
SmartSharing: A CDN with Smart
Contract-based Local OTT Sharing

Jiamin Fan∗, Kui Wu∗, Daming Liu+, Guoming Tang]

∗ Department of Computer Science, University of Victoria, BC, Canada
+ Department of Computer Science, Shanghai University of Electric Power, Shanghai, China

] Peng Cheng Laboratory, Shenzhen, China

Fig. 1. Architecture of SmartSharing.

• We propose SmartSharing, a new CDN architecture
where end users contribute their OTT devices as
mini cache servers.

• We address two key technical challenges in
SmartSharing: (a) incentivizing OTT owners to con-
tribute and (b) facilitating content trading among
OTT owners.

II. SYSTEM MODEL AND PROBLEMS

The architecture of SmartSharing is shown in Fig. 1.
OTT devices in nearby neighborhood are grouped to-
gether, and OTT devices in the same group can serve
each other. OTT devices have buffers to temporarily
cache content, and can quickly deliver content to other
OTT devices in the same group. As an example in Fig. 1,
there are three OTT owners in Area 1. Assume that time
is slotted and in the second time slot, the content in each
OTT buffer is as follows: OTT1 (c1, c2), OTT2 (d1, c1),
OTT3 (d1, d3), where ci and di denote the indexes of
content. Assume that the content requests at the next
time slot are c3 at OTT1, c2 at OTT2, and c1 at OTT3. We
can see that for the next time slot, OTT1 can serve OTT2
and OTT3, and OTT1 and OTT2 can collectively serve
OTT3 (e.g., OTT3 can fetch partial of c1 from OTT1 and
partial of c1 from OTT2).

631

Abstract—A content delivery network (CDN) uses dis-
tributed cache servers to reduce the content delivery latency 
to end users. In recent years, CDN providers adopt a new 
content caching strategy that allows end users to share their 
storage/bandwidth resources. Two core questions need to 
answer in this strategy: (1) how to incentivize end users to 
contribute their resources? (2) how to facilitate transparent, 
secure content trading among end users?

We propose a new CDN solution, called SmartShar-
ing, where users contribute their over-the-top (OTT) de-
vices as mini-cache servers. To incentivize end users to 
contribute resources, SmartSharing uses game theory and 
an Expectation-Maximization (EM) algorithm to determine 
the content delivery schedule and the pricing scheme. To 
facilitate content trading among end users, SmartSharing 
uses smart contracts in Ethereum to create a transparent 
and safe transaction platform. We thoroughly evaluate the 
performance of SmartSharing with real-world trace-driven 
simulation as well as a prototype using content metadata 
and the derived pricing scheme.

I. INTRODUCTION

CDNs extensively use cache servers to cache content
to reduce the traffic delivery distance and latency from 
service providers to users.

The expansion of CDN footprint, however, may incur
high equipment cost and heavy maintenance overhead 
for the CDN providers. The expansion costs eventually 
will be passed on to the users, leading to a higher price 
for CDN services.

The main idea is to incentivize and facilitate ordinary 
Internet users to contribute their OTT devices for content
caching and their bandwidth for content delivery.

To incentivize end users, we design a centralized (vir-
tual) reward mechanism.

To facilitate end users sharing their OTT storage and 
bandwidth resources, we need to support automatic 
trading without worrying about flawed transactions.

We aim at addressing the above two problems in a 
unified framework, called SmartSharing. To tackle the
first problem, we propose a new incentive and pricing 
strategy. The main idea is to allow OTT owners to com-
pete in a well-designed pricing game [1] and let them
compensate each other. To tackle the second problem,
we adopt smart contracts [2] in Ethereum [3] to support
automatic, secure transactions among end users.

The contributions of the paper include:

Annex to ISBN 978-3-903176-28-7© 2020 IFIP



III. PRICING IN SMARTSHARING

The pricing scheme in SmartSharing consists of two
steps: in the first step, we need to determine where an
OTT device should download content for its owner, and
in the second step, we determine the prices that a user
should pay to other users who provide the services. Ac-
cordingly, we formulate and solve a bandwidth game for
the first step and propose an expectation-maximization
(EM) based pricing algorithm for the second step.

A. Banswidth game
Definition 1. Bandwidth game:
• Players: The set of all OTT devices, denoted by Nr.
• Strategies: OTT i’s contribution di(0 ≤ di ≤ 1) to

SmartSharing.
• Payoffs: ri(di, d−i)

In order to find the Nash equilibrium, each OTT
aims at maximizing its own payoff, by selecting its best
strategy when the strategies of other OTTs are given.
For two-player bandwidth game, a Nash equilibrium
solution can be derived analytically. For multi-player
bandwidth game, we propose an iterative algorithm
called Best Response Update Algorithm (BRUA) 1, to
find the solution.

