
Optimizing Social Welfare for Task Offloading in
Mobile Edge Computing

Hsiang-Jen Hong Wenjun Fan C. Edward Chow Xiaobo Zhou Sang-Yoon Chang
University of Colorado Colorado Springs, Colorado Springs, United States, CO 80918

{hhong, wfan, cchow, xzhou, schang2}@uccs.edu

(sellers) provide their computing resources with ask prices. An
auctioneer collects those information and decides the finalized
assignment and prices for them to clear the market. A double
auction approach is superior to other auction approaches
because the ask price can guarantee the edge service providers
reach a satisfactory level in profits. In contrast, in a simpler
approach, such as pay-as-bid, the buyer can lower their bidding
values and decrease the profits for the edge service providers.

Our approach distinguishes itself from prior work by using
a model which is more realistic and flexible. Our model
supports the following three aspects not captured in the
previous research. First, our model supports the current real-
world practices for MEC, such as Amazon Lambda@Edge
[2], by having the price proportional to the amount of load
(providing finer granularity and sophistication than the prior
work). Second, our model supports the many-to-many assign-
ment, including the case of one mobile device load splitting to
many edge servers; prior literature in contrast only considers
the many-to-one case where one edge server services multiple
mobile devices. By splitting workloads to edge servers, the
tasks can be distributedly processed and the resources on
the edge servers can be best utilized. We use a motivating
example in section III to show that our mechanism supports
this distributed case. More importantly, in order to satisfy
economic efficiency objectives (measured by social welfare in
our approach), such distributed concept is needed for reaching
the optimality. Third, our model supports the heterogeneity of
the edge servers in their service prices and qualities. Hence,
our model is different from the traditional double auction
model where the sellers offer identical products. The different
edge servers bring the combinatorial issue. Therefore, the
traditional double auction mechanism such as the breakeven
approach utilized in previous literature, e.g., [3], [4], is not
suitable in our model. Specifically, it is much more challenging
to design a mechanism satisfying the desirable properties
considered in a double auction and reaching the optimality.

From our model, we convert the allocation problem to a
minimum cost flow problem and adopt the efficient cost-
scaling push-relabel algorithm [5] for solving the minimum
cost flow problem. Our work focuses on modeling (enabling
such algorithm), applying, and analyzing the algorithm in the
context of MEC (the use of such an algorithm is new in MEC
and provides superior performances). Given the bidding and
the ask prices, we discover that there is a flexible range of
values on pricing for optimizing social welfare. The main con-
tributions are summarized as follows. We focus on optimizing
the social welfare in double auction mechanism design for

Abstract—While mobile applications are increasing in use 
and complexity, the computational constraints on mobile de-
vices remain as the bottleneck for serving computation-intensive 
mobile applications. Mobile edge computing (MEC) provides 
a computing paradigm to serve the computational demands 
of such mobile applications by offloading the mobile devices’ 
computational tasks to the edge servers. Double auction has 
been adopted in MEC to provide a mechanism to assign the 
tasks of mobile devices to the edge servers while considering 
the satisfaction level for both entities. We improve the double 
auction mechanism beyond prior research in MEC. Specifically, 
we construct a model to support the real-world practices in 
the pricing scheme of edge computing, such as that provided 
by Amazon, and to support the parallelizing and distributing 
of workloads to multiple edge servers. We propose an efficient 
mechanism to achieve the optimal social welfare by converting 
the allocation problem to a minimum cost flow problem. In 
addition to reaching the optimal social welfare in polynomial 
time computations, our proposed mechanism achieves individual 
rationality and strong balance budget.

Index Terms—Double auction, mobile edge computing, net-
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I. INTRODUCTION

As mobile applications increase in their use and function-
alities, the finite constraints on the mobile devices’ computa-
tions and energy become the bottleneck for such application 
processing. To address such issue, Mobile Edge Computing 
(MEC) [1] provides a capable computing paradigm to offload 
the computationally intensive application loads to the edge 
servers as opposed to processing them on the local devices. 
MEC provides cloud-computing capabilities and an IT service 
environment at the edge of the mobile networks. MEC has 
received increased attention in recent years and is envisioned 
to be a critical technique in 5G network due to its desirable 
properties such as low latency, proximity, high bandwidth, 
Specifically, mobile devices can offload some computational 
tasks to its adjacent edge servers to obtain a quicker response 
for getting the corresponding results.

