuihai Hu, Kai Chen, Haitao Wu, and Danny HK Tsang.
Towards minimal-delay deadline-driven data center tcp. In Proceedings
of the Twelfth ACM Workshop on Hot Topics in Networks, pages 1-7,
2013.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao
Wang. Information-agnostic flow scheduling for commodity data centers.
In 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), pages 455-468, 2015.

Sally Floyd and Van Jacobson. Random early detection gateways
for congestion avoidance. [EEE ACM Transactions on Networking,
1(4):397-413, 1993.

C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong. On
designing improved controllers for agm routers supporting tcp flows.
In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, 2001.
Frank Kelly. Charging and rate control for elastic traffic. European
transactions on Telecommunications, 8(1):33-37, 1997.

Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control
for communication networks: shadow prices, proportional fairness and
stability. Journal of the Operational Research society, 49(3):237-252,
1998.

Scott Moeller, Avinash Sridharan, Bhaskar Krishnamachari, and Om-
prakash Gnawali. Routing without routes: The backpressure collection
protocol. In Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks, pages 279-290, 2010.
Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based
congestion control. IEEE ACM Transactions on Networking, 8(5):556—
567, 2000.

Leandros Tassiulas and Anthony Ephremides. Stability properties of
constrained queueing systems and scheduling policies for maximum
throughput in multihop radio networks. IEEE Transactions on Automatic
Control, 37(12):1936-1948, 1992.

Longbo Huang and Jean Walrand. A benes packet network. In 2013
Proceedings IEEE INFOCOM, pages 1204-1212. IEEE, 2013.

Jean Walrand and Pravin Pratap Varaiya. High-performance communi-
cation networks. Morgan Kaufmann, 2000.

Robert G Brown and Richard F Meyer. The fundamental theorem of
exponential smoothing. Operations Research, 9(5):673—-685, 1961.
Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta. VI2: a scalable and flexible data center network.
In Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, pages 51-62, 2009.

Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly
high-speed tcp variant. Operating Systems Review, 42(5):64-74, 2008.
Sally Floyd, Tom Henderson, Andrei Gurtov, et al. The newreno
modification to tcp?s fast recovery algorithm. 1999.

Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic
characteristics of data centers in the wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, pages 267-280,
2010.

ns-3. https://www.nsnam.org/ Accessed February 5, 2010.

Mark Claypool. Bbr’ - an implementation of bottleneck bandwidth
and round-trip time congestion control for ns-3. https://github.com/
mark-claypool/bbr Accessed February 5, 2020.

Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom
Herbert, Amit Agarwal, Arvind Jain, and Natalia Sutin. An argument for
increasing tcp’s initial congestion window. ACM SIGCOMM Computer
Communication Review, 40(3):26-33, 2010.

Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimiza-
tion. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 191-205, 2018.

Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen, Kaixin Sui, Jiyang
Zhang, Zijie Ye, and Dan Pei. Dynamic tcp initial windows and
congestion control schemes through reinforcement learning. [EEE
Journal on Selected Areas in Communications, 37(6):1231-1247, 2019.