Algorithm 1 Best Response Update Algorithm (BRUA)

Input: Initial contribution values d0
i (i ∈ Nr), constant ki

associated with OTT i, small threshold ε, the supply-
demand relationship matrix [Yij]

Output: all d∗i values
1: t=0 and Flag=0.
2: while Flag==0 do
3: Calculate dt+1

i = T(dt
−i) for all i ∈ Nr.

4: if |dt+1
i − dt

i | ≤ ε for all i ∈ Nr then
5: Flag=1.
6: t++.
7: Return d∗i = dn

i for all i ∈ Nr.

B. EM algorithm
1) E-step: The solution of E-step denotes the propor-

tion of OTT devices that would accept each price.
2) M-step: The solution of M-step denotes the prob-

ability of each price been accepted. The solution is
denoted as θθθ(t+1) = (θz(1),(t+1), θz(2),(t+1), ..., θz(K),(t+1)),
where

θz(l),(t+1)

=
∑n

i=1 (Qi,z(l),(t) ∑n
j=1 xij)

n ∑n
i=1 Qi,z(l),(t)

. (1)

The θθθ(t+1) values will be used in the next-round E step.
We iterate the E step and the M step until convergence.
The pricing strategy for each OTT is obtained from the
convergence result of the last-round E step.

Fig. 2. Setting prices in smart contracts

IV. EVALUATION OF SMARTSHARING

We evaluate SmartSharing with prototyping and trace-
driven simulation. Together, trace-driven simulation and
smart contract-based implementation show a compre-
hensive picture on the performance of SmartSharing.
Fig. 2 shows how prices are set in smart contracts.

We build a web interface to help OTT owners manage
their Ethereum wallet and view content trading meta-
data. We also built a GUI. More implementation detail
about the backend and frontend of SmartSharing could
be found at [4].

We generate synthetic trace data based on the data
set from MMSyS20151, which includes thousands of
live streaming sessions of two major service providers:
Twitch.tv and YouTube Live. From the data, we identify
the most popular 50 videos based on number of views.
Since each video includes log data regarding the number
of viewers over time but the information regarding
individual viewers is mostly missing (except for those
who wrote comments), we simulate the behavior of
each viewer in the following steps: (1) we divide time
into time slots of duration 5 seconds; (2) at each time
slot, each viewer would view content with probability
proportional to the popularity of the content; and (3)
based on the above content viewing procedure, an OTT
can share content to other OTT devices if the content is
already in its buffer. We set the buffer size at each OTT
to hold content for 4 time slots. We simulated different
number of viewers (i.e., 10 and 20).

Using the synthetic traffic trace, we illustrate how
SmartSharing converges to equilibrium in the bandwidth
game (Section) and how it reaches the desired pricing
scheme (Section IV-A).

A. Pricing Scheme

This section discloses the detailed intermediate steps
on how OTT devices reach the pricing scheme with our

1Available from http://dash.ipv6.enstb.fr/dataset/live-sessions/.

632



0 10 20 30 40 50

The Number of Iterations

0.5

0.6

0.7

0.8

T
h

e
 A

v
e
ra

g
e
 C

o
n

tr
ib

u
ti

o
n c=0.336,N=10

c=0.336,N=20

c=0.336,N=30

0 0.2 0.4 0.6 0.8 1

The range of random numbers for parameter k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h

e
 A

v
e
ra

g
e
 C

o
n

tr
ib

u
ti

o
n

c=0.236,N=20

c=0.336,N=20

c=0.436,N=20

(a) (b)
Fig. 3. Bandwidth game: (a) Average contribution against number
of iterations to reach Nash equilibrium for 10, 20 and 30 devices.
The average initial value of contribution per OTT is 0.432; parameter
ki is randomly chosen in (0, 0.4). (b) Average contribution at Nash
equilibrium against parameter ki under different c for 20 OTT devices.