In MEC, how to manipulate the task offloading is a critical 
issue. Specifically, edge service providers want to maximize 
their profits yielded by providing computational resources. 
Mobile devices want to save their payment and get the 
computational resources. In this regard, network economics 
and pricing models should be explicitly addressed. Auction 
mechanisms are popular trading schemes for dealing with the 
issue in MEC, a double auction mechanism especially. In a 
double auction, mobile devices (buyers) request to offload their 
computational tasks with claimed bids. Edge service providers
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a task offloading problem in MEC. The proportional pricing
and the many-to-many allocation better models the real-world
practice in MEC, e.g., Amazon, than the previous research.
Enabled by our model, we reduce the problem to the minimum
cost flow model. By utilizing a state-of-the-art algorithm [5],
we can obtain the best offloading decision with optimal social
welfare while achieving the economic properties of individual
rationality and strong balanced budget.

II. PROBLEM FORMULATION

A. System Model
We define the task offloading problem using a double auc-

tion mechanism in MEC as follows. Given a set of n mobile
devices MD = {mdi|1 ≤ i ≤ n} with its corresponding
workloads {wli|1 ≤ i ≤ n} and a set of m edge servers
ES = {esj |1 ≤ j ≤ m} with its corresponding upper service
workloads {ubj |1 ≤ j ≤ m}. By incorporating the double
auction scheme, each mobile device mdi claim bids bij to their
interested edge servers esj representing the most expected unit
price for executing unit workload on esj . The bidding values
of each mobile device on the same edge server can be affected
by several factors such as its proximity to the edge server, the
quality of service on the edge server, etc. More importantly,
we assume that each mdi can offload their workloads to
different edge servers. The workloads can be executed parallel
on different edge servers to improve efficiency. By contrast,
each edge server esj submits their ask price aj representing
the least expected unit price for executing unit workload on
esj . To be more specific, for all bids submitting to request
computational resources on esj , if the bidding value bij < aj ,
then mdi is not allowed to join the auction on esj . We assume
that edge server esj can serve multiple mobile devices at the
same time but the total offloading workloads to esj should not
be bigger than its claimed capacity ubj .

Our system acts as a trustworthy auctioneer and collects the
information above provided by mobile devices (buyers) and
edge servers (sellers). We not only provide the final offloading
decision for these two entities but also decide the final pricing
for them to clear the market. If the offloading decision has
been finalized, we can get the final assigned workloads xij

for mdi to esj . Then Aj is denoted as the successful winning
bids on esj i.e. Aj = {bij |xij > 0}. In fact, in a double
auction, there are two pricing aspects need to be defined for
an assignment xij , the unit payment for mdi to esj called pij ,
and the unit revenue for executing unit workload on esj called
pj . For those mobile devices with bijs in Aj , their final unit
payment pij should be the same.

To define the benefit gained on different entities and to
motivate the concept of social welfare, the utility values of
buyers and sellers are described as follows. The utilities on
buyers can be explained as the amount of saved money. To
be more specific, if a buyer mdi successfully win the bid for
esj with offloading workloads xij , then the amount of saved
money on this allocation can be computed as xij · (bij − pij).
The total utility (total saving amount) of mdi can be aggre-
gated as U(mdi) =

∑j=m
j=1 xij · (bij − pij). In contrast, the

utilities on sellers represent the additional revenues. Again,

TABLE I
Notation Description
mdi a mobile device
esj an edge server
bij the bidding value on mdi to esj
aj the ask price on esj
wli the workloads on mdi

ubj upper service workloads on esj
xij assigned workloads on mdi to esj
pi
j finalized unit payment on mdi to esj

pj finalized unit revenue on esj
Aj the successful winning bids on esj

using the similar allocation case between mdi and esj , the
additional revenue for esj on this allocation can be computed
xij · (pj − aj). Then, the total utility (additional revenue) of
esj can be aggregated as U(esj) =

∑i=n
i=1 xij ·(pj−aj). Last,

the social welfare value in the double auction is constituted
by the summation of all buyers’ and sellers’ utilities, i.e.∑j=m

j=1

∑i=n
i=1 xij · (bij − pij + pj − aj). After introducing the

objective function of our problem, the integer programming
model of our problem is formulated as follows.

max

j=m∑
j=1

i=n∑
i=1

xij · (bij − pij + pj − aj)

s.t.
∑
i

xij ≤ ubj ∀j (1)∑
j

xij ≤ wli ∀i (2)

pj ≥ aj , p
i
j ≤ bij ∀i, j (3)

xij ∈ N ∀i, j (4)

Constraint (1) limits the upper workloads on edge servers.
Constraint (2) implies a mobile device will not offload more
than its workloads. Constraint (3) restrict the pricing to satisfy
the individual rationality, a significant property in a double
auction which will be explained later. Constraint (4) represents
the assigned workloads should be a natural number. Table I
summarizes the key notations used in this paper.

B. Desired properties in Double Auction

Some desired properties of a double auction need to be
carefully considered in proposing an ideal double auction
mechanism. These desired properties are stated as follows.

1) Individual Rationality:
Buyers and sellers should not lose from joining the
auction. That is, ∀i, j, pj ≥ aj , and pij ≤ bij .

2) Strong Balanced Budget:
After the trading between buyers and sellers, the auc-
tioneer should not lose or gain money.

3) Economic Efficiency:
Several measurements might be selected for economic
efficiency such as social welfare, the number of success-
ful trades, or the revenue of edge servers, etc.

4) Truthfulness:
A double auction mechanism is truthful when an agent
(buyer or seller) cannot improve its utility by reporting
another untruthful bid.

In the following section, we demonstrate a double auction
mechanism satisfying individual rationality, strong balanced
budget, and economic efficiency. Even though all of the above
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properties cannot be achieved at the same time, as proved in
[6], our work provides strong properties, including guarantee-
ing the optimality of social welfare, a popular objective in the
task offloading problems in MEC and MCC (Mobile Cloud
Computing) [7]–[11]. Social welfare is used because it best
reflects the satisfaction level of the buyers and the sellers [12].

III. OUR PROPOSED DOUBLE AUCTION MECHANISM

In the design of our mechanism, we first try to satisfy
the balance budget property. To this end, we make sure the
transfers are done between buyers and sellers. Specifically, for
each xij > 0, the prices on pij and pj can be directly set to be
equal. For ease of our explanation, we utilize pj to represent
both the unit revenue of esj and the unit payment for mdi
who is assigned to offload its workload to esj . By doing this,
the auctioneer cannot gain or lose money and strong balance
budget is satisfied. Moreover, the social welfare value can be
re-formulated as

∑j=m
j=1

∑i=n
i=1 xij · (bij − aj), because each

xij > 0, each pair of pij and pj can be summed up to be
zero (i.e., −pij + pj = 0). In addition, the constraint (3) in the
integer programming model can be modified as aj ≤ pj ≤ bij .

Individual Rationality is also a significant property in the
double auction. It is not reasonable for buyers and sellers
to lose from joining the auction. If the property is not
satisfied, they might not be willing to join the auction due
to dissatisfaction with their expected utilities. In this regard,
before we start deciding the allocation, we first remove those
bids with bidding values lower than its corresponding ask price
on each edge server to avoid unnecessary operation on these
bids. Then, constraint (3) can be satisfied (i.e., satisfying the
individual rationality) if we let the final price of pj locate
within the range [min(Aj), aj ] where min(Aj) represents the
minimum bidding value in Aj . In our mechanism, after we
decide the winning bids, the finalized pricing will be directly
set within the range [min(Aj), aj ]. In the following paragraph,
we focus on winning bids determination, i.e. making the final
offloading decision, for obtaining the optimal social welfare.