0 5 10 15

Number of Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h

e
 

 v
a
lu

e
s

price1 (
1
=0.2, 

2
=0.5)

price2 (
1
=0.2, 

2
=0.5)

price1 (
1
=0.3, 

2
=0.8)

price2 (
1
=0.3, 

2
=0.8)

0 5 10 15 20 25 30

Number of Iterations

0.3

0.4

0.5

0.6

0.7

0.8

T
h

e
 

 v
a
lu

e
s

price1

price2

price3

(a) (b)
Fig. 4. The convergence of θθθ values. (a) The initial probabilities that
an OTT would fetch content from other OTT devices with price 1 and
price 2 are set to 0.2 and 0.5 (the two blue curves), respectively, or to 0.3
and 0.8 (the two red curves), respectively. (b) The initial probabilities
that an OTT would fetch content from other OTT devices with price
1, price 2 and price 3 are set to 0.3, 0.6 and 0.8, respectively.

EM algorithm. In this experiment, we show the pricing
schemes of 10 OTT devices. Fig. 4 (a) shows how θθθ
converges to stable values in our EM algorithm.

We are interested in how the number of price options
and the amount of content that an OTT shares with
others impact the final price schemes. For this, we tested
three cases: (1) two price options {0.3c, 0.8c}, (2) three
price options {0.3c, 0.6c, 0.8c}, and (3) five price options
{0.3c, 0.5c, 0.6c, 0.7c, 0.8c}.

0.4 0.5 0.6 0.7

The Proportion of 1's in the Fetch Table

0.38

0.4

0.42

0.44

0.46

T
h

e
 A

v
e
ra

g
e
 P

ri
c
e
 (

c
)

2 Price Choices

3 Price Choices

5 Price Choices

0 5 10 15 20

Number of simultaneous transactions

0

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 d

e
la

y
 (

s
)

average delay (computer 1)

average delay (computer 2)

overall average delay

(a) (b)
Fig. 5. (a) Average price vs. the proportion of 1’s in the fetch
table (2 price choices: {0.8c, 0.3c}, 3 price choices: {0.8c, 0.6c, 0.3c}, 5
price choices: {0.8c, 0.7c, 0.6c, 0.5c, 0.3c}). (b) Average transaction delay
(seconds) vs the number of simultaneous transactions.

Fig. 5(a) shows the average price versus the proportion
of 1’s in an OTT’s fetch table, with different numbers
of price options. We can see that the number of price
options offered to an OTT does not have a clear impact
on the average price charged by the OTT. Nevertheless,

the average price drops with the increase of content
amount that an OTT can share with other OTT devices,
since all the three curves show a clear down trend
along the x-axis. This is reasonable because when an
OTT shares more content with others, it can reduce the
average price for the same level of profit.

B. Overhead of Smart Contracts
We emulate the real-world transactions by deploying

virtual machines (VMs) over two desktop computers
connected by a local 10 Mbps Ethernet router. The two
machines have same system configuration: Intel Core i7-
7700 quad core 3.6 GHz CPU, 8 GB 2400 MHz DDR4
memory, and Window 10 Enterprise OS. Each VM repre-
sents an OTT and runs smart contracts in SmartSharing.
We test different total numbers of OTT devices, and for
each test we deploy the same number of OTT devices
in the two computers. We test the worst-case scenarios
where transactions occur in burst, i.e., we start a test
by configuring several OTT devices to submit content
transaction simultaneously and end the test when all
transactions have been executed. For each transaction,
we record its delay calculated by its finish time minus
its start time.

Fig. 5(b) shows the average transaction delay vs the
number of simultaneous transactions, including the av-
erage delay for OTT devices in each computer and the
average delay for all OTT devices. The average gas fee
per transaction is 0.00005 ether, which amounts to 0.03
USD according to the market price.

The above results demonstrate that the overhead in
terms of delay and monetary cost for executing smart
contracts in SmartSharing is very small.

V. CONCLUSION

This paper presents a new CDN solution, SmartShar-
ing, which integrates a pricing scheme to incentivize
end users and a smart contract-based content trading
mechanism to facilitate content trading among end users.

Overall, SmartSharing brings a win-win-win solution
for CDN providers, end users, and content providers
(CPs).

REFERENCES

[1] Q. Ma, L. Gao, Y.-F. Liu, and J. Huang, “Economic analysis of
crowdsourced wireless community networks,” IEEE Transactions on
Mobile Computing, vol. 16, no. 7, pp. 1856–1869, 2017.

[2] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving
smart contracts,” in IEEE Symposium on on Security and Privacy (SP),
2016, pp. 839–858.

[3] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[4] J. Fan, K. Wu, D. Liu, and G. Tang, “Smartsharing:
A cdn with smart contract-based local ott sharing [tech-
report],” 2019. [Online]. Available: https://www.dropbox.com/s/
260x7djaa7kedey/technical%20report.pdf?dl=0

633