We convert the winning bids determination problem into
a minimum cost flow problem [5], [13]. The minimum cost
flow network is illustrated in Fig. 1. First, we create two sets
of nodes for representing mobile devices and edge servers, i.e.
MD = {mdi|1 ≤ i ≤ n} on the second layer in the network,
and ES = {esj |1 ≤ j ≤ m} on the third layer. Then, a source
(or supply) node s and a destination (or demand) node d are
used to produce the flow and to accept the flow respectively.
We utilize f to represent the supply/demand status. If a node’s
f > 0, then it means that f flows are supplied from this
node; If a node’s f < 0, then |f | flows are accepted to
this node; those nodes with f = 0 are called transshipment
nodes. On s node, we set f = twl where twl =

∑i=n
i=1 wli,

i.e. the total workloads. In contrast, we set f = −twl to
accept those flows. Then, the remaining nodes are all simply
transshipment nodes. Generally speaking, we utilize the flows
to represent the assigned workloads. The best flow status
reaching the minimum cost can be interpreted to the best-
assigned workloads reaching the optimal social welfare. In the
following, we demonstrate how we set up the corresponding
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Fig. 1. Illustration of the minimum cost flow model.

capacity and cost on each link, the important parameters to
clarify the constraints on assigned workloads and to bring the
values to construct the social welfare.

In Fig. 1, we represent the corresponding capacity and cost
on each link as (capacity, cost). The capacity on each link
represents the upper amount of flows allowed to go through
this link. If a flow goes through this link, then it will yield the
corresponding cost set on this link. For the links between s
and MD, we set up (wli, 0) associated with each of these
links. It means that each mdi can not be assigned more
than its respective wli. For each link between MD and ES,
(wli,−bij) is set up on the link from mdi to esj . In Fig. 1,
we simply illustrate the respective (wl1,−b1j) on links from
md1 to ES. Others can be easily set up in the same manner.
Here, if mdi does not bid esj or the bidding value bij is
smaller than the ask value aj , the link between them will not
be created to avoid unnecessary operations. The capacity of
wli is also used to restrict its upper assigned workloads. The
links from mdi to ES represent that the workloads wli can
be partitioned (offloaded) to different edge servers. The costs
are set to the respective bidding values and change them to
negative sign. This is mainly because the minimum cost flow
is used to find the flow status with the minimum cost. We
will formally explain that the finalized flow status reaching the
minimum cost can be regarded as the finalized offloading result
reaching the optimal social welfare in Section IV. For each link
from ES to d, (ubj , aj) is set respectively. Obviously, ubj is
set to constrain the upper workloads on edge server esj , and
it will gain aj cost if any single flow goes through this link.
One can notice that we create a dummy node on the third
layer. The dummy node is used to accommodate the residual
flows twl−

∑j=m
j=1 ubj in the case that twl >

∑j=m
j=1 ubj . The

costs of those links linked to this dummy node are set to zero,
and the capacities should be set accordingly, as illustrated in
Fig. 1. By building this minimum cost flow network model,
we can successfully deal with the winning bids determination
problem. Specifically, we adopt a state-of-the-art algorithm
[5] to deice the finalized flow obtaining the minimum cost.
The finalized flows on each link between mdi to esj is then
interpreted as the finalized offloading workloads xij .

Motivating Example of a Solution Across Distributed
Servers: We use a toy example to show that the workloads
of a user will be indeed distributed into different edge servers
in some cases to obtain the optimal social welfare. In the toy
example, MD = {md1,md2} and the respective workloads
are wl1 = 2, wl2 = 1. ES = {es1, es2} and the respective
upper service workloads are ub1 = 1, ub2 = 2. The ask prices
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are set as a1 = 3, a2 = 4. The bids are b11 = 5, b12 = 8, b21 =
6, b22 = 6. By using the minimum cost flow model, the result
of the winning bids will be: x11 = 1, x12 = 1, x22 = 1.
The workloads of md1 will be distributed into different edge
servers to reach the optimal social welfare.

IV. THEORETICAL ANALYSIS

We formally prove our double auction mechanism achieving
individual rationality, strong balance budget, economic effi-
ciency on social welfare in this section.

Theorem 1. Our mechanism achieves individual rationality.

Proof. For buyers with no winning bids and sellers with no
assigned workloads, there is no trade among them. Hence they
do not have any chance to lose. For a buyer mdi with a
winning bid bij , the finalized unit payment pj is set to aj .
Because bij ≥ pj , mdi will not lose from joining the auction.
Similarly, for a seller esj with some assigned workloads, the
finalized unit revenue of pj is set to aj . With this setting
pj = aj , esj will not lose from joining the auction.

Theorem 2. Our mechanism achieves strong balanced budget.

Proof. After the winning bids determination stage, a winning
buyer mdi is assigned to offload its workloads xijs to different
edge servers with the finalized unit payments. If esj is one of
its offloading servers, the finalized payment for mdi on edge
server esj should be xij · pj . The payment will be directly
transferred to esj , i.e. the same amount xij ·pj will be received
on esj . Hence, an auctioneer does not lose or gain money.

Theorem 3. Our mechanism can always find the best winning
bids obtaining optimal social welfare in polynomial time.

Proof. We reduce our problem to a minimum cost flow
problem which can be solved by a state-of-the-art algorithm
in polynomial time [5]. By utilizing the minimum cost flow
model to reach the optimal social welfare, we change the
bidding values to negative sign. In such a case, the objective
function is modified from maximizing

∑j=m
j=1

∑i=n
i=1 xij ·(bij−

aj) to minimizing
∑j=m

j=1

∑i=n
i=1 xij ·(−bij+aj). The algorithm

decides the finalized xij with the guarantee of minimum cost
and it can be inferred that it can reach the optimal social
welfare at the same time due to the negative sign.

V. PERFORMANCE EVALUATION

The performance evaluation of our proposed mechanism is
focused on the economic efficiency, i.e., the social welfare,
and the computational efficiency, i.e., the running time for the
winning bids determination. The simulations are implemented
in Python and conducted on an Intel Core i7 CPU machine
with 8GB memory. To solve the minimum cost flow problem,
we utilized the Google OR-tools [14] implementing the state-
of-the-art cost-scaling push-relabel algorithm [5]. As discussed
in [15], the solver of Google OR-tools could solve the problem
more efficiently compared to other tools. We conducted several
simulations under different parameter settings. All results also
include 95% confidence intervals. The default value of n is
set to 50, and m is set to 15. In the following, the random
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Fig. 2. Social Welfare Gain

selection of values basically follows the uniform distribution.
Each mdi will randomly create its bids bij within the range
of [0,14] to m edge servers and randomly select its workloads
wli within the range of [10, 30]. If bij = 0, it means that
mdi is not under the service range provided by esj or is not
interested in joining esj . Each esj will randomly generate its
ask value aj within the range of [3,10] and randomly choose
the serving upper bound on workloads ubj within the range of
[100, 300]. If bij < aj , then mdi loses the chance to compete
for offloading its workloads to esj . As we stated in section III,
the link between them will not be generated in the network
model to avoid unnecessary operations.

1) Economic Efficiency (Social Welfare): Our mechanism
can always reach the optimal social welfare proved in Theorem
3. Because we are the first to use double auction and optimize
social welfare, there is no suitable mechanism to compare with
our mechanism. However, we still want to reveal our remark-
able results on social welfare against some other approach. In
this regard, we selected the DPDA method proposed in [3]
because the scenario in [3] is the closest to ours. Specifically,
existing works using double auction in MEC or MCC assume
that each edge server can only serve one mobile device [16], or
each edge server can serve multiple devices [3]. Undoubtedly,
the latter one is closer to our proposing scenario. However,
each mdi can only offload one task to one edge server in [3].
To let their method can still serve for the workload case, we
separate the workloads to several mobile devices for fitting
their approach in which each mobile device can only offload
one task (one workload). Specifically, if wl1 = 10, we will
create ten virtual mobile devices. By doing this, their method
can still be utilized to solve our proposed scenario. However,
their objective function is not social welfare but rather the
number of successful trade, which is not a popular approach
in MEC. Undoubtedly, their DPDA method based on a greedy
approach can not guarantee to reach the optimality. We then
introduce a social welfare gain to present the percentage gain
between the obtained social welfare of DPDA and our optimal
social welfare. Then, we investigate the effects of different m
and n on the social welfare gain in Fig. 2.

We can observe a consistent improvement in social welfare
gain in Fig. 2(a). This is because when m is increased, the
combinatorial nature becomes more significant. It is much
difficult for DPDA to obtain good social welfare because the
greedy approach lacks of a comprehensive view, just greedily
assign according to the bidding values. It will lose some
matchings among them due to the upper bound constraints on
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Fig. 3. Scalability of our mechanism

edge servers. In Fig. 2(b), we fix m = 15 while varying n from
25 to 125. The increasing of n also increases the combinations,
but it is not as significant as increasing on m. The bigger
number of n implies that a bigger portion of the capacities
on edge servers is occupied. It means that it will make the
obtained social welfare obtained by the greedy approach close
to the optimal value. The result in Fig. 2(b) shows that the
trend of social welfare gain is decreased. It can be explained
as the second argument has a more significant impact than the
combinatorial issue. Nevertheless, as proved in Theorem 3,
our mechanism can always obtain the optimal social welfare.

2) Computational Efficiency: For computational efficiency,
we focus on evaluating computational performance by showing
the scalability. We increase m and n together in Fig. 3. In fact,
when we increase m or n separately (while fixing the other),
the running time also monotonically increases, which is similar
to Fig. 3. Increasing m and n simultaneously is a reasonable
approach for evaluating the scalability. In a practical scenario,
if one of them increases, it should drive the number of
the other one. Our mechanism provides great computational
performance among different scales of the system.

VI. RELATED WORK

Auction schemes are widely utilized for the offloading prob-
lems in MEC [3], [8], [11] and other relevant areas: mobile
cloud computing (MCC) [16], and heterogeneous resources
allocation involving both fog cloud, edge server, etc. [9]. We
focus on the literature using the double auction for MEC. In
[3], Sun et al. consider each edge server can serve multiple
mobile devices with its claimed upper bound. However, each
mobile device can only offload its task to one edge server.
They proposed two double auction mechanisms, a breakeven-
based approach, and a more efficient dynamic pricing based
approach. However, the objective function they selected is to
maximize the number of successfully assigned pairs, which
is not a common objective selected for economic efficiency.
In our problem, we choose the most popular objective, i.e.,
social welfare [7]–[11]. Even though Yue et al. [8] select social
welfare as the metric, they do not reach the optimality. They
mainly focus on satisfying the other three properties. Also,
they model the allocation problem from the task perspective,
where each mobile device has different types of tasks to
be offloaded. In our work, we model the problem from the
workload perspective, which is more aligned with current edge
service providers’ pricing models [2].

VII. CONCLUSION AND FUTURE WORK

We propose a double auction mechanism for the task
offloading problem in MEC. To better model the real-world

practices, we not only allow many-to-many allocation but also
adopt a proportional pricing scheme to support the current
pricing scheme on Amazon Lambda@Edge [2]. We success-
fully convert the winning bids determination problem into a
minimum cost flow problem. A state-of-the-art algorithm [5]
utilized for solving minimum cost flow decides the final task
offloading result with optimal social welfare. Based on the
theoretical analysis and the simulation results, our mechanism
can efficiently obtain optimal social welfare while satisfy-
ing individual rationality and strong balance budget. Future
research directions to improve our double-auction scheme
include: the investigation of the trade-off between truthfulness
and social welfare (for example, guaranteeing truthfulness
while achieving near-optimal social welfare), an online algo-
rithm to serve a more dynamic scenario in MEC, the systems
implementation of the scheme (including the efficient delivery
mechanisms of the workloads across distributed servers).
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